CS708.S1C: CBIR: Colour Representation

Semester 1, 2006

Colour Representation

- Colour is the most widely used visual feature in multimedia context
- CBIR systems are not aware of the difference in original, encoded, and perceived colours
- Colour is a <u>subjective characteristic</u>
 - It tells how the perceived electromagnetic radiation, $F(\lambda)$, is distributed in the range [380 *nm*,780 *nm*] of wavelengths λ of visible light

Lecture G5

Semester 1, 2006

XYZ Primary Colours

• The unreal primary colours **XYZ** pursue the goal of obtaining only non-negative weights $c_{\chi}(\lambda)$, $c_{\gamma}(\lambda)$, $c_{z}(\lambda)$ in the colour representation:

$$F(\lambda) = X c_{X}(\lambda) + Y c_{Y}(\lambda) + Z c_{Z}(\lambda)$$

 The XYZ chromaticity diagrams are defined by the Commission Internationale de l'Eclairage (CIE) for 1931 2° Standard Observer and 1964 10° Standard Observer

Lecture G5

CS708.S1C: CBIR: Colour Representation

T Univ of Au	RGB Colour Space	
	• The RGB representation is most popular:	
	- It closely relates to human colour perception	
	- A majority of imaging devices produce RGB images	
	 Gamma correction of a non-linear relationship S = L^γ between the signal S and light intensity L in imaging devices before storing, transmitting,) /
	or processing the images	
	Semester 1, 2006 Lecture G5 10	

CS708.S1C: CBIR: Colour Representation

Semester 1, 2006

RGB and Query-by-Colour
 The initial RGB representation of an image is of retrieval value only if recording was performed in stable conditions
 Only in rare cases, e.g. for art paintings
 RGB coordinates are strongly interdependent RGB coordinates describe not only inherent colour properties of objects but also variations of illumination and other external factors

Lecture G5

13

Independent Chrominance

• Luminance (e.g., R+B+G) is separated from the two orthogonal chrominance components that form independent (or opponent) axes: R + G + B, R - G, -R - G + 2B• Luminance and relative 2D colour coordinates: $R G B \Rightarrow r g b (r + g + b = 1);$ r = R / (R+B+G); g = G / (R+B+G); b = B / (R+B+G)

