

CBIR: Interaction & Evaluation

COMPSCI.708.S1.C A/P Georgy Gimel'farb

Semantic vs. Feature Similarity

- The user seeks semantic similarity, but CBIR provides similarity by data processing results
- The challenge for a CBIR is to focus on a narrow information domain the user has in mind via specification, examples, and interaction
 - Early CBIR engines required from users to manually select low-level visual features and specify relative weights for each their possible representation

Early CBIR Engines

- Users had to know how the features are used
- Difficulties of representing semantic contents in terms of low-level features
 - Users need semantics ("a sunset image", "penguins on icebergs"), rather than general low-level features ("a predominantly red/orange image", "predominantly oval black blobs on a white background")
 - There exist too many irrelevant images with similar dominant colours and regions (a "retrieval noise")
 - Difficulties by the highly subjective human perception

More Advanced CBIR Engines

- Low-level features are not adequate to contents
- *Subjective perception*: different users and even the same user under different conditions may interpret the same image differently
- Visually similar images: due to their semantics, rather than their similar low-level features
 - Experimental CBIR engines (e.g. Photobook with FourEyes or PicHunter) use relevance feedback to adjust a query in such a way as to approach close to the user's expectations

Interactive CBIR Engine

- An interactive CBIR system contains:
 - an image database
 - a feature database
 - a selector of feature similarity metric
 - a block for evaluating feature relevance
- When a query arrives, the system has no prior knowledge about the query: all features have the same weight in computing the similarity measure

Interactive CBIR Engine

- After a fixed number of the top-rank (by the similarity to the query) images are retrieved, the user provides the *relevance feedback*
- The feature relevance block uses learning algorithms in order to re-evaluate the weights of each feature in line with the user's feedback
- The metric selector chooses the best similarity metric for the weighted features using reinforcement learning

Interactive CBIR Engine

- By iteratively using the relevance feedback, the engine adjusts the query and brings the retrieved images closer to the user's expectations
 - The weight of each feature in the similarity computation is iteratively updated in accord with the high-level and subjective human perception
- The user need not map semantics onto features and specify weights and instead only informs the engine which images are relevant to the query

Interactive QBE Retrieval

- Two-stage process of formulating a query:
 - an initial formulation when the user has no precise idea of what should be searched for
 - a refined formulation after the user took part in the iterative process of the relevance feedback
- First stage: the engine helps in formulating an "imprecise" query by providing sequential and feature-based browsing and sketching tools

Interactive QBE Retrieval

- Second stage: the user gives positive and negative feedback to the system
- Feedback: (1) all currently retrieved images are labelled in accord with their relevance to user's expectations
 - E.g. image labelling into five groups: *highly relevant, relevant, neutral, irrelevant*, and *highly irrelevant* results of the retrieval

Interactive QBE Retrieval

- Feedback: (2) The CBIR system processes both the query and the user-labelled retrieved images
 - The joint processing updates weights of features and chooses more adequate similarity metric
 - The goal of processing: to suppress the irrelevant outputs and enhance the relevant ones
 - If the range of feature values for the relevant images is similar to that for the irrelevant ones, then this feature cannot effectively separate these images and its weight should decrease
 - But if the "relevant" values vary in a relatively small range containing no or almost no "irrelevant" values, it is a crucial feature which weight should increase

How To Evaluate Retrieval?

Items	Relevant	Non-relevant			
Retrieved	A : hits	B : Noise, or fallout			
Not retrieved	C: misses	D : Correct rejection			

Effectiveness of retrieval depend on the **filtering capacity** of the system, i.e. on proportions of relevant and non-relevant items among the retrieved data and with respect to the whole data base

Lecture G3

Evaluation of the QBE Retrieval

- Test-bed for the evaluation:
 - a collection of N images
 - a set of benchmark queries to the test bed data
 - the "ground-truth" quantitative assessment of the relevance of each image for each benchmark query
- Retrieval performance:
 - average *recall | precision*, i.e. *a*verage relative numbers of the relevant results returned to the user in all the benchmark queries

Evaluation of the QBE Retrieval

- Let $W_r \in [0,1]$ be a quantitative relevance of the item of rank r to the benchmark query
- For each cut-off value $n \in [1,N]$ of returns:

 $\begin{array}{ll} -A_n = W_1 + \ldots + W_n & \rightarrow \text{ returned relevant results} \\ -B_n = n - A_n & \rightarrow \text{ returned irrelevant results} \\ -C_n = W_{n+1} + \ldots + W_N & \rightarrow \text{ non-returned relevant results} \\ -D_n = N - n - C_n & \rightarrow \text{ non-returned irrelevant results} \end{array}$

Evaluation of the QBE Retrieval

- Recall $R_n = A_n / (A_n + C_n)$ is a relative amount of the relevant results returned among the *n* top-rank matches after a query
 - Recall by itself is not a good quality measure (as $R_N = 1.0$)
 - *Example*: N=10 database images; n = 3 images returned; $W_1=0.9$; $W_2=0.8$; $W_3=0.7$; $W_4...W_6=0.4$, $W_7...W_{10}=0.2$ the relevance of the images ranked w.r.t. a query: $A_3 = W_1 + W_2 + W_3 = 0.9 + 0.8 + 0.7 = 2.4$ $C_3 = W_4 + ... + W_{10} = 0.4 \times 3 + 0.2 \times 4 = 2.0 \Rightarrow$ $R_3 = 2.4 / (2.4 + 2.0) = 2.4 / 4.4 = 0.545$

Evaluation of the QBE Retrieval

- **Precision** $P_n = A_n / n$ is a proportion of relevant results returned among the *n* top-rank matches after a query
 - Precision is the average relevance of the returned results
 - *Example*: N=10 database images; n = 3 images returned; $W_1=0.9$; $W_2=0.8$; $W_3=0.7$; $W_4...W_6=0.4$, $W_7...W_{10}=0.2$ the relevance of the images ranked w.r.t. a query: $A_3 = W_1 + W_2 + W_3 = 0.9 + 0.8 + 0.7 = 2.4 \rightarrow$ $P_3 = 2.4 / 3 = 0.8$
 - Precision-recall graph depicts the degradation of precision at *n* as one traverses the output list

Evaluation of the QBE Retrieval

- Fallout $F_n = B_n/(B_n+D_n) = (n-A_n)/(N-A_n-C_n)$ is the relative amount of retrieved irrelevant items
 - It measures how quickly precision drops as recall increases
 - *Example*: N=10 database images; n = 3 images returned; $W_1=0.9$; $W_2=0.8$; $W_3=0.7$; $W_4...W_6=0.4$, $W_7...W_{10}=0.2$ the relevance of the images ranked w.r.t. a query: $A_3 = W_1 + W_2 + W_3 = 0.9 + 0.8 + 0.7 = 2.4$ $C_3 = W_4 + ... + W_{10} = 0.4 \times 3 + 0.2 \times 4 = 2.0 \Rightarrow$ $B_3 = 3 - 2.4 = 0.6$; $D_3 = 10 - 3 - 2.0 = 5.0 \Rightarrow$ $F_3 = 0.6 / (0.6 + 5.0) = 0.6 / 5.6 = 0.107$

Evaluation for *n* Top-rank Items

п	1	2	3	4	5	6	7	8	9	10
W_n	0.90	0.80	0.70	0.40	0.40	0.40	0.20	0.20	0.20	0.20
A_n	0.90	1.70	2.40	2.80	3.20	3.60	3.80	4.00	4.20	4.40
C_n	3.50	2.70	2.00	1.60	1.20	0.80	0.60	0.40	0.20	0.00
\boldsymbol{R}_n	0.20	0.39	0.55	0.64	0.73	0.82	0.83	0.91	0.96	1.00
P_n	0.90	0.85	0.80	0.70	0.64	0.60	0.54	0.50	0.47	0.44
B_n	0.10	0.30	0.60	1.20	1.80	2.40	3.20	4.00	4.80	5.60
D_n	5.50	5.30	5.00	4.40	3.80	4.20	2.40	1.60	0.80	0.00
F_n	0.02	0.05	0.11	0.21	0.32	0.43	0.57	0.71	0.86	1.00

Semester 1, 2006

Semester 1, 2006

Generality Vs. Performance

• Precision - Recall graphs are meaningful only if their points are measured under a common generality: $G=(A_n + C_n)/N$

G is the common average expected performance

Typical P-R curves for retrieving a constant-size group of totally relevant items embedded in a growing number of irrelevant items

In practice, no complete ground truth to evaluate recall and generality is known; only their lower bounds $A_n/(N-n-A_n)$ and A_n/N can be used to analyse a CBIR system