
LOCKUP-FREE INSTRUCTION FETCH/PREFETCH CACHE ORGANIZATION

DAVID KROFT

Control Data Canada, Ltd.
Canadian Development Division

Mississauga, Ontario, Canada

ABSTRACT

In the past decade, there has been much literature describing
various cache organizations that exploit general programming
idiosyncrasies to obtain maximum hit rate (the probability that a
requested datum is now resident in the cache). Little, if any,
has been presented to exploit: (1) the inherent dual input
nature of the cache and (2) the many-datum reference type
central processor instructions.

No matter how high the cache hit rate is, a cache miss may
impose a penalty on subsequent cache references. This penalty
is the necessity of waiting until the missed requested datum is
received from central memory and, possibly, for cache update.
For the two cases above, the cache references following a miss
do not require the information of the datum not resident in the
cache, and are therefore penalized in this fashion.

In this paper, a cache organization is presented that essentially
eliminates this penalty. This cache organizational feature has
been incorporated in a cache/memory interface subsystem
design, and the design has been implemented and prototyped.
An existing simple instruction set machine has verified the
advantage of this feature; future, more extensive and
sophisticated instruction set machines may obviously take more
advantage. Prior to prototyping, simulations verified the
advantage.

INTRODUCTION

A cache buffer 1,2 is a small, fast memory holding most
recently accessed data and its surrounding neighbors,
Because the access time of this buffer is usually an
order of magnitude greater than main or central
memory, and the standard software practice is to
localize data, the effective memory access time is
considerably reduced when a cache buffer is included.
The cost increment for this when compared with the
cost of central memory along with the above access
time advantage infers cost effectiveness.

Now, accepting the usefulness of a cache buffer, one
looks into ways of increasing its effectiveness; that is,
further decreasing the effective memory access time.
Considerable research has been done to fine tune a
cache design for various requirements. 3,6 This fine
tuning consisted of selecting optimal total cache buffer
size, block size (the number of bytes to be requested on

a cache miss), space allocation, and replacement
algorithms to maximize hit rate. Another method
presented to increase the hit rate was selective
prefetching. 7 All these methods assume the cache can
handle only one request at a time; on a miss, the cach
stays busy servicing the request until the data is
received from memory and, possibly, for cache buffer
update.

In this paper, a cache organization is presented that
increases the effectiveness of a normal cache inclusion
by using the inherent dual input nature of an overall
cache and the many data reference instructions. In oth
words, it would be extremely useful to pipeline the
requests into the cache at the cache hit throughput ratq
regardless of any misses. If this could be accomplisheq
then all fetch and/or prefetch of instructions could be
totally transparent to the execution unit. Also, for
instructions that require a number of data references,
the requests could be almost entirely overlapped.
Obviously, requests could not be streamed into the
cache at the hit throughput rate indefinitely. There is a
limit. This organization's limit is imposed by the numb.
of misses that have not been completely processed th~
the cache will keep track of simultaneously without

Iockup.

ORGANIZATION

In addition to the standard blocks, this cache
organization requires the following:

1. One unresolved miss information/status holding
register (MSHR) for each miss that will be handle
concurrently.

2. One n way comparator, in which n is the number
of MSHR registers, for registering hits on data in
transit from memory.

3. An input stack to hold the total number of
received data words possibly outstanding. The
size of this stack, consequently, is equal to the

0149-71111811000010081500.75 © 1 9 8 1 1 E E E
81

block size in words times the number of MSHR
registers.

4. MSHR status update and collecting networks.

5. The appropriate control unit enhancement to
accommodate 1 through 4.

Figure 1 is a simplified block diagram of the cache
organization. (A set-associative operation is assumed.)
Included are the required blocks for a set-associative
cache (tag arrays and control, cache buffer), the central
memory interface blocks (memory requestor, memory
receiver), and the cache enhancement blocks (miss info
holding registers, miss comparator and status collection,
input stack). The miss info holding registers hold all
necessary information to (1) handle the central memory
received data properly and (2) inform the main cache
control, through the miss comparator and status
collector, of all hit and other status of data in transit
from memory. The input stack is necessary to leave the
main cache buffer available for overlapped reads and
writes. Note that this organization allows for data just
received from memory or in the input stack to be sent
immediately to the requesting CPU units.

Of course, the number of MSHR registers is important.
As with set size (blocks per set), the incremental value
decreases rapidly with the number of registers. This is
good, because the cost increases significantly with the
number of registers. Figure 2 presents a qualitative
curve. The average delay time is caused by lockout on
outstanding misses. This delay time, of course, is also
dependent on cache input request and hit rates. In the
degenerate case, 1 MSHR register of reduced size is
required; 2 MSHR registers allow for overlap while one
miss is outstanding, but still would lock up the cache
input on multiple misses outstanding. Owing to cost
considerations and incremental effectiveness gained on
increasing the number of MSHR registers, 4 registers
appear to be optimal. 8

The necessary information contained within one of these
MSHR registers includes the following: First, the cache
buffer address, along with the input request address, is
required. The cache buffer address is kept to know
where to place the returning memory data; the input
request address is saved to determine if, on subsequent
requests, the data requested is on its way from central
memory. Second, input request identification tags, along
with the send-to-CPU status, are stored. This
information permits the cache to return to CPU
requesting units only the data requested and return it
with its identification tag. Third, in-input-stack

indicators are used to allow for reading data directly
from the input stack. Fourth, a code (for example, one
bit per byte for partial write) is held for each word to
indicate what bytes of the word have been written to
the cache buffer. This code controls the cache buffer
write update and allows dispensing of data for buffer
areas that have been totally written after requested. The
cache, thus, has the capability of processing partial write
input requests 'ton the f ly" without purging. (Of course,
this partial write code may not be incorporated if the
cache block is purged on a partial write request to a
word in a block in transit from memory.) Last, some
control information (the register contains valid
information only for returning requested data, but not for
cache buffer update and the number of words of the
block that have been received and written, if required,
into the cache buffer) is needed. Therefore, each MSHR
register contains:

1. Cache buffer address

2. Input request address

3. Input identification tags (one per word)

4. Send-to-CPU indicators (one per'word)

5. In-input-stack indicators (one per word)

6. Partial write codes (one per word)

7. Number of words of blocks processed

8. Valid information indicator

9. Obsolete indicator (information not valid for cache
update or MSHR hit on data in transit)

OPERATION

The operation can be split into two basic parts: memory
receiver/input stack operations and tag array control
operations. For memory receiver/input stack operations,
the fields of MSHR interrogated are the following:

1. Send-to-CPU indicator

2. Input identification tags

3. Cache buffer address

4. Partial write codes

82

5. Obsolete indicator

6. Valid indicator

When a word is received from memory, it is sent to the
CPU requesting unit if the send-to-CPU indicator is set;
the appropriate identification tag accompanies the data.
This word is also written into the input stack if the
word's space has not been previously totally written in
the cache buffer or if MSHR is not obsolete (invalid for
cache update). The words of data are removed from
this input stack on a first-in, f i rst-out basis and are
written into the cache buffer using fields 3 and 4. Of
course, MSHR must hold valid information when
interrogated, or an error signal will be generated.

A slight diversion is necessary at this point to explain
cache data tagging. On a miss, the cache requests a
block of words. Along with each word, a cache tag is
sent. This tag points to the particular assigned MSHR
and indicates the word of the block. Note that the
cache saves in MSHR the requesting unit's identification
tag. This tagging closes the remaining open link for the
handling of data returned from memory and removes all
restrictions on memory on the order of responses.

If a particular processor/memory interface allows for a
data width of a block of words for cache to central
memory requests, the cache data tagging may be
simplified by merely pointing to the particular assigned
MSHR. If, however, all other data paths are still one
word wide, the main operations would be essentially
unchanged. Consequently, this extended interface would
no t significantly reduce the control complexity or the
average lockout time delay per request.

The fields of the MSHR updated during memory
receiver/input stack operations are the following:

1. In-input-stack indicators

2. Partial write codes

3. Number of words of block processed

4. Valid information indicator (being used indicator)

T h e in-input-stack indicators are set when the data
word is written into the input stack and cleared when
data is removed from the input stack and written into
the cache buffer. The partial write code is set to
indicate totally written when the data word from central
memory indicates the cache buffer. In addition,
whenever a data word. is disposed of because of being

totally written or having an obsolete MSHR, or is written
into the cache buffer, the number-of-words-processed
counter is incremented. On
number-of-words-processed counter overflow (all
words for a block have been received), the valid or used
MSHR indicator is cleared.

For tag array control operations, the following fields of
MSHRs are interrogated:

1. Input request addresses

2. Send-to-CPU indicators

3. In-input-stack indicators

4. Partial write codes

5. Valid indicator

6. Obsolete indicator

Fields 1, 5, and 6 are used along with current input
request address and the n way MSHR comparator to
determine if there is a hit on previously missed data still
being handled (previous miss hit). Fields 2, 3, and 4
produce one of the following states for the previous
miss hit:

• Partially written (Partial write code has at least one
bit set.)

• Totally written (Partial write code is all l"s.)

• In-input-stack

• Already-asked-for (Send-to-CPU indicator is already
set.)

Figure 3 indicates the actions followed by the tag array
control under all the above combinations for a previous
miss hit. On a miss, a MSHR is assigned, and the
following is performed:

1. Valid indicator set

2. Obsolete indicator cleared

3. Cache buffer address saved in assigned MSHR

4. Input request address saved in assigned MSHR

5. Appropriate send-to-CPU indicator set and others
cleared

83

6. Input identification tag saved in appropriate
position

7. All partial write codes associated with assigned
MSHR cleared

8. All MSHRs pointing to same cache buffer address
purged (Set partial write code to all l 's)

Note that actions 5 and 6 will vary if the cache function
was a prefetch (all send-to-CPU indicators are cleared,
and no tag is saved). Action 8 prevents data from a
previous allocation of a cache buffer block from
overwriting the present allocation's data. On a miss and
previous miss hit (the cache buffer block was reallocated
for the same input address before all data was
received), MSHR is set obsolete to prevent possible
subsequent multiple hits in the MSHR comparator.

SIMULTANEITY

A previous miss hit on a data word just being received
is definitely possible. Depending on the control
operation, this word may have its corresponding
send-to-CPU indicator's output forced to the send
condition or may be read out of the input stack on the,
next minor cycle.

CONCLUSIONS

This cache organization has been designed, prototyped,
and verified. The design allows for the disabling of the
MSHR registers. Using this capability, the direct effect
of the number of MSHR registers on the execution
times of a number of applications was noted. The
reduced execution times of these applications directly
demonstrated the effectiveness of this enhancement. (It
is beyond the scope of this paper to analyze
quantitatively the average lockout delay/request with
respect to the number of enabled MSHR registers for
different cache input rates and hit rates [cache buffer
sizes]. This analysis will be reported in future work.)
The cost of the 4 MSHR additions to the design was
about 10% of the total cache cost.

ACKNOWLEDGMENT

The author thanks Control Data Canada for the opportuni~ to
develop the new cache organization presented in this paper.

DIAGNOSABILITY

To diagnose this cache enhancement more readily,
cache input functions should be added to clear and set
the valid indicators of the MSHR registers. This would
allow the following error conditions to be forced:

• Cache tag points to nonvalid MSHR register

• Multiple hit with MSHR comparator

• Previous miss hit status-totally written and not
partially written

All other fields of the MSHR registers may be verified
by using these special cache input functions in
combination with the standard input functions with all
combinations of addresses, identification tags and data.

184

R E F E R E N C E S

1C. J. Conti. Concepts of buffer storage, IEEE Computer
Group News, 2 (March 1969).

2R. i . Meade. How a cache memory enhances a computer's
performance, Electronics (Jan. 1972).

3K. R. Kaplan and R. O. Winder. Cache-based computer
systems, IEEE Computer (March 1973).

4j. Bell, D. Casasent, and C. G. Bell. An investigation of
alternative cache organizations. IEEE Transactions on
Computers, C-23 (April 1974).

5j. H. Kroeger and R. M. Meade (of Cogar Corporation,
Woppingers Fall, NY). Cache buffer memory specification.

6A. V. Pohm, O. P. Agrawal, and R. N. Monroe. The cost and
performance tradeoffs of buffered memories. Proceedings of
the IEEE, 63 (Aug. 1973).

7A. J. Smith. Sequential program prefetching in memory
hierachies, IEEE Computer (Dec 1978).

8G. H. Toole. Instruction Iookahead and execution traffic
considerations for the _ _ cache design (Development
division internal paper), Control Data-Canada, 1975.

85

MEMORY
REQUESTOR / / CENTRAL MEMORY

CPU
INST
UNIT
CPU
EXEC
UNIT

AODRESSIS~ DATA

--TAG

CONTROL

ADDRESS & DATA

ADDRESS
& CONTROL

ADDRESS

STATUS

MISS INFO I HOLDING
REGISTERS

<

MISS
COMPARATOR
AND
STATUS
COLLECTION

ADDRESS

i . ~ - ~ CACHE
BUFFER

CENTRAL MEMORY

Figure 1. Cache Organization

J INP
ST~

MEMORY
RECEIVER

DATA

DATA

• CPU

UNITS

p-

O

Lu

2 4 8

NO. OF MISS INFO HOLDING REGISTERS

Figure 2. Qualitative Curve for Lockout Delay

86

INPUT PARTIALLY TOTALLY IN ALREADY
FUNCTION WRITTEN WRITTEN INPUT ASKED ACTION

STACK FOR

READ NO NO NO NO SET SEND-TO-DPU BIT SAV~ IDENT

REAO NO NO NO YES READ FROM CENTRAL MEMORY (BY- PASS)

READ NO NO YES X READ FROM STACX

READ YES NO X X R_AO FROM CENTRAL MEMORY (BY-PASS)

RFa,0 YES YES X X READ FROM CACHE BUFFER

PREFETCH X X X X NO ACTION

WRITE BYTES TO CACHE SUFFER. SET APPROPRIATE
WRITE X X X X PARTIAL WRITE SITS.

WHERE X IS DON'T CARE

Figure 3. Previous Miss Hit Operations

87

