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Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see sectioR.6.2).

Portions of the specification which are optional are described where the op-
tional features are first defined (see sectio.?). State table entries which are
optional are typese against a gray background

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing
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or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.
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1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

Version 1.3 - August 14, 2001



Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sendingommandsn the form of function or procedure calls.

Primitives are defined by a group of one or muestices A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all pre-
viously invoked GL commands. In general, the effects of a GL command on either

4
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GL modes or the framebuffer must be complete before any subsequent command
can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of Gtontextseach of which is an encapsulation of cur-
rent GL state. A client may choosetonnecto any one of these contexts. Issuing
GL commands when the program is monnectedo acontextresults in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.
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Finally, command names, constants, and types are prefixed in the Gil, (by
GL, andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in10°. The maximum representable magnitude of a floating-point number
used to represent positional or normal coordinates must be atfZashe maxi-

mum representable magnitude for colors or texture coordinates must be atfeast
The maximum representable magnitude for all other floating-point values must be
atleas®?. 2-0 = 0-z = 0 for any non-infinite and non-NalM. 1-2 = 2-1 = z.
r+0=0+4z = . 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, calleds@iver
state resides in the GL server. The majority of GL state falls into this category.
The second type of state, called @lient state resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
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client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed fromramefollowed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present,vs indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from thlertex command:

void Vertex3f(float x, float v, float z);
and
void Vertex2s\ short Vv[2] );

These examples show the ANSHeclarations for these commands. In general,
a command declaration has the férm

rtypeName{e1234}{e b sifd ub us ui}{ev}
([args,)Targl,..., TargN [, args] );

rtypeis the return type of the function. The bracgs$)(enclose a series of char-
acters (or character pairs) of which one is selectedidicates no character. The
arguments enclosed in brackefargs ,] and[, args]) may or may not be present.

1The declarations shown in this document apply to AlCSLanguages such &++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.
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| Letter | CorrespondingsL Type |

b byte

s short

i int

f float

d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table2.2for definitions of the GL types.

The N argumentsargl throughargN have typeT, which corresponds to one of the
type letters or letter pairs as indicated in Tabl& (if there are no letters, then the
arguments’ type is given explicitly). If the final character is npthenN is given
by the digitl, 2, 3, or4 (if there is no digit, then the number of arguments is fixed).
If the final character iy, then onlyarglis present and it is an array of values
of the indicated type. Finally, we indicate ansigned type by the shorthand of
prepending @ to the beginning of the type name (so that, for instanosjgned
char is abbreviatedichar ).

For example,

void Normal3{fd}( T arg);
indicates the two declarations

void Normal3f(float argl, float arg2 float arg3);
void Normal3d( double argl, double arg2 double arg3);

while
void Normal3{fd}v(T arg);
means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv( double arg[3]);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
Table2.2.
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GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 signed 2’'s complement binary integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped {0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
typeint is referred to asGLint outside this document, and is not necessarily
equivalent to the C typent . An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
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Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure2.1shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in aisplay listfor processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Eddgmentso produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read
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back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError (void );

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. W@GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call tadSetError returnsNOQERRORthen there has been no detectable
error since the last call tGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call t&etError returns a value other thaitQERROReach
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all NONNOQERRORcodes have been returned. When there are no more
nonNQERROFRerror codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes MOERROR

Table2.3summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only@fUTOFMEMORY¥as occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every GL
command. First, if a command that requires an enumerated value is passed a sym-
bolic constant that is not one of those specified as allowable for that command, the
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Error Description Offending com-
mand ignored?

INVALID _ENUM enum argument out of range Yes

INVALID _VALUE Numeric argument out of range| Yes

INVALID _OPERATION|| Operation illegal in current state Yes
STACKOVERFLOW Command would cause a stackres

overflow

STACKUNDERFLOW || Command would cause a stackres
underflow

OUTOFMEMORY Not enough memory left to exe- Unknown

cute command
TABLETOQLARGE The specified table is too large | Yes

Table 2.3: Summary of GL errors

errorINVALID _[ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for the given command. Second,
if a negative number is provided where an argument of sipei  is specified,

the erroriINVALID _VALUEresults. Finally, if memory is exhausted as a side effect
of the execution of a command, the er@yTOFMEMOR¥ay be generated. Oth-
erwise errors are generated only for conditions that are explicitly described in this
specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
betweenBegirVEnd pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addition, a
current norma) multiple current texture coordinate setandcurrent color may
be used in processing each vertex. Normals are used by the GL in lighting cal-
culations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a
texture image is mapped onto a primitive. Multiple sets of texture coordinates
may be used to specify how multiple texture images are mapped onto a primitive.
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The number of texture units supported is implementation dependent but must be
at least two. The number of texture units supported can be queried with the state
MAXTEXTUREUNITS.

Primary and secondary colors are associated with each vertex (see 8&€gtion
Theseassociatedolors are either based on the current color or produced by light-
ing, depending on whether or not lighting is enabled. Texture coordinates are sim-
ilarly associated with each vertex. Multiple sets of texture coordinates may be
associated with a vertex. Figube2 summarizes the association of auxiliary data
with a transformed vertex to produceecessed vertex

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and colors are
sent to the GL, as well as how normals are transformed and how vertices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see sectoh3.?, and the multiple
current texture coordinate sets. Because color assignment is done vertex-by-vertex,
a processed vertex comprises the vertex’s coordinates, its edge flag, its assigned
colors, and its multiple texture coordinate sets.

Figure2.3shows the sequence of operations that builddmitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it is
clipped to a viewing volume. This may alter the primitive by altering vertex coordi-
nates, texture coordinates, and colors. In the case of a polygon primitive, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End Objects

Begin andEnd require one state variable with eleven values: one value for each
of the ten possibl®egirVEnd objects, and one other value indicating thatBe
gin/End object is being processed. The two relevant commands are

void Begin( enum mode);
void End(void );

There is no limit on the number of vertices that may be specified betwBegia
and anEnd.
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Figure 2.3. Primitive assembly and processing.

Points. A series of individual points may be specified by callBggin with an
argument value 0POINTS. No special state need be kept betwBeginandEnd
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints withBegir/End pair whenBeginis
called withLINE _STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’'s endpoint and the
second segment’s start point. In general, itmevertex (fori > 1) specifies the
beginning of theith segment and the end of the- 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified betwedBethie/End
pair, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with theINE _LOOPargument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines.Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs vBeégin and End when the value
of the argument tdBegin is LINES. In this case, the first two vertices between a
BeginandEnd pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
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one isignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. WheBegin is called withPOLYGONthe bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see secti@ris3.1and3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a BeginEnd pair whenBegin is called withTRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. BegirVEnd pair enclosing fewer
than three vertices, WhefRIANGLE STRIP has been supplied ®egin, produces
no primitive. See Figur@.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After 8egin( TRIANGLESTRIP) , the pointer is initialized
to point to vertex A. Each vertex sent betwedBegyi/End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed betwBegin andEnd when the value of
the argument t@eginis TRIANGLE FAN

Separate Triangles. Separate triangles are specified by placing vertices be-
tweenBegin andEnd when the value of the argumentBeginis TRIANGLES In
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Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices betvReggin andEnd. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c
order of each triangle’s edges is independent of the other triangles.

he

—

this case, Th&: + 1st, 3i 4+ 2nd, and3i + 3rd vertices (in that order) determine
a triangle for each = 0,1,...,n — 1, where there ar8n + k vertices between
the BeginandEnd. k is either 0, 1, or 2; ift is not zero, the finak vertices are
ignored. For each triangle, vertex A is vertgékand vertex B is verteg: + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing betwd&=gin and End, whenBegin is
called with QUADSTRIP. If the m vertices between th&egin and End are
v1,...,Um, Wherev; is the jth specified vertex, then quachas vertices (in or-
der)ve;, v9i+1, V2i+3, andvg; 1o Withi = 0, ..., |m/2]. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See Figuiz5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip betw@&sgin andEnd is odd, the
final vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips except that
each group of four vertices, they + 1st, the4;j + 2nd, the4; + 3rd, and the
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(@) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices betweeBeginandEnd.

4j + 4th, generate a single quad, for= 0,1,...,n — 1. The total number of
vertices betweeBeginandEnd is 4n + k, where0 < k < 3; if k is not zero, the
final k£ vertices are ignored. Separate quads are generated by dadiig with
the argument valuQUADS

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
eitherboundaryor non-boundary These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlad boolean flag);
void EdgeFlagy boolean *flag);

to change the value of a flag bit. flag is zero, then the flag bit is set FALSE; if
flagis non-zero, then the flag bit is setTRUE

WhenBegin is supplied with one of the argument valueSLYGONTRIAN-
GLES or QUADSeach vertex specified withinBeginandEnd pair begins an edge.
If the edge flag bit iSRUE then each specified vertex begins an edge that is flagged
as boundary. If the bit IEALSE, then induced edges are flagged as non-boundary.
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The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within 88gginVEnd pairs are the com-
mands for specifying vertex coordinates, vertex color, normal coordinates, and tex-
ture coordinatesVertex, Color, Index, Normal, TexCoord), theArrayElement
command (see sectidh8), the EvalCoord and EvalPoint commands (see sec-
tion 5.1), commands for specifying lighting material parametésiterial com-
mands; see sectich13.9, display list invocation command€éliList andCal-
ILists; see sectiorb.4), and theEdgeFlagcommand. Executing any other GL
command between the executiorB#ginand the corresponding executionkrid
results in the errdiNVALID _OPERATIONEXxecutingBeginafterBeginhas already
been executed but before Bnd is executed generates tihVALID _OPERATION
error, as does executignd without a previous correspondirfBegin.

Execution of the commandsnableClientState DisableClientState Push-
ClientAttrib , PopClientAttrib , EdgeFlagPointer, TexCoordPointer, Color-
Pointer, IndexPointer, NormalPointer, VertexPointer, InterleavedArrays, and
PixelStore, is not allowed within anBegirVEnd pair, but an error may or may not
be generated if such execution occurs. If an error is not generated, GL operation is
undefined. (These commands are described in se@i@n3.6.1, and Chapte6.)

2.7 \ertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions ofleetex command:

void Vertex{234}{sifd}( T coords);
void Vertex{234}{sifd}v( T coords);

A call to anyVertex command specifies four coordinates; y, z, andw. The

x coordinate is the first coordinatg,is second,: is third, andw is fourth. A
call to Vertex2 sets ther andy coordinates; the coordinate is implicitly set to
zero and thev coordinate to oneVertex3 setsz, y, andz to the provided values
andw to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invokingertex command outside of a
Begin/End pair results in undefined behavior.
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Current values are used in associating auxiliary data with a vertex as described
in section2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}( T coords);
void TexCoord{1234}{sifd}v( T coords);

specify the current homogeneous texture coordinates, named, andq. The
TexCoord1 family of commands set the coordinate to the provided single argu-
ment while setting andr to 0 andg to 1. Similarly, TexCoord2 setss andt to the
specified values; to 0 andq to 1; TexCoord3 setss, t, andr, with g set to 1, and
TexCoord4 sets all four texture coordinates.

Implementations support more than one texture unit, and thus more than one
set of texture coordinates. The commands

void MultiTexCoord {1234 }{sifd }(enum textureT coord9
void MultiTexCoord {1234 }{sifd }v(enum textureT
coordg

take the coordinate set to be modified astéxtureparametertextureis a symbolic
constant of the fornTEXTURE, indicating that texture coordinate seis to be
modified. The constants ob@EXTURE = TEXTUREO+ i (¢ is in the range 0 to
k — 1, wherek is the implementation-dependent number of texture units defined
by MAXTEXTUREUNITS).

The TexCoord commands are exactly equivalent to the corresponhfintgi-
TexCoord commands withextureset toTEXTUREQ

Gets of CURRENITTEXTURECOORDSeturn the texture coordinate set defined
by the value oACTIVE_TEXTURE

Specifying an invalid texture coordinate set for thgtureargument oMulti-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}( T coords);
void Normal3{bsifd}v( T coords);

Byte, short, or integer values passedNormal are converted to floating-point
values as indicated for the corresponding (signed) type in Table

Finally, there are several ways to set the current color. The GL stores both
a current single-valuedolor index and a current four-valued RGBA color. One
or the other of these is significant depending as the GL &olor index modeor
RGBA modeThe mode selection is made when the GL is initialized.

The command to set RGBA colors is
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void Color{34}{bsifd ubusui}( T component$;
void Color{34}{bsifd ubusui}v( T components,

The Color command has two major variantSolor3 andColor4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in sectibh3)

Versions of theColor command that take floating-point values accept values
nominally between 0.0 and 1.0. 0.0 corresponds to the minimum while 1.0 corre-
sponds to the maximum (machine dependent) value that a component may take on
in the framebuffer (see sectichl3on colors and coloring). Values outsifie 1]
are not clamped.

The command

void Index{sifd ub}( T index);
void Index{sifd ub}v( T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four floating-point
numbers to store the current texture coordinatgsr, andg, three floating-point
numbers to store the three coordinates of the current normal, four floating-point
values to store the current RGBA color, and one floating-point value to store the
current color index. There is no notion of a current vertex, so no state is devoted to
vertex coordinates. The initial valuesgf, andr of the current texture coordinates
are zero; the initial value of is one. The initial current normal has coordinates
(0,0,1). The initial RGBA color is(R,G,B,A) = (1,1,1,1). The initial color
index is 1.

2.8 \Vertex Arrays

The vertex specification commands described in se@idmaccept data in almost

any format, but their use requires many command executions to specify even simple
geometry. Vertex data may also be placed into arrays that are stored in the client’s
address space. Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up td plus the value oMAXTEXTUREUNITS arrays: one each to
store vertex coordinates, edge flags, colors, color indices, normals, and one or
more texture coordinate sets. The commands
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void EdgeFlagPointel sizei stride void *pointer);

void TexCoordPointer(int size enum type sizei  stride
void *pointer);

void ColorPointer(int size enum type sizei  stride,
void *pointer);

void IndexPointer( enumtype sizei  stride void *pointer);

void NormalPointer( enumtype sizei  stride,
void *pointer);

void VertexPointer(int size enum type sizei  stride,
void *pointer);

describe the locations and organizations of these arrays. For each contympend,
specifies the data type of the values stored in the array. Because edge flags are al-
ways typeboolean , EdgeFlagPointerhas naypeargumentsize when present,
indicates the number of values per vertex that are stored in the array. Because
normals are always specified with three valulésrmalPointer has nosizeargu-

ment. Likewise, because color indices and edge flags are always specified with
a single value)ndexPointer and EdgeFlagPointeralso have nizeargument.

Table 2.4indicates the allowable values fsizeandtype(when present). Fdype

the valueBYTE, SHORTINT, FLOAT, andDOUBLENdicate typesyte , short ,

int , float , anddouble , respectively; and the valu@tNSIGNEDBYTE, UN-
SIGNEDSHORTandUNSIGNEDINT indicate typesibyte , ushort , anduint
respectively. The erroiNVALID -VALUEIs generated ikizeis specified with a
value other than that indicated in the table.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arraglement The values within each array element are stored se-
guentially in memory. Istrideis specified as zero, then array elements are stored
sequentially as well. Otherwise pointers to itieand(i+ 1)st elements of an array
differ by stride basic machine units (typically unsigned bytes), the pointer to the
(1 + 1)st element being greater. For each commaadhter specifies the location
in memory of the first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientStatd enumarray );
void DisableClientStat€ enumarray );
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| Command | Sizes | Types \

VertexPointer 2,3,4 | short ,int ,float ,double

NormalPointer 3 byte , short , int , float , dou-
ble

ColorPointer 3,4 byte , ubyte , short , ushort ,
int ,uint ,float ,double

IndexPointer 1 ubyte ,short ,int ,float ,dou-
ble

TexCoordPointer | 1,2,3,4| short ,int ,float ,double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

with array set to EDGEFLAGARRAY TEXTURECOORMARRAY COLORARRAY
INDEX_ARRAY NORMAIARRAY or VERTEXARRAY for the edge flag, texture co-
ordinate, color, color index, normal, or vertex array, respectively.

The command

void ClientActiveTexture( enum texture);

is used to select the vertex array client state parameters to be modified by
the TexCoordPointer command and the array affected BgableClientStateand
DisableClientStatewith parameteTEXTURECOORDARRAY This command sets
the client state variablELIENT _ACTIVE_TEXTURE Each texture unit has a client
state vector which is selected when this command is invoked. This state vector in-
cludes the vertex array state. This call also selects which texture units’ client state
vector is used for queries of client state.

Specifying an invalidexturegenerates the erréKVALID _.ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion2.7. .

Theith element of every enabled array is transferred to the GL by calling

void ArrayElement(int 1);

For each enabled array, it is as though the corresponding command from ge¢tion
or sectior?.6.2were called with a pointer to elemeint-or the vertex array, the cor-
responding command Mertex[sizg[typdv, wheresizeis one of [2,3,4], andype

is one of [s,i,f,d], corresponding to array typ&sort , int , float , anddou-

ble respectively. The corresponding commands for the edge flag, texture coordi-
nate, color, color index, and normal arrays BogeFlagy, TexCoord[sizg[typdv,
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Color[sizg[typdv, Index[typdv, andNormal[typdv, respectively. If the vertex
array is enabled, it is as thouyfertex[sizd[typdv is executed last, after the exe-
cutions of the other corresponding commands.

Changes made to array data between the executiddegin and the corre-
sponding execution &nd may affect calls t\rrayElement that are made within
the sameBegin/End period in non-sequential ways. That is, a calliwayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

The command

void DrawArrays(enummodeint first, sizei  count);

constructs a sequence of geometric primitives using elemgntst through
first + count — 1 of each enabled arraymodespecifies what kind of primi-
tives are constructed; it accepts the same token values asdthe parameter of
theBegincommand. The effect of

DrawArrays ( mode, first, count);
is the same as the effect of the command sequence

if ( mode or count is invalid)
generate appropriate error

else {
int i
Begin( mode);
for (i=0; i < count ; i++)
ArrayElement( first+ i);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the execubwawArrays,
if the corresponding array is enabled. Current values corresponding to disabled
arrays are not modified by the executiorDofiwArrays .

The command

void DrawElementq enummode sizei  count enum type
void *indices);

constructs a sequence of geometric primitives usingcthnt elements whose
indices are stored inndices type must be one ofUNSIGNEDBYTE UN-
SIGNED.SHORT or UNSIGNEDINT, indicating that the values imdicesare in-
dices of GL typeubyte , ushort , oruint respectively. modespecifies what
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kind of primitives are constructed; it accepts the same token values asdide
parameter of th&egincommand. The effect of

DrawElements( mode, count, type, indices);
is the same as the effect of the command sequence

if ( mode, count, or type is invalid)
generate appropriate error

else {
int i;
Begin( mode);
for (i=0; i < count ; i++)
ArrayElement( indices]i ]);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the executibrawntle-
ments, if the corresponding array is enabled. Current values corresponding to
disabled arrays are not modified by the executioDEwElements

The command

void DrawRangeElement$ enummode uint  start,
uint end sizei count enum type void *indices);

is a restricted form obrawElements mode count type andindicesmatch the
corresponding arguments BrawElements with the additional constraint that all
values in the arraindicesmust lie betweestartandendinclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by callifigetintegerv with the symbolic constants
MAXELEMENTSVERTICESandMAXELEMENTANDICES. If end — start + 1 is
greater than the value GiAXELEMENTSVERTICES or if countis greater than
the value ofMAXELEMENTSNDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the ranget, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The errorINVALID VALUEIs generated itnd < start. Invalid mode count
or type parameters generate the same errors as would the corresponding call to
DrawElements It is an error for indices to lie outside the rangeurt, end], but
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implementations may not check for this. Such indices will cause implementation-
dependent behavior.
The command

void InterleavedArrays( enumformat sizei  stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants:V2F,
V3F, C4UBV2F, C4UBV3F, C3F.V3F, N3F.V3F, C4F.N3F.V3F, T2F_V3F,
TAF VAF, T2F_C4UBV3F, T2F_C3F.V3F, T2F_N3F.V3F, T2F_C4F N3F.V3F, or
T4F_CA4F_N3F_V4F.

The effect of

InterleavedArrays( format, stride, pointer);

is the same as the effect of the command sequence

if ( format or stride is invalid)
generate appropriate error
else {
int str;
setey, ec, €n, St, Sey Sv, te, Pe, Py Pu, @Nds as a function
of Table2.5and the value of ormat.
str = stride;
if (str is zerQ
str =s;
DisableClientStatd EDGEFLAGARRAY ;
DisableClientStatd INDEX_ARRAY ;
it (e {
EnableClientStatg TEXTURECOORDARRAY ;
TexCoordPointer( s;, FLOAT, str , pointer) ;
} else {
DisableClientStatd TEXTURECOORDARRAY ;

it (e {
EnableClientStatd COLORARRAY ;
ColorPointer( s, t., Str , pointer + p.) ;
} else {
DisableClientStatd COLORARRAY ;
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‘ format et ‘ € ‘ en ‘ St ‘ Se ‘ Su te
V2F False | False | False 2
V3F False | False | False 3
C4UBV2F False | True | False 4 | 2 | UNSIGNEDBYTE
C4UBV3F False | True | False 4 | 3 | UNSIGNEDBYTE
C3F.V3F False | True | False 3|3 FLOAT
N3F_V3F False | False | True 3
CAF_N3F_V3F False | True | True 4| 3 FLOAT
T2F_V3F True | False | False | 2 3
TAF_V4F True | False | False | 4 4
T2F_C4UBV3F True | True | False| 2 | 4 | 3 | UNSIGNEDBYTE
T2F_C3F.V3F True | True | False| 2 | 3 | 3 FLOAT
T2F_N3F.V3F True | False| True | 2 3
T2F_C4FN3F.V3F | True | True | True | 2 | 4 | 3 FLOAT
TAF_CAFN3FV4F | True | True | True | 4 | 4 | 4 FLOAT
| format pe [ pn] o | s |
V2F 0 2f
V3F 0 3f
C4UBV2F 0 c c+2f
C4UBV3F 0 c c+3f
C3F.V3F 0 3f 6f
N3F_V3F 0 3f 6.f
C4F_N3F.V3F 0 |4f | 17f 10f
T2F_V3F 2f 5f
TAF_VAF 4f 8f
T2F_C4UBV3F 2f c+2f | c+5f
T2F_C3F.V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CAFN3F.V3F | 2f | 6f | Of 12f
TAF_CAFN3F.VAF | 4f | 8f | 11f 15f

Table 2.5: Variables that direct the execution dhterleavedArrays.

sizeof(FLOAT)

fis

. ¢ is 4 timessizeof(UNSIGNED _BYTE), rounded up to

the nearest multiple off. All pointer arithmetic is performed in units of

sizeof(UNSIGNED

_BYTE).
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it (e) {
EnableClientStatg NORMAIARRAY ;
NormalPointer( FLOAT, str , pointer + p,) ;
} else {
DisableClientStatd NORMAIARRAY ;
}
EnableClientStat VERTEXARRAY ;
VertexPointer( s,,, FLOAT, str , pointer + p,) ;

}

If the number of supported texture units (the valu®aXTEXTUREUNITS) is
k, then the client state required to implement vertex arrays consistsioboolean
values 5+ k memory pointers; + k integer stride valued,+ &£ symbolic constants
representing array types, aBd- k integers representing values per element. In the
initial state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are EBOAT, and the integers
representing values per element are each four.

2.9 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(TxL, T y1L, T x2, T y2);
void Rect{sifd}v(Tv1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(x,y) coordinates, or two pointers to arrays each of which contains aalue
followed by ay value. The effect of th®ect command

Rect( z1,y1, 22, y2);
is exactly the same as the following sequence of commands:
Begin(POLYGON);
Vertex2( x1, y1);
Vertex2( x2,y1);
Vertex2( xs, y2);

Vertex2( x1, y2);
End();

The appropriatd/ertex2 command would be invoked depending on which of the
Rectcommands is issued.
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. Proiecti . Normalized
Object Model-View Eye rojection Clip Perspective Device
Coordinates Matrix Coordinates Matrix Coordinates Division Coordinates

Viewport Window

Transformation Coordinates

Figure 2.6. Vertex transformation sequence.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their coordinates
are used to produce an image in the framebuffer. We begin with a description of
how vertex coordinates are transformed and how this transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are tertojext co-
ordinates Themodel-viewmatrix is applied to these coordinates to yielgeco-
ordinates. Then another matrix, called {®jection matrix, is applied to eye
coordinates to yieldlip coordinates. A perspective division is carried out on clip
coordinates to yielshormalized deviceoordinates. A finaliewporttransforma-
tion is applied to convert these coordinates window coordinates

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting ofz, y, z, andw coordinates (in that order). The model-view and per-
spective matrices are thdsx 4.

Lo
If a vertex in object coordinates is given y‘ZO and the model-view matrix
(o}

Wo
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is M, then the vertex’s eye coordinates are found as

Te Lo
y@ — M yO
Ze Zo
We Wo

Tc Le
yC — P ye
Zc Ze
We We

The vertex’s normalized device coordinates are then

g Te/we
(yd):<yc/wc>~
2q Ze/We

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport's width and height in
pixels,p, andp,, respectively, and its centés,, o) (also in pixels). The vertex’s
Lw
window coordinates( Yuw ) , are given by
Zw

Ty (P2/2)Td + 0z
(yw) = ( (Py/2)ya + oy ) .
Zw [(f —n)/2]za + (n+ f)/2

The factor and offset applied tg encoded by: and f are set using
void DepthRangd clampd n, clampd f);

Each ofn andf are clamped to lie withifD, 1], as are all arguments of typtampd
or clampf . z,, is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each val®" — 1), wherek € {0,1,...,2™ —
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport(int x, int vy, sizei w,sizei h);
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wherex andy give thex andy window coordinates of the viewport’'s lower left
corner andv andh give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these valugs=as
z+w/2andoy =y + h/2; p, = w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriatéset command (see Chapté). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered toINVALID _VALUEIs generated if eithew or h is negative.

The state required to implement the viewport transformation is 6 integers. In
the initial statew andh are set to the width and height, respectively, of the win-
dow into which the GL is to do its rendering,, ando, are set tow/2 andh/2,
respectivelyn and f are set td).0 and1.0, respectively.

2.10.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode (enum mode);

which takes one of the pre-defined constarEXTURE MODELVIEWCOLOR or
PROJECTIONas the argument valu EXTURES described later in sectidh10.2
andCOLO#s described in sectio®.6.3 If the current matrix mode iSIODELVIEW
then matrix operations apply to the model-view matrix@HOJECTION then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix {fd}( T m[16]);
void MultMatrix {fd}( T m[16]);

LoadMatrix takes a pointer to & x 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ap as ag a3

az ag aip a4

az ary ai1 ais

ag ag a12 Aaie
(This differs from the standard row-maj@ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)
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The specified matrix replaces the current matrix with the one pointedut-
Matrix takes the same type argumentlamdMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matrix with the prodd¢t. If
is the current matrix and/ is the matrix pointed to bjultMatrix ’'s argument,
then the resulting current matrig;’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}( T m[16]);
void MultTransposeMatrix {fd }( T m[16] );

take pointers td x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ai a2 a3 a4

as ag ary as

ag aip a1 a12

a3 a4 a5 Aaie
The effect of

LoadTransposeMatrix[fd] ( m);
is the same as the effect of
LoadMatrix[fd] ( mT);
The effect of
MultTransposeMatrix[fd] ( m);
is the same as the effect of
MultMatrix[fd] ( m7);
The command

void Loadldentity (void );

effectively callsLoadMatrix with the identity matrix:

1 0 0 O
01 00
00 10
0 0 01
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There are a variety of other commands that manipulate matri€astate,
Translate, Scale Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invok&tultMatrix with this matrix. In the case of

void Rotate{fd}(To, T x, Ty, T z);

# gives an angle of rotation in degrees; the coordinates of a vecioe given by

v = (z y ). The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
0 0 01

Letu=v/|[v]|= (2 ¢ ). I

0 _Zl y/
S=1 7 0 -
-y 2 0

R =uu’ + cosf(I —uu’) +sinbS.

then

The arguments to
void Translate{fd}(Tx, T y, T z);

give the coordinates of a translation vectorfas, z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 «x
01 0 y
0 01 =z
0 0 0 1

void Scaldfd}(Tx, Ty T z),

produces a general scaling along they-, andz- axes. The corresponding matrix
is

S O OoO8R
o ow O
o n O

o O O

For
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void Frustum( double [, double r,double b, double t,
double n,double f);

the coordinategl b —n)T and(r ¢t —n)? specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is locatedoat 0)”). f gives the distance
from the eye to the far clipping plane. If eitheror f is less than or equal to zero,
lis equal tor, b is equal tat, orn is equal tof, the erroiNVALID _VALUEresults.

The corresponding matrix is

2n r+l 0
R
n
A A
—+n n
0 0 - -7
0 0 -1 0

void Ortho(double I, double r,double b, double t,
double n, double f);

describes a matrix that produces parallel projectigrt. — n)” and(r t —n)7
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectivel\gives the distance from the eye

to the far clipping plane. If is equal tor, b is equal tot, or n is equal tof, the
errorINVALID _VALUEresults. The corresponding matrix is

2 l
p 2 0 —;—fé
t+
0 7= 0 e
2 +n
0 0 -5 -5
0 0 0 1

For each texture unit, 4 x 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

mip ms Mg M3 s
me Mg Mig Mi4 t
m3 mr Mmi1 Mis r|’

m4 Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix madexttURE
causes the already described matrix operations to apply to the texture matrix.
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There is also a corresponding texture matrix stack for each texture unit. To
change the stack affected by matrix operations, seattige texture unit selector
by calling

void ActiveTexture( enum texture);

The selector also affects calls modifying texture environment state, texture coordi-
nate generation state, texture binding state, and queries of all these state values as
well as current texture coordinates and current raster texture coordinates.
Specifying an invalidexturegenerates the erréKVALID _[ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.
The active texture unit selector may be queried by callBaintegerv with
pnameset toACTIVE_TEXTURE
There is a stack of matrices for each of matrix mosE3DELVIE\WPROJEC-
TION, andCOLORand for each texture unit. FBIODELVIEWNhode, the stack depth
is at least 32 (that is, there is a stack of at least 32 model-view matrices). For the
other modes, the depth is at ledsiTexture matrix stacks for all texture units have
the same depth. The current matrix in any mode is the matrix on the top of the
stack for that mode.

void PushMatrix ( void );

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix ( void );

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the erBTACKUNDERFLOMpushing a matrix onto a full
stack generateSTACKOVERFLOW

When the current matrix mode EEXTURE the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at leastitwol matrices
for each of COLORPROJECTION each texture unitfEXTURE and a stack of at
least 324 x 4 matrices foMODELVIEWEach matrix stack has an associated stack
pointer. Initially, there is only one matrix on each stack, and all matrices are set
to the identity. The initial matrix mode IBIODELVIEWThe initial value ofAC-
TIVE _TEXTURHS TEXTUREOQ
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2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable( enumtarget);
and
void Disablg enumtarget);

with target equal toRESCALENORMAIor NORMALIZE This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM, then the normal is transformed to eye coordi-
nates by:

(na' ny' n ¢)=(ny ny n, q)-M~!

X
where, if Z are the associated vertex coordinates, then
w
0, w =0,
xT
7= —(na Ty n)| vy (2.1)
- L w #£0

Implementations may choose instead to transform n, n. ) to eye coor-
dinates using

(ny' ny nt)=(ng ny n,)- M, *

wherel,, is the upper leftmost 3x3 matrix taken fraid.
Rescale multiplies the transformed normals by a scale factor

(nm// le” nz//) _ f(nz/ ny/ nzl)
If rescaling is disabled, thefi = 1. If rescaling is enabled, thefiis computed

as (n;; denotes the matrix element in ravand columnj of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)
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1
Vmz1? + m3a? + mg33?
Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may chose f as

1
2 2 2
\/nw/ _|_ ny/ _|_ nz/

recomputingf for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lightimg, is computed
as

f=

nf =-m ( nx// ny/l nzll)
If normalization is disabled, them = 1. Otherwise

1
\/nx/IQ + ny//2 + nZ//2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrixd/. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGeryifd }( enumcoord enum pnameT param);
void TexGen{ifd }v( enumcoord enum pnameT params);

controls texture coordinate generatiotnord must be one of the constargs T,

R, or Q, indicating that the pertinent coordinate is the, », or ¢ coordinate, re-
spectively. In the first form of the commangramis a symbolic constant speci-
fying a single-valued texture generation parameter; in the second famamsis
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a pointer to an array of values that specify texture generation paramptense
must be one of the three symbolic constarEXTUREGENMODEOBJECTPLANE
or EYEPLANE If pnameis TEXTUREGENMODE then eitherparamspoints to
or paramis an integer that is one of the symbolic constaDBIECTLINEAR,
EYELINEAR, SPHEREMAR REFLECTIONMAR or NORMAIMAP

If TEXTUREGENMODENdicatesOBJECTLINEAR, then the generation func-
tion for the coordinate indicated mpordis

g = P1%o + P2Yo + P3Z0 + PaWs.

Zo, Yo 20, @Ndw, are the object coordinates of the vertgx, . . . , p4 are specified
by calling TexGenwith pnameset toOBJECTPLANEIn which casgaramspoints
to an array containing, ..., ps. There is a distinct group of plane equation co-
efficients for each texture coordinatgord indicates the coordinate to which the
specified coefficients pertain.

If TEXTUREGENMODENdicatesEYELINEAR, then the function is

g = P\ Te + PhYe + P2 + Dywe

where
(py Py ps ph)=(p1 P2 ps pa)M7!

Te, Ve, Ze, andw, are the eye coordinates of the vertey,,...,p, are set by
calling TexGenwith pnameset toEYE PLANEIn correspondence with setting the
coefficients in theOBJECTPLANE case. M is the model-view matrix in effect
whenps, ..., py are specified. Computed texture coordinates may be inaccurate or
undefined ifM is poorly conditioned or singular.

When used with a suitably constructed texture image, callexGen with
TEXTUREGENMODENdicating SPHEREMAPcan simulate the reflected image of
a spherical environment on a polygoBPHEREMAPtexture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) bu. Denote the current normal, after transformation to eye
coordinates, by'. Letr = (r, 7, 7. )T, the reflection vector, be given by

r=u-2n" (n'u),

and letm = 2\/r§ +ri4(r. + 1)%. Then the value assigned to aroordinate
(the firstTexGenargument value iS) is s = r,/m + %; the value assigned tota
coordinate ig = r,/m + 3. Calling TexGenwith a coord of eitherR or Qwhen
pnameindicatesSSPHEREMAPgenerates the errékVALID _ENUM

If TEXTUREGENMODENdicatesREFLECTIONMAR compute the reflection
vectorr as described for thePHEREMAPmMode. Then the value assigned to an
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s coordinate iss = r,; the value assigned totaoordinate i = r,; and the value
assigned to am coordinate is- = r,. Calling TexGenwith a coord of Qwhen
pnamendicatesREFLECTIONMAPgenerates the erréiiVALID _ENUM

If TEXTUREGENMODENdicatesSNORMAIMAR compute the normal vectai;
as described in sectich10.3 Then the value assigned to amroordinate iss =
nf. the value assigned totacoordinate ig = ng,; and the value assigned to an
r coordinate is = ny_ (the valuesiy , ny , andny are the components af;.)
Calling TexGenwith a coord of Q whenpnameindicatesNORMAIMAPgenerates
the errorINVALID _[ENUM

A texture coordinate generation function is enabled or disabled Usmg
able and Disable with an argument oTEXTUREGENS, TEXTUREGENT, TEX-
TUREGENR, or TEXTUREGENQ (each indicates the corresponding texture coor-
dinate). When enabled, the specified texture coordinate is computed according
to the currenEYELINEAR, OBJECTLINEAR or SPHEREMAPSspecification, de-
pending on the current setting ®EXTUREGENMODHor that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each &YELINEAR andOBJECTLINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of p; for s are all 0 excepp, which is one; fort all thep; are zero except,, which
is 1. The values ofy; for r andq are all 0. These values @f apply for both the
EYELINEAR andOBJECTLINEAR versions. Initially all texture generation modes
areEYELINEAR.

2.11 Clipping

Primitives are clipped to thelip volume In clip coordinates, theiew volumds
defined by

—We S Tc S We

—We < Ye < We -

—We < 2e < We

This view volume may be further restricted by as manyhadient-defined clip
planes to generate the clip volume. i§ an implementation dependent maximum
that must be at least) Each client-defined plane specifies a half-space. The clip
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volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).
A client-defined clip plane is specified with

void ClipPlane( enump, double eqn[4]);

The value of the first argumenq, is a symbolic constanGLIP _PLANE, wherei is

an integer between 0 amd— 1, indicating one of: client-defined clip planesqgn

is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates; ps, p3, andp, (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

(py ph Py Ph)=(p1 P2 p3 pa)M!

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccuratelif is poorly-conditioned) to obtain

the plane equation coefficients in eye coordinates. All points with eye coordinates
(Te Ye 2e We )T that satisfy

(P, v oy P =0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genEriable command and
disabled with theDisable command. The value of the argument to either com-
mand iSCLIP _PLANE wherei is an integer between 0 and specifying a value
of i enables or disables the plane equation with indexThe constants obey
CLIP _PLANE = CLIP _PLANEO+ +.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.
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This clipping produces a valué, < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex aPeand the original vertices’ coordinates &g
andP-, thent is given by

P=tP, + (1 — t)PQ.

The value oft is used in color and texture coordinate clipping (secfdiB.9.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edgeTfidg, and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

A line segment or polygon whose vertices havgvalues of differing signs
may generate multiple connected components after clipping. GL implementations
are not required to handle this situation. That is, only the portion of the primitive
that lies in the region ofo. > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficieftd p, p5 p}) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(-py —ph —p5 —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.
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2.12 Current Raster Position

The current raster positions used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The state required for the current raster position consists of three window co-
ordinatesr.,, vy, andz,, a clip coordinatev. value, an eye coordinate distance, a
valid bit, and associated data consisting of a color and multiple texture coordinate
sets. Itis set using one of tikasterPoscommands:

void RasterPoq234}{sifd}( T coords);
void RasterPog234}{sifd}v( T coords);

RasterPos4takes four values indicating, y, z, andw. RasterPos3(or Raster-
Pos3 is analogous, but sets onty y, andz with w implicitly set to1 (or only =
andy with z implicitly set to0 andw implicitly set to1).

Gets of CURRENIRASTERTEXTURECOORD@ re affected by the setting of the
stateACTIVE_TEXTURE

The coordinates are treated as if they were specified\fereex command.

The z, y, z, andw coordinates are transformed by the current model-view and
perspective matrices. These coordinates, along with current values, are used to
generate a color and texture coordinates just as is done for a vertex. The color and
texture coordinates so produced replace the color and texture coordinates stored in
the current raster position’s associated data. The distance from the origin of the
eye coordinate system to the vertex as transformed by only the current model-view
matrix replaces the current raster distance. This distance can be approximated (see
section3.10).

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (sectior2.10 and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Fi§ureummarizes the
behavior of the current raster position.

The current raster position requires five single-precision floating-point values
for its z., yw, andz, window coordinates, itsv. clip coordinate, and its eye
coordinate distance, a single valid bit, a color (RGBA and color index), and texture
coordinates for each texture unit. In the initial state, the coordinates and texture
coordinates are al0, 0,0, 1), the eye coordinate distance is 0, the valid bit is set,
the associated RGBA color {8, 1, 1, 1) and the associated color index color is 1.
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Figure 2.7. The current raster position and how it is set. Four texture unitg
shown; however, multitexturing may support a different number of units depen
on the implementation.
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Convert to

[0.0,1.0] Current O,
Clamp to
RGBA O P

Color m [0.0, 1.0]
[-2K 2K-1] g COTVETLIO - | Lighting =0 ;

[-1.0,1.0] :
————— (Co[ [ S IS —— <
Clipping

[0,2K-1] — ]

float

Convert to L Flatshade?
fixed—point L
edpomn v Primitive .

v i Clipping

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both| pri-
mary and secondary vertex colors, which are processed in the same fashion. See
Table2.6for the interpretation of.

In RGBA mode, the associated color index always has its initial value; in color
index mode, the RGBA color always maintains its initial value.

2.13 Colors and Coloring

Figures2.8and2.9 diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Tabkum-
marizes the conversions that take place on R, G, B, and A components depending
on which version of th&€olor command was invoked to specify the components.
As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or color is used in
further processing (the current color is the primary color, and the secondary color
is (0,0,0,0)). After lighting, RGBA colors are clamped to the rangiel]. A
color index is converted to fixed-point and then its integer portion is masked (see
section2.13.9. After clamping or masking, a primitive may Wkatshadedindi-
cating that all vertices of the primitive are to have the same color. Finally, if a
primitive is clipped, then colors (and texture coordinates) must be computed at the
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Convert to

[0,2N-1] — ] i 1 Current
oat Color Mask to
float -1 Index Lighting O [0.0, 2"-1]

|  Color
Clipping -
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fixed—point N
X pol Primitive
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Figure 2.9. Processing of color indicesis the number of bits in a color index.

| GL Type | Conversion |

ubyte c/(28 — 1)

byte (2c+1)/(28 - 1)
ushort c/(2'% —1)
short (2c+1)/(21 - 1)
uint c/(2%2 —1)

int (2c+1)/(2% - 1)
float c

double c

Table 2.6: Component conversions. Color, normal, and depth componénts, (
are converted to an internal floating-point representatif)),using the equations

in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table2.2)
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vertices introduced or modified by clipping.

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in secfiol3.5)

Lighting may be in one of two states:

1. Lighting Off. In this state, the current color is assigned to the vertex primary
color. The secondary color {8, 0, 0,0).

2. Lighting On. In this state, the vertex primary and secondary colors are com-
puted from the current lighting parameters.

Lighting is turned on or off using the geneifimable or Disable commands with
the symbolic valueIGHTING.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, y, z, andw) that specify a position in object coordinates (hay be zero,
indicating a point at infinity in the direction given hy, y, andz). A direction
parameter consists of three floating-point coordinateg (andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in TABleThe result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed hy= 0, ...,n—1. (nis an implementation
dependent maximum that must be at least 8.) Note that the default valudsg;for
ands,; differ for i = 0 and: > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involvedc,lfand ¢, are col-
ors without alpha where; = (r1,91,b1) andcy = (r2,92,b2), then define
¢y *x co = (ri1ra, 9192, b1b2). Addition of colors is accomplished by addition of
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Parameter| Type | Default Value | Description |
Material Parameters

acm, color | (0.2,0.2,0.2,1.0) | ambient color of material
den color | (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color | (0.0,0.0,0.0,1.0) | specular color of material
€em color (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
0.0, 128.0])
Am real 0.0 ambient color index
dm real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ag; color (0.0,0.0,0.0,1.0) | ambient intensity of light
de;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of lighD
d.;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light
sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light
P position | (0.0,0.0,1.0,0.0) | position of lighti
Sdli direction| (0.0,0.0,—1.0) | direction of spotlight for light
Seli real 0.0 spotlight exponent for lighti
(range:[0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light
(range:[0.0,90.0], 180.0)
ko; real 1.0 constant attenuation factor for
light i (range:[0.0, 00))
k1; real 0.0 linear attenuation factor for
light i (range:[0.0, c0))
ko; real 0.0 guadratic attenuation factor for
lighti (range:[0.0, 0))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Vps boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUB or (0,0, cc) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
ths boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters.
nents is(—oo, +00).

The range of individual color compo-
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the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. #; andds are directions, then define

d,ody = max{d1 -ds, 0}

(Directions are taken to have three coordinatesR,lfandP, are (homogeneous,
with four coordinates) points then IPTP§ be the unit vector that points froi®;

to P,. Note that ifPy has a zerav coordinate an@®; has non-zera coordinate,
thenP P is the unit vector corresponding to the direction specified byrthg
and z coordinates oP,; if P, has a zerav coordinate ands has a non-zeraw
coordinate the®; P is the unit vector that is the negative of that corresponding
to the direction specified bl,. If both P; andP> have zerav coordinates, then
P, P, is the unit vector obtained by normalizing the direction corresponding to
Py, —P;.

If d is an arbitrary direction, then let be the unit vector inl’s direction. Let
||IP1P2|| be the distance betwed?, andP,. Finally, letV be the point corre-
sponding to the vertex being lit, amdbe the corresponding normal. LBt be the
eyepoint (0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary celgy; and a secondary
colorc,e.. The values ot,,; andc,.. depend on the light model color contrel,.

If c.s = SINGLE_.COLORthen the equations to computg.; andc,. are

Copri = €cm
+  acm * Acs
n—1
+ Z(atti)(spoti) [Qcm * acl;
=0 + (n O] Wp}i)dcm * deg;
+ (fz)(n © hi)srmscm * Scli]
Csee = (0,0,0,0)

If ces = SEPARATESPECULARCOLORthen

Cori = €cm

_l’_

Acm * Acs

n—1

Z (att;)(spot;) [acm * ac;

=0 + (no Wpli>dcm * di
n—1

Csec — Z (atti) (SpOti) (fz) (Il © fli)sm” Sem * Seli
=0

_l’_
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where
;o= [ L noVBi£o, (2.2)
‘ 0, otherwise, '
" VB,; + VB, vps = TRUE 2.3)
' VP, +(0 0 1)7, v, =FALSE '
1 P,
s if P'sw 7& 0,
att; = koi + k1l VP + inHVPpliHQ " (2.4)
1.0, otherwise.
(Pplig O) édli)sma Crls 7é 180.0, Ppli y © Sqii > COS(CTli)v
spot; = 0.0, crii # 180.0, Py V © 8411 < cos(cpy;),(2.5)

1.0, ¢ = 180.0.
(2.6)

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associateddyjth A
is always associated with the primary cotgy.;; the alpha component ef... is 0.
Results of lighting are undefined if the. coordinate { in eye coordinates) oV
is zero.

Lighting may operate itwo-sidedmode {,; = TRUB, in which afront color
is computed with one set of material parameters {tbet materia) and aback
color is computed with a second set of material parametersb@bk materia).
This second computation replaaesvith —n. If ¢,; = FALSE, then the back color
and front color are both assigned the color computed using the front material with
1n.

The selection between back color and front color depends on the primitive of
which the vertex being lit is a part. If the primitive is a point or a line segment,
the front color is always selected. If it is a polygon, then the selection is based on
the sign of the (clipped or unclipped) polygon’s signed area computed in window
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coordinates. One way to compute this area is
Rt S o
a=35d Tl T Yo (2.7)
i=0

wherez?, andy’, are thexr andy window coordinates of théth vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and @ 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace( enumdir );

Settingdir to CCWcorresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates thatif< 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected.dfr is Cwthena is replaced by-a in the
above inequalities. This requires one bit of state; initially, it indicaegv

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see Zahl&ets of lighting
parameters are specified with

void Material {if }( enumface enum pnameT param);
void Material {if }v( enumface enum pnameT params);
void Light {if }( enumlight, enum pnameT param);
void Light{if }v( enumlight, enum pnameT params);
void LightModel {if }( enumpnameT param);

void LightModel {if }v(enumpname T params);

pnameis a symbolic constant indicating which parameter is to be set (see Ta-
ble 2.9). In the vector versions of the commanggramsis a pointer to a group

of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector verpamasnis a value to
which to set a single-valued parameter.pdgfamcorresponds to a multi-valued pa-
rameter, the errdNVALID _ENUMesults.) For thévlaterial commandfacemust

be one 0FRONTBACK or FRONTANDBACK indicating that the propertyameof

the front or back material, or both, respectively, should be set. In the casghof

light is a symbolic constant of the foriiGHT3, indicating that lighti is to have

the specified parameter set. The constants cb@yMT: = LIGHTO + 4.
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Table 2.8 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified wittMaterial andLight are converted to floating-point values (if
specified as integers) as indicated in Tabléfor signed integers. The errti-

VALID VALUEoccurs if a specified lighting parameter lies outside the allowable
range given in Tabl@.7. (The symbol &o” indicates the maximum representable
magnitude for the indicated type.)

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That isNA,, is the upper left 3x3
matrix taken from the current model-view matiiX, then the spotlight direction

dy

dl/

d.
d, dy
d | =M, |d,|.
d, d.

An individual light is enabled or disabled by callikmable or Disablewith the
symbolic valueLIGHT: (i is in the range O ta — 1, wheren is the implementation-
dependent number of lights). If lightis disabled, theth term in the lighting
equation is effectively removed from the summation.

is transformed to

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by callingenable or Disablewith the symbolic valu&€OLORMATERIAL

The command that controls which of these modes is selected is

void ColorMaterial ( enumface enum mode);

faceis one of FRONT BACK or FRONTANDBACK indicating whether the front
material, back material, or both are affected by the current calowdeis one
of EMISSION, AMBIENT, DIFFUSE, SPECULARor AMBIENTANDDIFFUSE and
specifies which material property or properties track the current colonotfeis
EMISSION, AMBIENT, DIFFUSE, or SPECULARthen the value of..,,,, acy,, dem OF
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| Parameter]| Name | Number of valueg
Material ParameterdMaterial )
A AMBIENT 4
den DIFFUSE 4
Acm, dem AMBIENT.ANDDIFFUSE 4
Sem SPECULAR 4
€cm EMISSION 4
Srm SHININESS 1
Ay Qs S COLORNDEXES 3
Light Source Parameterki@ht)
au; AMBIENT 4
d. DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
Sdli SPOTDIRECTION 3
Srli SPOTEXPONENT 1
Crii SPOTCUTOFF 1
ko CONSTANIRTTENUATION 1
ki LINEAR_ATTENUATION 1
ko QUADRATICATTENUATION 1
Lighting Model Parameterd.ightModel)
Acs LIGHT _MODELAMBIENT 4
Ubs LIGHT _MODELLOCALVIEWER 1
tys LIGHT _MODELTWOSIDE 1
Ces LIGHT _MODELCOLORCONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to namesBI-

ENTANDDIFFUSE is used to se,,, andd,,, to the same value.
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Color*() =========* > gulrrem To subsequent vertex operations
olor

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

_.Ko_’ Front Ambient Ly To lighting equations

Material*(FRONT,AMBIENT) *========s==sssfecuuas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

_’Ko_> FrontDiffuse Lo 1 lighting equations

Material*(FRONT,DIFFUSE)  =========s==ssabecnuan »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

_.KO_’ Front Specular |y To lighting equations

Material*(FRONT,SPECULAR)  =============p====== »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

_’Ko_’ Front EMissSion | To lighting equations

Material(FRONT,EMISSION) === ==========x==x=x2= »0 Color

"""" > State values flow along this path only when a command is issued

= State values flow continuously along this path

Figure 2.10. ColorMaterial operation. Material properties are continuously u
dated from the current color whil€olorMaterial is enabled and has the apprg
priate mode. Only the front material properties are included in this figure.
back material properties are treated identically, exceptfdw@must beBACKor

The

FRONTANDBACK
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Sem, respectively, will track the current color. ifiodeis AMBIENT ANDDIFFUSE,
botha.,, andd.,, track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value wheolorMaterial is not currently
enabled to override that particular value. WHEDLORMATERIALis enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial ( FRONTAMBIENT)

while COLORMATERIALIis enabled sets the front material,, to the value of the
current color.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the currebblorMaterial mode, a bit indicat-

ing whether or notCOLORMATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take [Qabe-
Material is FRONTANDBACKandAMBIENT ANDDIFFUSE, and both lighting and
COLORMATERIALare disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of ligid.; ands,;,
respectively) determine color index diffuse and specular light intensitjesnd
sy; from

di; = (:30)R(der) + ((59)G(de;) + (11)B(des)

and
s = (:30)R(sa) + (:59)G (8cti) + (11) B(sci)-

R(x) indicates the R component of the cofoand similarly forG(x) and B(x).
Next, let

n

s =Y (att;)(spot;)(si:)(f:)(n © hy)*rm

1=0
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whereatt; andspot; are given by equation®.4 and2.5, respectively, and; and
h; are given by equation3.2 and2.3 respectively. Let’ = min{s, 1}. Finally,
let
d = "(att;)(spot;)(di;)(n ® VBy).
i=0
Then color index lighting produces a valdegiven by

c=am+d(1—5)(dn—an)+ 5 (sm — am).

The final color index is
¢ = min{c, s, }.

The values.,,,, d,, ands,, are material properties described in Takileésdand2.8.

Any ambient light intensities are incorporated intg. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of,, and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The valuesa,,, d., and s, are set withMaterial using a pname of
COLORNDEXES Their initial values aré), 1, and1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the rangel].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) wizli — 1, wheren is the number of
bits in a color in the color index buffer (buffers are discussed in chapter

2.13.7 Flatshading

A primitive may beflatshaded meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. TaBlsummarizes the
possibilities.

Flatshading is controlled by
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| Primitive type of polygoni | Vertex |
single polygon{ = 1) 1
triangle strip i+ 2
triangle fan 1+ 2
independent triangle 3i
quad strip 2042
independent quad 44

Table 2.9: Polygon flatshading color selection. The colors used for flatshading
theith polygon generated by the indicatBegirVEnd type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numberedthroughn, wheren is the number of vertices between the
BeginEnd pair.

void ShadeMode{ enum mode);

modevalue must be either of the symbolic constadtsOOTier FLAT. If modeis
SMOOTHthe initial state), vertex colors are treated individuallymibdeis FLAT,
flatshading is turned orShadeModelthus requires one bit of state.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two vertid@s andP, of an unclipped edge be
c1 andcs. The value oft (section2.11) for a clipped poinfP is used to obtain the
color associated witl? as

c=tc+ (1 —t)co.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
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is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture coordinates must also be clipped when a primitive is clipped. The
method is exactly analogous to that used for color clipping.

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies[in1]) is converted
(by rounding to nearest) to a fixed-point value with bits. We assume that
the fixed-point representation used represents each vali@™ — 1), where
k € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones). m must be at least as large as the number of bits in the corresponding
component of the framebuffer must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the forkj (2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and o@elofub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: ifm is less than the number of bitswith which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most signifiéasits of the converted
value must equal the specified value.
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Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure3.1diagrams the rasterization process.

A grid square along with its parameters of assigned col@depth), and texture
coordinates is called flagmenf the parameters are collectively dubbed the frag-
ment'sassociated dataA fragment is located by its lower left corner, which lies on
integer grid coordinates. Rasterization operations also refer to a fragroentés,
which is offset by(1/2,1/2) from its lower left corner (and so lies on half-integer
coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.
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Figure 3.1. Rasterization.
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3.1 Invariance

Consider a primitive’ obtained by translating a primitiyethrough an offsetz, y)

in window coordinates, where andy are integers. As long as neithgrnor p is

clipped, it must be the case that each fragm@miroduced fromp’ is identical to
a corresponding fragmerftfrom p except that the center g¢f is offset by(z, y)

from the center off.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significanbits (to the left of the binary point)
of the color index are used for antialiasibgs= min{4, m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
theseb bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is calledragment squarand has lower left corner
(x,y) and upper right corndrr + 1, y + 1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.
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A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; andfs are two fragments, and the portion fif covered by some prim-
itive is a subset of the corresponding portionfefcovered by the primitive,
then the coverage computed ffr must be less than or equal to that com-
puted for fs.

2. The coverage computation for a fragmehitnust be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend oifi’'s x andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (sectiorb.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technigue is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include
depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. Color buffers (left, right, front, back, and aux) do coexist with the
multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the
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base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLEBUFFERSIs one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, prim-
itive rasterization is referred to as single-sample rasterization. The value of
SAMPLEBUFFERSIs queried by callingGetintegerv with pnameset to SAM-

PLE BUFFERS

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value SAMPLESDits.

The value ofSAMPLESs an implementation-dependent constant, and is queried by
calling Getintegerv with pnameset toSAMPLES

Second, each fragment include@aMPLESJepth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinasMPLEScolor and depth values,
SAMPLESsets of texture coordinates, and a coverage value with a maximum of
SAMPLESits.

Multisample rasterization is enabled or disabled by callingble or Disable
with the symbolic constaMIULTISAMPLE

If MULTISAMPLEIs disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLES enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel
in the framebuffer haSAMPLESocations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
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screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in secfdhis relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

The rasterization of points is controlled with
void PointSizg float size);

sizespecifies the width or diameter of a point. The default value is 1.0. A value
less than or equal to zero results in the erkfALID _VALUE

Point antialiasing is enabled or disabled by calliwgable or Disablewith the
symbolic constanPOINT_SMOOTHT he default state is for point antialiasing to be
disabled.

In the default state, a point is rasterized by truncating,jt&ndy,, coordinates
(recall that the subscripts indicate that thesezaendy window coordinates) to
integers. already been effected if the subpixel flag is false). {thig) address,
along with data derived from the data associated with the vertex corresponding to
the point, is sent as a single fragment to the per-fragment stage of the GL.

The effect of a point width other thah0 depends on the state of point an-
tialiasing. If antialiasing is disabled, the actual width is determined by rounding
the supplied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased point width. This implementation-dependent
value must be no less than the implementation-dependent maximum antialiased
point width, rounded to the nearest integer value, and in any event no lesk. than
If rounding the specified width results in the valughen it is as if the value were
1. If the resulting width is odd, then the point

1
5)
is computed from the vertex’s,, andy,,, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(@) = (120 + 3 Lyw] +

(5,9) = (7w + 5 s Ly + 5))

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered(any). See figures.2.
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45 :-
35 :L
2.5 '-
15 i—
05 L
05 15 25 35 45 55 05 15 25 35 45 5.I5
Odd Width Even Width
Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point, with
texture coordinates, ¢, andr replaced withs/q, t/q, andr/q, respectively. lfy is
less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment for each
fragment square that intersects the region lying within the circle having diameter
equal to the current point width and centered at the po{ats y.,) (figure 3.3).

The coverage value for each fragment is the window coordinate area of the in-
tersection of the circular region with the corresponding fragment square (but see
section3.2). This value is saved and used in the final step of rasterization (sec-
tion 3.11). The data associated with each fragment are otherwise the data associ-
ated with the point being rasterized, with texture coordinategsandr replaced

with s/q, t/q, andr/q, respectively. Ifg is less than or equal to zero, the results
are undefined.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
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Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the

point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.
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gradations may be obtained using the query mechanism described in Ghdfter
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths0.1,0.2,...,1.9,2.0 are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width and a bit indicating whether or not antialiasing is enabled.

3.3.2 Point Multisample Rasterization

If MULTISAMPLEHS enabled, and the value BAMPLEBUFFERSS one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTHis enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect the
region lying within the circle having diameter equal to the current point width and
centered at the point'ge,,, v.,). Coverage bits that correspond to sample points
that intersect the circular region are 1, other coverage bits are 0. All data associ-
ated with each sample for the fragment are the data associated with the point being
rasterized.

Point size range and number of gradations are equivalent to those supported for
antialiased points.

3.4 Line Segments

A line segment results from a line stripegin/End object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth (float  width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width isD. Values less than or equal 60 generate
the errorINVALID _VALUE Antialiasing is controlled withEnable and Disable
using the symbolic constabtNE _SMOOTHFinally, line segments may be stippled.
Stippling is controlled by a GL command that setstigple patterrn(see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment asxeittegor
or y-major. z-major line segments have slope in the closed intefrval 1]; all
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other line segments agemajor (slope is determined by the segment’s endpoints).
We shall specify rasterization only farmajor segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragfeith center at win-
dow coordinates ; andy, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z — sl + |y —ys| <1/2.}

Essentially, a line segment startingmtand ending ap, produces those frag-
mentsf for which the segment intersedi, except ifp; is contained ink?;. See
figure3.4.

To avoid difficulties when an endpoint lies on a boundaryzgfwe (in princi-
ple) perturb the supplied endpoints by a tiny amount. peaindp, have window
coordinatesz,, y,) and(zs, y5), respectively. Obtain the perturbed endpoints
given by (74, ya) — (¢, €2) andpj, given by (zy, ) — (€, €2). Rasterizing the line
segment starting ai, and ending ap,, produces those fragmenfgor which the
segment starting ai,, and ending orp;, intersectsk ¢, except ifp; is contained in
R;. e is chosen to be so small that rasterizing the line segment produces the same
fragments whe is substituted foe for any0 < § <.

Whenp, andp, lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (correspondipg) to
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in eitheror y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For anz-major line, no two fragments may be produced that lie in the same
window-coordinate column (for g-major line, no two fragments may ap-
pear in the same row).
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Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) af-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24, ya) and letp, = (24, ya) @andpy = (3, ys). Set

t=

(pr - pa) : (pb - pa)
oo —pal? (3.1)

(Note thatt = 0 atp, andt = 1 atp,.) The value of an associated datififor the
fragment, whether it be R, G, B, or A (in RGBA mode) or a color index (in color
index mode), or the, ¢, or r texture coordinate (the depth value, windeywmust

be found using equatiod 3, below), is found as

(1 - t)fa/wa + tfb/wb
(1 —t)aa/wa—i—tab/wb (32)

f=
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where f, and f, are the data associated with the starting and ending endpoints of
the segment, respectively;, andw, are the clipw coordinates of the starting

and ending endpoints of the segments, respectively.= «;, = 1 for all data
except texture coordinates, in which case = ¢, anday, = ¢, (g, andg, are

the homogeneous texture coordinates at the starting and ending endpoints of the
segment; results are undefined if either of these is less than or equal to 0). Note
that linear interpolation would use

f = (1 — t)fa/Oéa + tfb/Oéb. (33)

The reason that this formula is incorrect (except for the depth value) is that it inter-
polates a datum in window space, which may be distorted by perspective. What is
actually desired is to find the corresponding value when interpolated in clip space,
which equatiorB.2does. A GL implementation may choose to approximate equa-
tion 3.2with 3.3, but this will normally lead to unacceptable distortion effects when
interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple &fF' F F15. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command
void LineStipple(int factor, ushort pattern);

defines dine stipple patternis an unsigned short integer. Tlige stippleis taken
from the lowest order 16 bits gdattern It determines those fragments that are
to be drawn when the line is rasterizefctor is a count that is used to modify
the effective line stipple by causing each bitiime stippleto be usedactortimes.
factor is clamped to the randé, 256]. Line stippling may be enabled or disabled
usingEnable or Disablewith the constantINE _STIPPLE. When disabled, itis as

if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stippjehe line repeat count, and an
integer stipple countey. Let

b= |s/r] mod 16,
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width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Then a fragment is produced if tihéh bit of p is 1, and not produced otherwise.
The bits ofp are numbered witl) being the least significant anid being the
most significant. The initial value of is zero;s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending poist)s reset to 0 whenever
aBeginoccurs, and before every line segment in a group of independent segments
(as specified wheBegin is invoked withLINES).

If the line segment has been clipped, then the valueatfthe beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied

width to the nearest integer, then clamping it to the implementation-dependent

maximum non-antialiased line width. This implementation-dependent value must

be no less than the implementation-dependent maximum antialiased line width,

rounded to the nearest integer value, and in any event no les$ .tharounding

the specified width results in the valQgthen it is as if the value werke
Non-antialiased line segments of width other than one are rasterized by off-
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setting them in the minor direction (for anmajor line, the minor direction is

y, and for ay-major line, the minor direction ig) and replicating fragments in
the minor direction (see figuré.5). Let w be the width rounded to the nearest
integer (ifw = 0, then it is as ifw = 1). If the line segment has endpoints
given by (zg, yo) and(x1,y1) in window coordinates, the segment with endpoints
(xo,y0 — (w—1)/2) and(x1,y1 — (w—1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height(a row of fragments of length for

a y-major segment) is produced at eaclfy for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the columnis location is zero; otherwise, the whole
column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see 3igure

see also sectioB.2). Equation3.2is used to compute associated data values just as
with non-antialiased lines; equati@nl is used to find the value a@ffor each frag-

ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but widtlantialiased segments

must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered féotm », starting with the rectangle
incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given widerStipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced
is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings oPolygonMode and polygon stippling are not applied).
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Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line widthlig). The initial value

of the line stipple isF' F'F I (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLES enabled, and the value BAMPLEBUFFERSS one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE _SMOOQOTHs enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in th&ntialiasing portion of section3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in secti@.2 where “fragment” is replaced by “rectangle”.
Coverage bits that correspond to sample points that intersect a retained rectan-
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gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equiafion
then using the result to evaluate equatb An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equatidri at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.2 The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygoBegin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals,Rech command.

Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled wHmable and Disable with the sym-

bolic constanPOLYGONSMOOTHThe analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygdmadk facing

or front facing This determination is made by examining the sign of the area com-
puted by equatiof.7 of section2.13.1(including the possible reversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. TheullFace mode is set by calling

void CullFace( enum mode);

modeis a symbolic constant: one #RONT BACKor FRONTANDBACK Culling

is enabled or disabled wittEnable or Disable using the symbolic constant
CULLFACE Front facing polygons are rasterized if either culling is disabled or
the CullFace mode isBACKwhile back facing polygons are rasterized only if ei-
ther culling is disabled or th€ullFace mode iSFRONT The initial setting of the
CullFace mode isBACK Initially, culling is disabled.
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The rule for determining which fragments are produced by polygon rasteriza-
tion is calledpoint sampling The two-dimensional projection obtained by taking
the z andy window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Definebarycentric coordinatefor a triangle. Barycentric coordinates are
a set of three numbers, b, andc, each in the rangf, 1], witha + b + ¢ = 1.
These coordinates uniquely specify any pgintithin the triangle or on the trian-
gle’s boundary as

p = apq + bpp + cpe,

wherep,, py, andp,.. are the vertices of the triangle, b, andc can be found as

_ A(ppepe) - A(ppape) _ A(ppaps)

A(papbpe)’ A(papppe)’ A(papope)’

whereA (Imn) denotes the area in window coordinates of the triangle with vertices
I, m, andn.

Denote a datum at,, py, Ofr p. as f, f», OF f., respectively. Then the valyé
of a datum at a fragment produced by rasterizing a triangle is given by

f= afa/wa + bfb/wb + Cfc/wc
" ao/we + bay/wy + cae/w,

wherew,, w, andw,. are the clipw coordinates of,, py, andp., respectively.
a, b, andc are the barycentric coordinates of the fragment for which the data are
produced.a, = ap = a. = 1 except for texture, ¢, andr coordinates, for which
Qg = Qu, Op = @, aNda, = ¢ (if any of q,, ¢, Or g. are less than or equal
to zero, results are undefined), b, andc must correspond precisely to the exact
coordinates of the center of the fragment. Another way of saying this is that the
data associated with a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, equatigimay be approximated by

f = afa/aa + bfb/ab + Cfc/ac§

this may vyield acceptable results for color valuesfiistbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates.

(3.4)
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For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f=>aifi
=1

wheren is the number of vertices in the polygof,is the value of thef at vertex
i; foreachi 0 < a; < 1 and}_ ! ; a; = 1. The values of the; may differ from
fragment to fragment, but at vertéxa; = 0,5 # ¢ anda; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.4 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipplg ubyte *pattern);

patternis a pointer to memory into whicha x 32 pattern is packed. The pattern

is unpacked from memory according to the procedure given in se8ti# for
DrawPixels; it is as if theheightandwidth passed to that command were both equal
to 32, thetypewere BITMAP, and theformatwere COLORNDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If z,, andy, are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern(x,, mod 32, y,, mod 32) is 1.

Polygon stippling may be enabled or disabled wiihable or Disable using
the constanPOLYGONSTIPPLE. When disabled, it is as if the stipple pattern were
all ones.
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3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section3.11 An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.
Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in seé&tibr, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonModdg enumface enum mode);

faceis one of FRONT BACK or FRONTANDBACK indicating that the rasterizing
method described bsnodereplaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
modeis one of the symbolic constan®BOINT, LINE, or FILL . Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed withiBegin(POINT) andEnd pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see seétiord). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edgesILL is the default mode of polygon rasterization, cor-
responding to the description in sectio®$.1, 3.5.2 and3.5.3 Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to th@LL state ofPolygonMode For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.
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3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffse( float factor, float  units);

factor scales the maximum depth slope of the polygon, anits scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factorandunitsmay be either positive or negative.

The maximum depth slope of a triangle is

02w \ 2 02w\ 2
"= V () +(5e) (55
where(z,,, yuw, 2w) IS @ point on the trianglen may be approximated as

| |02
0w | | OYw

If the polygon has more than three vertices, one or more valuesraay be used
during rasterization. Each may take any value in the range jmax], wheremin
andmax are the smallest and largest values obtained by evaluating Equafion
or Equation3.6for the triangles formed by all three-vertex combinations.

The minimum resolvable differenceis an implementation constant. It is the
smallest difference in window coordinatevalues that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butz,, values that differ by, will have distinct depth values.

The offset value for a polygon is

)

} . (3.6)

m:max{‘

o =mx* factor + r * units. (3.7)

m is computed as described above, as a function of depth values in the range [0,1],
ando is applied to depth values in the same range.

Boolean state valuesOLYGONFFSETPOINT, POLYGONFFSETLINE, and
POLYGONFFSETFILL determine whetheo is applied during the rasterization
of polygons inPOINT, LINE, andFILL modes. These boolean state values are
enabled and disabled as argument values to the comniaradde andDisable If
POLYGOMNFFSETPOINT is enabledyp is added to the depth value of each frag-
ment produced by the rasterization of a polygorPINT mode. Likewise, if
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POLYGOMNDFFSETLINE or POLYGONFFSETFILL is enabledp is added to the
depth value of each fragment produced by the rasterization of a polygdNEn
or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLES enabled and the value BAMPLEBUFFERSS one, then poly-

gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing POLYGOMNSMOOTHs enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in sectdn ], including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and tellFace mode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in sectiob.], using the approximation to equa-
tion 3.4 that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only toRihe state ofPolygon-

Mode. For POINT andLINE, the rasterizations described in secti@n3.2 (Point
Multisample Rasterization) and.4.4(Line Multisample Rasterization) apply.

3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of BradygonMode setting for each of

front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial stateHotygonModeis
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FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using theDrawPixels command (described in secti@6.4. Some of the param-
eters and operations governing the operatioD@wPixels are shared bjread-
Pixels (used to obtain pixel values from the framebuffer) &wpyPixels(used to
copy pixels from one framebuffer location to another); the discussiéteatiPix-
elsandCopyPixels however, is deferred until Chaptémafter the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining trawPixels also pertain tdiReadPixelsor CopyPixels

A number of parameters control the encoding of pixels in client memory (for
reading and writing) and how pixels are processed before being placed in or after
being read from the framebuffer (for reading, writing, and copying). These param-
eters are set with three comman@sxelStore, PixelTransfer, andPixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operatiobodwPixelsandReadPixels(as well as
other commands; see sectidhs.2, 3.7, and3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see sectibr). Pixel storage modes are set with

void PixelStore{if }(enumpnameT param);

pnameis a symbolic constant indicating a parameter to be set,panamis the
value to set it to. Tabl8.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the enfeWALID VALUE

The version ofPixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is $&USBE if
the passed value &0 and TRUEotherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set tBALSEf the passed value i andTRUEotherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.
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Parameter Name | Type | Initial Value | Valid Range |
UNPACKSWABBYTES boolean FALSE TRUHEFALSE
UNPACKLSB_FIRST boolean| FALSE | TRUHFALSE
UNPACKROWLENGTH integer 0 [0, 00)
UNPACKSKIP _ROWS integer 0 [0, 00)
UNPACKSKIP _PIXELS integer 0 [0, 00)
UNPACKALIGNMENT integer 4 1,2,4,8
UNPACKIMAGEHEIGHT | integer 0 [0, 00)
UNPACKSKIP _IMAGES integer 0 [0, 00)

Table 3.1:PixelStore parameters pertaining to one or morelyawPixels, Tex-
ImagelD, Teximage2D, andTexImage3D

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optioimaging subsetThe imaging sub-
set includes both new commands, and new enumerants allowed as parameters to
existing commands. If the subset is supportelli,of these calls and enumer-
ants must be implemented as described later in the GL specification. If the sub-
set is not supported, calling any of the new commands generates thaNerror
VALID _OPERATIONand using any of the new enumerants generates thelsrror
VALID _ENUM

The individual operations available only in the imaging subset are described
in section3.6.3 except for blending features, which are described in chapter
Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sectionsColor Table Specification Alternate Color Table Specification
Commands Color Table State and Proxy State Color Table Lookup,

Post Convolution Color Table Lookup, andPost Color Matrix Color Ta-
ble Lookup, as well as the query commands described in seétibry.

2. Convolution, including all commands and enumerants described in sub-
sectionsConvolution Filter Specification, Alternate Convolution Filter
Specification Commands and Convolution, as well as the query com-
mands described in secti@nl.g8

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation , as
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well as the simple query commands described in sedibri

4. Histogram and minmayx, including all commands and enumerants described
in subsectionsHistogram Table Specification Histogram State and
Proxy State Histogram, Minmax Table Specification andMinmax, as
well as the query commands described in sedfidn9and sectior6.1.10

5. The subset of blending features described blendE-
guation, BlendColor, and the BlendFunc modes CON-
STANT.COLOR ONEMINUS CONSTANICOLOR CONSTANTRALPHA
and ONEMINUSCONSTANRRLPHA These are described separately in
sectiord.1.7.

The imaging subset is supported only if tBRTENSIONSstring includes the
substring’ARB_imaging" . QueryingEXTENSIONSs described in sectiof.1.11

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operatiorDoaiwPixels (section3.6.4), ReadPix-

els (section4.3.2, andCopyPixels(section4.3.3 at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if }( enumparam T value);

paramis a symbolic constant indicating a parameter to be setyaheis the value
to set it to. Table3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in theuaLID VALUE
The same versions of the command exist asHixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enummap sizei size T values);
mapis a symbolic map name, indicating the map to seeindicates the size of
the map, andaluesis a pointer to an array afizemap values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
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Parameter Name | Type | Initial Value | Valid Range |
MARCOLOR boolean FALSE TRUEFALSE
MARSTENCIL boolean FALSE TRUEFALSE
INDEX_SHIFT integer 0 (—o0,00)
INDEX_OFFSET integer 0 (—00,00)
z_SCALE float 1.0 (— oo,oo)
DEPTHSCALE float 1.0 (=00, 0)
z_BIAS float 0.0 (—00, 00)
DEPTHBIAS float 0.0 (=00, 0)
POSTCONVOLUTION:_SCALE float 1.0 (—00, 00)
POSTCONVOLUTION: _BIAS float 0.0 (—00, 00)
POSTCOLORMATRIX2_SCALE| float 1.0 (— oo,oo)
POSTCOLORMATRIX 2 BIAS float 0.0 (—o0, 0)

Table 3.2:PixelTransfer parameterse: is REQ GREENBLUE, or ALPHA

which of the three versions fixelMap is called. A table entry is converted to the
appropriate type when it is specified. An entry giving a color component value is
converted according to tab#6. An entry giving a color index value is converted
from an unsigned short integer or unsigned integer to floating-point. An entry giv-
ing a stencil index is converted from single-precision floating-point to an integer by
rounding to nearest. The various tables and their initial sizes and entries are sum-
marized in table3.3. A table that takes an index as an address must fiave= 2"

or the errorINVALID VALUEresults. The maximum allowabkize of each ta-

ble is specified by the implementation dependent vadd&PIXEL _MAPTABLE,

but must be at least 32 (a single maximum applies to all tables). Thels¥ror
VALID VALUEIs generated if @izelarger than the implemented maximum, or less
than one, is given t®ixelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable( enumtarget enum internalformat
sizei width, enum format enum type void *data);

target must be one of theegular color table names listed in tabk4 to define
the table. Aproxy table name is a special case discussed later in this section.
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| Map Name | Address | Value | Init. Size | Init. Value |
PIXEL _MARI _TQOL coloridx | coloridx 1 0.0
PIXEL _MAPS.TOS || stencil idx | stencil idx 1 0
PIXEL _MAPI _TOR || color idx R 1 0.0
PIXEL _MAPRI _-TOG || color idx G 1 0.0
PIXEL _MAPI TOB || color idx B 1 0.0
PIXEL _MAPI _TOA || coloridx A 1 0.0
PIXEL _MAPRTOR R R 1 0.0
PIXEL _MARG.TO.G G G 1 0.0
PIXEL _MAPB_TO.B B B 1 0.0
PIXEL _MARPA_TOA A A 1 0.0
Table 3.3:PixelMap parameters.
| Table Name | Type |
COLORTABLE regular

POSTCONVOLUTIONCOLORTABLE
POSTCOLORMATRIX COLORTABLE
PROXYCOLORTABLE proxy
PROXYPOSTCONVOLUTIONCOLORTABLE
PROXYPOSTCOLORMATRIX COLORTABLE

Table 3.4:Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

width, format type anddata specify an image in memory with the same mean-
ing and allowed values as the corresponding argumerizdwPixels (see sec-
tion 3.6.4, with heighttaken to be 1. The maximum allowahldth of a table

is implementation-dependent, but must be at least 32 fdineais COLORNDEX,
DEPTHCOMPONEN&NASTENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is taken from memory and processed jusDeaifPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the @DELORTABLE SCALEparameters,
biased by the fouCOLORTABLE BIAS parameters, and clamped|[t1]. These
parameters are set by calli@plorTableParameterfv as described below.

Version 1.3 - August 14, 2001



84 CHAPTER 3. RASTERIZATION

Components are then selected from the resulting R, G, B, and A values to
obtain a table with théase internal formaspecified by (or derived fronipter-
nalformat in the same manner as for textures (secidghl). internalformatmust
be one of the formats in tabk150r table3.16

The color lookup table is redefined to hawé&lth entries, each with the speci-
fied internal format. The table is formed with indicgthroughwidth — 1. Table
location: is specified by théth image pixel, counting from zero.

The errorINVALID _VALUEIs generated itvidth is not zero or a non-negative
power of two. The erroTABLE TOQLARGEIs generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if }v( enumtarget enum pname
T params);

targetmust be a regular color table nanmmameis one of COLORTABLE SCALE
or COLORTABLEBIAS. paramspoints to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on angolorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable( enumtarget enum internalformat
int X, int vy, sizei width);

defines a color table in exactly the manneiCuflorTable, except that table data

are taken from the framebuffer, rather than from client memtarget must be a
regular color table name, y, andwidth correspond precisely to the corresponding
arguments ofCopyPixels(refer to sectiornt.3.3; they specify the image'width

and the lower lef{x, y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
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CopyPixelswith argumentypeset toCOLORandheightset to 1, stopping after the
final expansion to RGBA.
Subsequent processing is identical to that describe@dtrrTable, beginning
with scaling byCOLORTABLE SCALE Parametersarget internalformatandwidth
are specified using the same values, with the same meanings, as the equivalent
arguments ofColorTable. formatis taken to bdRGBA
Two additional commands,

void ColorSubTable( enumtarget sizei  start, sizei  count
enumformat enum type void *data);

void CopyColorSubTablg enumtarget sizei  start, int X,
int vy, sizei count);

respecify only a portion of an existing color table. No change is made totie
nalformator width parameters of the specified color table, nor is any change made
to table entries outside the specified portidarget must be a regular color table
name.

ColorSubTable argumentsormat type anddatamatch the corresponding ar-
guments toColorTable, meaning that they are specified using the same values,
and have the same meanings. LikewiSepyColorSubTablearguments, y, and
countmatch thex, y, andwidth arguments o€opyColorTable. Both of theColor-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled bynteenalformatof
the table, not by an argument to the command.

Argumentsstartandcountof ColorSubTable andCopyColorSubTablespec-
ify a subregion of the color table starting at indstart and ending at index
start + count — 1. Counting from zero, theith pixel group is assigned to the
table entry with indexcount + n. The errorINVALID VALUEs generated if
start 4+ count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).
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In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. WkiatorTable is executed witliarget speci-
fied as one of the proxy color table names listed in t&8blethe proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated BplorTable called withtargetset to the
corresponding regular table nan@JLORTABLE s the regular name correspond-
ing to PROXYCOLORTABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. CalliolprTable with a proxy
targethas no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried @#@olorTable. The
errorINVALID _ENUMs generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D ( enumtarget enum internalformat
sizei width, sizei  height enum format enum type
void *data);

targetmust beCONVOLUTIOND. width, height format, type anddataspecify an
image in memory with the same meaning and allowed values as the corresponding
parameters t®@rawPixels. Theformats COLORNDEX, DEPTHCOMPONEN&Nd
STENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is extracted from memory and processed jusDesnf
Pixelswere called, stopping after the final expansion to RGBA. The R, G, B, and A
components of each pixel are then scaled by the four two-dimenstanel/OLU-
TION_FILTER _SCALEparameters and biased by the four two-dimensi@talvVO-
LUTION_FILTER _BIAS parameters. These parameters are set by callonmyolu-
tionParameterfv as described below. No clamping takes place at any time during
this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with théase internal formaspecified by (or derived fromiter-
nalformat in the same manner as for textures (secldghl). internalformatmust
be one of the formats in tabk150r table3.16
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The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinaieg such that increases from left to
right, starting at zero, ang increases from bottom to top, also starting at zero.
Image location, j is specified by théVth pixel, counting from zero, where

N =i+ jxwidth

The error INVALID VALUE is generated ifwidth or height is greater
than the maximum supported value. These values are queried @éth
ConvolutionParameteriv, setting target to CONVOLUTIOND and pname to
MAXCONVOLUTIONVIDTHor MAXCONVOLUTIOMNHEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if }v( enumtarget enum pname
T params);

with target CONVOLUTIOND. pnameis one of CONVOLUTIONFILTER _SCALE
or CONVOLUTIONFILTER _BIAS. paramspoints to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilterlD ( enumtarget enum internalformat
sizei width, enum format enum type void *data);

target must beCONVOLUTIONLD. internalformat width, format andtype have
identical semantics and accept the same values as do their two-dimensional coun-
terparts.datamust point to a one-dimensional image, however.

The image is extracted from memory and processed@aritolutionFilter2D
were called with aheightof 1, except that it is scaled and biased by the one-
dimensional CONVOLUTIONFILTER _SCALE and CONVOLUTIONFILTER _BIAS
parameters. These parameters are specified exactly as the two-dimensional pa-
rameters, except th&@onvolutionParameterfv is called withtarget CONVOLU-
TION_1D.

The image is formed with coordinatésuch that increases from left to right,
starting at zero. Image locatiars specified by théth pixel, counting from zero.

The errorINVALID VALUEIs generated itvidth is greater than the maximum
supported value. This value is queried usigtConvolutionParameteriv, setting
targetto CONVOLUTIOND andpnameto MAXCONVOLUTIONVIDTH
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Special facilities are provided for the definition of two-dimensiosapa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D( enumtarget enum internalformat
sizei width, sizei  height enum format enum type
void *row, void *column);

target must beSEPARABLE2D. internalformatspecifies the formats of the table
entries of the two one-dimensional images that will be retaimed: points to a
width pixel wide image of the specifiddrmatandtype columnpoints to aheight
pixel high image, also of the specifiéormatandtype

The two images are extracted from memory and processed-amifolution-
FilterlD were called separately for each, except that each image is scaled and bi-
ased by the two-dimensional separa@@NVOLUTIONFILTER _SCALEand CON-
VOLUTIONFILTER _BIAS parameters. These parameters are specified exactly as
the one-dimensional and two-dimensional parameters, excepCtratlution-
Parameteriv is called withtarget SEPARABLE2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D( enum target,
enuminternalformatint  x,int vy, sizei  width,
sizei height);

defines a two-dimensional filter in exactly the manneCohvolutionFilter2D,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONED. X, y, width, andheightcorrespond precisely
to the corresponding arguments@dpyPixels(refer to sectiont.3.3; they specify
the image’swidth andheight and the lower lef(z, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passedopyPixelswith argumentype set toCOLOR
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dorolutionFilter2D,
beginning with scaling bz ONVOLUTIONFILTER _SCALE Parametergarget in-
ternalformat width, andheightare specified using the same values, with the same
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meanings, as the equivalent argumentSofvolutionFilter2D . formatis taken to
beRGBA

The command

void CopyConvolutionFilterlD( enumtarget
enuminternalformatint x,int vy, sizei  width);

defines a one-dimensional filter in exactly the manne€ohvolutionFilterlD,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONLD. X, y, andwidth correspond precisely to the
corresponding arguments GopyPixels (refer to sectiont.3.3; they specify the
image’swidth and the lower leftz, y) coordinates of the framebuffer region to

be copied. The image is taken from the framebuffer exactly as if these arguments
were passed t€opyPixelswith argumentypeset toCOLORandheightset to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dowolutionFilterlD,
beginning with scaling b ONVOLUTIONILTER _SCALE Parametersarget, in-
ternalformat andwidth are specified using the same values, with the same mean-
ings, as the equivalent arguments@dnvolutionFilter2D . formatis taken to be
RGBA

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.
Each initial convolution filter is null (zero width and height, internal format

RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode t6OLORcauses the matrix operations described in sec-
tion 2.10.2to apply to the top matrix on the color matrix stack. All matrix oper-
ations have the same effect on the color matrix as they do on the other matrices.

Version 1.3 - August 14, 2001



90 CHAPTER 3. RASTERIZATION

Histogram Table Specification

The histogram table is specified with

void Histogram( enumtarget sizei  width,
enum internalformat boolean  sink);

target must beHISTOGRAMTf a histogram table is to be specifiedarget value
PROXYHISTOGRAMSs a special case discussed later in this sectigialth speci-
fies the number of entries in the histogram table, mmernalformatspecifies the
format of each table entry. The maximum allowablielth of the histogram table
is implementation-dependent, but must be at leassBk specifies whether pixel
groups will be consumed by the histogram operatiobRYB or passed on to the
minmax operationfALSE).

If no error results from the execution éfistogram, the specified histogram
table is redefined to hawsidth entries, each with the specified internal format.
The entries are indexed 0 througtidth — 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The errorINVALID _VALUEIs generated itvidth is not zero or a non-negative
power of 2. The erroTABLE TOQLARGEIs generated if the specified histogram
table is too large for the implementation. The endVALID _.ENUMs generated
if internalformatis not one of the values accepted by the corresponding param-
eter of Teximage2D, or is 1, 2, 3, 4INTENSITY, INTENSITY4, INTENSITYS,
INTENSITY12, Or INTENSITY16 .

A GL implementation may vary its allocation of internal component resolution
based on anflistogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
formatRGBAwith zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
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luminance component resolutions. The proxy table does not include image data or
the flag. WherHistogram is executed withargetset toPROXYHISTOGRAMthe
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated#fiisyogram called
with target set toHISTOGRAMthe proxy state values are set exactly as though
the actual histogram table were being specified. Caltliggjogram with target
PROXYHISTOGRAMas no effect on the actual histogram table.

There is no image associated WRIROXYHISTOGRAMIt cannot be used as
a histogram, and its image must never queried uSetHistogram. The error
INVALID _ENUMesults if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax( enumtarget enum internalformat
boolean sink);

target must beMINMAX internalformatspecifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUB or passed on to final conversiopALSE).

The errorINVALID _ENUMSs generated ifnternalformatis not one of the val-
ues accepted by the corresponding paramet@éexiimage2D, oris 1, 2, 3, 4)N-
TENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16 . The
resulting table always has 2 entries, each with values corresponding only to the
components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is B&RA
and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in fig-
ure 3.7. We describe the stages of this process in the order in which they occur.
Pixels are drawn using

Version 1.3 - August 14, 2001



92

CHAPTER 3. RASTERIZATION

byte, short, int, o r float pixel
data stream (index or component)

convert
to float

convert
L to RGB

shift
and offset

color table
looku

convolution color table
scale and bias lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation dbrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be en

or disabled. RGBA and/epiioindes pixalgpeaihs 4resbewn; depth and stencil |

abled
nixel

paths are not shown.
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void DrawPixels( sizei width, sizei  height enum format
enumtype void *data);

formatis a symbolic constant indicating what the values in memory represent.
width andheightare the width and height, respectively, of the pixel rectangle to be
drawn. datais a pointer to the data to be drawn. These data are represented with
one of seven GL data types, specifiedthge The correspondence between the
twentytypetoken values and the GL data types they indicate is given in fable

If the GL is in color index mode anfbrmatis not one ofCOLORNDEX, STEN-

CIL _INDEX, or DEPTHCOMPONENThen the errotNVALID _OPERATIONOCCUrS.

If typeis BITMAP andformatis not COLORNDEX or STENCIL_INDEX then the
errorINVALID ENUMbccurs. Some additional constraints on the combinations of
formatandtypevalues that are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes (GL
data typedyte andubyte ), signed or unsigned short integers (GL data types
short andushort ), signed or unsigned integers (GL data types anduint ),

or floating point values (GL data tygiat ). These elements are grouped into
sets of one, two, three, or four values, depending orfdhmat, to form a group.
Table3.6summarizes the format of groups obtained from memory; it also indicates
those formats that yield indices and those that yield components.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding.UNPACKSWABPBYTESis
enabled, however, then the values are interpreted with the bit orderings modified
as per table3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series miws, with the first element of the first group of the
first row pointed to by the pointer passed DoawPixels. If the value ofUN-
PACKROWLENGTHis not positive, then the number of groups in a rowvislth;
otherwise the number of groupsUBNPACKROWLENGTH If p indicates the loca-
tion in memory of the first element of the first row, then the first element oMtie
row is indicated by

p+ Nk (3.8)

whereN is the row number (counting from zero) and k is defined as
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typeParameter Corresponding Special
Token Name GL Data Type| Interpretation
UNSIGNEDBYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNEDSHORT ushort No
SHORT short No
UNSIGNEDINT uint No
INT int No
FLOAT float No
UNSIGNEDBYTE.3.3_2 ubyte Yes
UNSIGNEDBYTE2_3_3_REV ubyte Yes
UNSIGNEDSHORT5_6_5 ushort Yes
UNSIGNEDSHORT5_6 5_REV ushort Yes
UNSIGNEDSHORT4.4. 4 4 ushort Yes
UNSIGNEDSHORT4 4 4_4_REV ushort Yes
UNSIGNEDSHORT5 551 ushort Yes
UNSIGNEDSHORT1 5 5 5_.REV ushort Yes
UNSIGNEDINT _8.8_.8_8 uint Yes
UNSIGNEDINT _.8_.8_.8_8_REV uint Yes
UNSIGNEDINT _10.10_.10_2 uint Yes
UNSIGNEDINT _-2_10_10_10_REV uint Yes

Table 3.5:DrawPixels andReadPixelstypeparameter values and the correspond-
ing GL data types. Refer to tabiz2 for definitions of GL data types. Special
interpretations are described near the end of se&tior
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Format Name | Element Meaning and OrderTarget Buffer|

COLORNDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTHCOMPONEN(F Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R, G,B Color
RGBA R,G,B,A Color
BGR B,G,R Color
BGRA B,G,RA Color
LUMINANCE Luminance Color
LUMINANCEALPHA Luminance, A Color

Table 3.6:DrawPixels and ReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

Element Size| Default Bit Ordering| Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements wheNPACKSWAPBYTESIs
enabled. These reorderings are defined only when GL dataityyie has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.
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ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed byyNPACKfor DrawPixels and byPACK for ReadPixels

nl s> a,
b= { a/s[snl/a] s<a (3.9)

wheren is the number of elements in a groupis the number of groups in
the row, a is the value oflUNPACKALIGNMENT ands is the size, in units of GL
ubyte s, of an element. If the number of bits per element isln@t 4, or 8 times
the number of bits in a Gubyte , thenk = nl for all values ofa.

There is a mechanism for selecting a sub-rectangle of groups from a larger
containing rectangle. This mechanism relies on three integer paraméetgrs:
PACKROWL.ENGTHUNPACKSKIP _ROWSandUNPACKSKIP _PIXELS. Before ob-
taining the first group from memory, the pointer suppliedr@awPixels is effec-
tively advanced byUNPACKSKIP _PIXELS )n+(UNPACKSKIP _ROW§H: elements.
Thenwidth groups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advancedé blementsheightsets
of width groups of values are obtained this way. See figuge

Calling Draw-
Pixels with a type of UNSIGNEDBYTE3_3_2, UNSIGNEDBYTE2_3_3_REV, UN-
SIGNEDSHORT5.6.5, UNSIGNEDSHORT5_6 _5_REV,
UNSIGNEDSHORT4 4 4 4, UNSIGNEDSHORT4 4 4 4 REV,
UNSIGNEDSHORT5.5 51, UNSIGNEDSHORT1.5 5 5_REV,
UNSIGNEDINT _8_8.8 8, UNSIGNEDINT 8.8 8 8 REV, UN-
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typeParameter GL Data | Number of Matching
Token Name Type Componentg Pixel Formats
UNSIGNEDBYTE3_.3_2 ubyte 3 RGB
UNSIGNEDBYTE2_3_3_REV ubyte 3 RGB
UNSIGNEDSHORT5.6.5 ushort 3 RGB
UNSIGNEDSHORT5_.6_5_REV ushort 3 RGB
UNSIGNEDSHORT4 4. 4 4 ushort 4 RGBABGRA
UNSIGNEDSHORT4_ 4_4_4_REV ushort 4 RGBABGRA
UNSIGNEDSHORT5 551 ushort 4 RGBABGRA
UNSIGNEDSHORT1.5 5 5_.REV || ushort 4 RGBABGRA
UNSIGNEDINT _8.8_8_8 uint 4 RGBABGRA
UNSIGNEDINT _8_.8_8_8_REV uint 4 RGBABGRA
UNSIGNEDINT _10.10_.10_2 uint 4 RGBABGRA
UNSIGNEDINT 2_10_.10_10_REV uint 4 RGBABGRA

Table 3.8: Packed pixel formats.

SIGNEDINT .10_10_10_2, or UNSIGNEDINT -2_.10_10_10_REVis a special case

in which all the components of each group are packed into a single unsigned byte,
unsigned short, or unsigned int, depending on the type. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by thiermat parameter, as listed in tabBe8. The erroriN-

VALID _OPERATIONs generated if a mismatch occurs. This constraint also holds
for all other functions that accept or return pixel data usypeandformatparam-

eters to define the type and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tabl@®, 3.10 and3.11 Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end WiltVreverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.
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UNSIGNEDBYTE3_3.2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDBYTE2_3_3_REV.

7 6 5 4 3 2 1 0

‘ 3rd ‘ 2nd ‘ 1st Component ‘

Table 3.9:UNSIGNEDBYTEformats. Bit numbers are indicated for each compo-
nent.
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UNSIGNEDSHORT5.6_5:

99

15 14 13 12 11 10 9 7 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNEDSHORT5_6_5_REV.
15 14 13 12 11 10 9 7 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNEDSHORT4 4 4 4:
15 14 13 12 11 10 9 7 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNEDSHORT4 4 4 4 REV.
15 14 13 12 11 10 9 7 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNEDSHORT5 55 1:
15 14 13 12 11 10 9 7 5 4 3 2 1 0
1st Component 2nd 3rd ‘ 4th ‘
UNSIGNEDSHORT1 5.5 5_REV.
15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.10:UNSIGNEDSHORTformats
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UNSIGNEDINT _8_.8_8_8:

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

1st Component 2nd 3rd 4th

UNSIGNEDINT _8_8_8_8_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

4th 3rd 2nd 1st Component

UNSIGNEDINT -10.10_10_2:

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 161514 131211109 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNEDINT -2_10_10_10_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.11:UNSIGNEDINT formats
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Format First Second Third Fourth
Component, Component| Component, Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table3.12

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with atypeof BITMAP is a special case in which the data
are a series of Glubyte values. Eaclubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value ONPACKLSB_FIRST is FALSE, other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in eadbyte are not significant.

The first element of the first row is the first bit (as defined above) ofitiyte
pointed to by the pointer passed@wawPixels. The first element of the second
row is the first bit (again as defined above) of thi®te at locationp + &, where

k is computed as
k—a {L}
8a

There is a mechanism for selecting a sub-rectangle of elements fBonviaP
image as well. Before obtaining the first element from memory, the pointer sup-
plied toDrawPixels is effectively advanced byNPACKSKIP _ROWS k ubyte s.
ThenUNPACKSKIP _PIXELS 1-bit elements are ignored, and the subsequedtih
1-bit elements are obtained, without advancingubgte pointer, after which the
pointer is advanced by ubyte s. heightsets ofwidth elements are obtained this
way.

(3.10)

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-
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propriate formula in tabl@.6 (section2.13. For packed pixel types, each element
in the group is converted by computing (2" — 1), wherec is the unsigned inte-
ger value of the bitfield containing the element d¥ids the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if thiormatis LUMINANCEor LUMINANCEALPHA If the
formatis LUMINANCE then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If tHermatis LUMINANCEALPHA then each group of

two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in se@iért After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by2™ — 1, wheren is the number of bits in an index buffer.
For RGBA components, each element is clamp€d.td]. The resulting values are
converted to fixed-point according to the rules given in secids.9(Final Color
Processing).

For a depth component, an element is first clampé€,t and then converted
to fixed-point as if it were a window value (see sectiof.10.], Controlling the
Viewport).
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Stencil indices are masked 12¢ — 1, wheren is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void Pixelzoom( float =z, float 2y );

Let (z,p, yrp) be the current raster position (sectidri?). (If the current raster
position is invalid, therDrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (sectioh.]) or scissor (sectiod.1.2

tests.) If a particular group (index or components) isittiein a row and belongs to

the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(rp + 22N, Yrp + 2ym) and  (rp + 2(n+1),yrp + 2y(m + 1))

(eitherz, or z, may be negative). Any fragments whose centers lie inside of this
rectangle (or on its bottom or left boundaries) are produced in correspondence with
this particular group of elements.

A fragment arising from a group consisting of color data takes on the color in-
dex or color components of the group; the depth and texture coordinates are taken
from the current raster position’s associated data. A fragment arising from a depth
component takes the component’s depth value; the color and texture coordinates
are given by those associated with the current raster position. In both cases texture
coordinatess, ¢, andr are replaced witts/q, t/q, andr/q, respectively. Ifg is
less than or equal to zero, the results are undefined. Groups arisindofiam
Pixelswith aformatof STENCIL_INDEX are treated specially and are described in
sectiond.3.1

3.6.5 Pixel Transfer Operations

The GL defines four kinds of pixel groups:

1. RGBA componengach group comprises four color components: red, green,
blue, and alpha.

2. Depth componentEach group comprises a single depth component.
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3. Color index: Each group comprises a single color index.
4. Stencil indexEach group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale fa&BRSCALEfor an

R componentGREENSCALEfor a G componenBLUE SCALEfor a B component,
andALPHASCALEfor an A component, obbEPTHSCALEfor a depth component.
Then the result is added to the appropriate signed IR&RBIAS, GREENBIAS,
BLUEBIAS, ALPHABIAS, or DEPTHBIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at led$bg,(MAXPIXEL _MAPTABLE) ]
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted bYNDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offséfIDEX_OFFSETis added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skippedfCOLORs

FALSE. First, each componentis clamped to the raiigé]. There is a table associ-

ated with each of the R, G, B, and A component eleméeritsEL. _MAPR_TO.R for

R, PIXEL _MARPG.TOG for G, PIXEL _MAPB_TOB for B, andPIXEL _MAPA TOA

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.
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Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLORNDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color componemB{EL _MAPI _TOR,
PIXEL _MAPI _TO.G, PIXEL MAPI _TOB, andPIXEL MAPI _-TOA. Each of these
tables must have™ entries for some integer value af (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with2” — 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, antMKkPCOLORs enabled,
then the index is looked up in tHAXEL _MAPI _TO.l table (otherwise, the index
is not looked up). Again, the table must ha/eentries for some integet. The
index is first rounded to the nearest integer; the result is ANDed 2#ith 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups.MAPSTENCIL is enabled, then

the index is looked up in theIXEL _MARS_TO.S table (otherwise, the index is not
looked up). The table must ha2é entries for some integer. The integer index

is ANDed with2™ — 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLORTABLE is enabled. If a zero-width table is enabled, no lookup is
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Base Internal Formar[ R \ G \ B \ A \

ALPHA A,
LUMINANCE L | L, | L,
LUMINANCEALPHA | L; | L; | L; | A,
INTENSITY L | L | L | L
RGB Rt Gt Bt
RGBA Rt Gt Bt At

Table 3.13:Color table lookup.R;, G¢, B, A¢, L, andI; are color table values

that are assigned to pixel componeiits G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.

The internal format of the table determines which components of the group
will be replaced (see tablgé.13. The components to be replaced are converted
to indices by clamping td0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. CIONVOLUTIOND

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passedéximagelD TexSubimagell CopyTex-
ImagelD, and CopyTexSublmagelD and returned byGetTexImage (see sec-
tion 6.1.4 with target TEXTURELD. If CONVOLUTIOND is enabled, the two-
dimensional convolution filter is applied only to the two-dimensional images
passed t®drawPixels, CopyPixels ReadPixels Teximage2D TexSublmage2D
CopyTexlmage2D CopyTexSublmage2D andCopyTexSubimage3D If SEP-
ARABLEZ2D is enabled, andCONVOLUTIOND is disabled, the separable two-
dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations belo®,as7s, Bs, and A,.

Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denotedras G, By, Ay, Ly, andI; in the equations
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Base Filter Format | R | G | B | A |
ALPHA R, G, B, Aq % Ag
LUMINANCE Ry« Ly | Gex Ly | Box Ly | Ag
LUMINANCEALPHA | Ry % Ly | G Ly | Bex Ly | Agx Ag
INTENSITY RS*If GS*If BS*[JC AS*If
RGB Rsx Ry | Gsx Gy | Box By | As
RGBA Ryx Ry | Gox Gy | Bo*x By | Agx Ay

Table 3.14:Computation of filtered color components depending on filter image
format. C  F' indicates the convolution of image componéntvith filter F'.

below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in tatfiel 4

The convolution operation is defined differently for each of the three convolu-
tion filters. The variable$l’; and H; refer to the dimensions of the convolution
filter. The variabledV, and H, refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, widérefers to the filtered
result,C refers to the one- or two-dimensional convolution filter, &nd,, and
Crorumn refer to the two one-dimensional filters comprising the two-dimensional
separable filterC” depends on the source image calarand the convolution bor-
der mode as described belo@., the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in th@onvolution Filter Specification subsection of
section3.6.3

One-dimensional filter:

W;i—1
Cli'l = Y Cili" +n]*Cyln]
n=0
Two-dimensional filter:
Wi—1Hp—1

Cli',j1= > 3 Cli+n,j +m]Cfln,m]

n=0 m=0

Two-dimensional separable filter:

Wy—1Hy—1
Cli',5'] = Z Z CLli" + n, j' + m] * Crow[n] * Ceotumn|m)]

n=0 m=0
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If W, of a one-dimensional filter is zero, th€H:] is always set to zero. Like-
wise, if eitheriW; or H; of a two-dimensional filter is zero, theTi[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if }( enumtarget enum pname
T param);

wheretargetis the name of the filtepnameis CONVOLUTIONBORDERMODEand
paramis one ofREDUCECONSTANBORDERYI REPLICATE BORDER

Border Mode REDUCE

The width and height of source images convolved with border nRiElUCEare
reduced byW; — 1 and H; — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mod&®EDUCHre zero throughV’; — W in width, and zero
throughH, — H in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific examplextmagelDandTex-
Image2D, which specify constraints for image dimensions. EvefeitimagelD
or Texlmage2Dis called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode REDUCEC", equals the source image col6t and
C, equals the filtered resut.

For the remaining border modes, defiig = [W;/2| andC), = |H/2].
The coordinate$C,,,, C},) define the center of the convolution filter.

Border Mode CONSTANBORDER

If the convolution border mode IBONSTANBORDERthe output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the cur-
rent convolution border color. Whenever the convolution filter extends beyond
one of the edges of the source image, the constant-color border pixels are used
as input to the filter. The current convolution border color is set by calliog-
volutionParameterfv or ConvolutionParameteriv with pnameset toCONVOLU-
TION_.BORDERCOLORandparamscontaining four values that comprise the RGBA
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color to be used as the image border. Integer color components are interpreted
linearly such that the most positive integer maps to 1.0, and the most negative inte-
ger maps to -1.0. Floating point color components are not clamped when they are
specified.

For a one-dimensional filter, the result color is defined by

Cr[l] = C[Z - Cw]

whereC|i'] is computed using the following equation 6t [i']:

y y
oAl :{ Cqli'], 0< < W

Ce, otherwise

andC. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Z>]] = C[Z - Cwaj - Ch]

whereC|[i’, j'] is computed using the following equation f6¢[:’, j']:

Cqli', 5], 0<4" <W,,0<j < H;
Ce, otherwise

Cit ) = {

Border Mode REPLICATE BORDER

The convolution border modeEPLICATE BORDERalso produces an output im-

age with the same dimensions as the source image. The behavior of this mode is

identical to that of theCONSTANBORDERNOde except for the treatment of pixel

locations where the convolution filter extends beyond the edge of the source im-

age. For these locations, it is as if the outermost one-pixel border of the source

image was replicated. Conceptually, each pixel in the leftmost one-pixel column

of the source image is replicatéd, times to provide additional image data along

the left edge, each pixel in the rightmost one-pixel column is replicatgdmes

to provide additional image data along the right edge, and each pixel value in the

top and bottom one-pixel rows is replicated to cregterows of image data along

the top and bottom edges. The pixel value at each corner is also replicated in order

to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by
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whereC|i'] is computed using the following equation f6f [¢']:

CLli") = Cg[clamp(i’, Wy)]

and the clamping functioclamp(val, max) is defined as

0, val < 0
clamp(val, max) = { wal, 0 <wal < max
maxr — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Crli,j] = Cli = Cu, j — Ci]

whereC|#, j'] is computed using the following equation f0¢t[i’, j'1:

CLli', '] = Cs[clamp(i’, W), clamp(j’, Hy)]

After convolution, each component of the resulting image is scaled by the
corresponding PixelTransfer parameters: POSTCONVOLUTIONREDSCALE
for an R component, POSTCONVOLUTIOMNGREENSCALE for a G com-
ponent, POSTCONVOLUTIOMBLUESCALE for a B component, and
POSTCONVOLUTIOMLPHASCALE for an A component. The result
is added to the corresponding bias: POSTCONVOLUTIONREDBIAS,
POSTCONVOLUTIONSREENBIAS, POSTCONVOLUTIONBLUEBIAS, or
POSTCONVOLUTIOMLPHABIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border modeE®UCEand the border color is
(0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by callifgnable or Disable with

the symbolic constanPOSTCONVOLUTIONCOLORTABLE The post convo-
lution table is defined by callingColorTable with a target argument of
POSTCONVOLUTIONCOLORTABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in sectif.5
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The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factorPOSTCOLORMATRIXREDSCALE
for an R component, POSTCOLORMATRIXGREENSCALE for a G
component, POSTCOLORMATRIXBLUESCALE for a B component,
and POSTCOLORMATRIXALPHASCALE for an A component. The
result is added to a signed bias: POSTCOLORMATRIXREDBIAS,
POSTCOLORMATRIX GREENBIAS, POSTCOLORVATRIXBLUEBIAS, or
POSTCOLORMATRIXALPHABIAS. The resulting components replace each
component of the original group.

That is, if M, is the color matrix, a subscript efrepresents the scale term for
a component, and a subscripttafepresents the bias term, then the components

R

G

B

A

are transformed to

R R, 0 0 O R Ry
G|l |0 G 0 0 G Gy
l=lo o B o|M|B|T|B
A 0O 0 0 A A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calliffnable or Disable
with the symbolic constarROSTCOLORMATRIX COLORTABLE The post color
matrix table is defined by callingColorTable with a target argument of
POSTCOLORMATRIX COLORTABLE. In all other respects, operation is identical
to color table lookup, as defined in secti®.5

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.
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Histogram

This step applies only to RGBA component groups. Histogram operation is en-
abled or disabled by callingnable or Disable with the symbolic constartlS-
TOGRAM

If the width of the table is non-zero, then indic&s, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each componejt 9 , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of théllISTOGRAMable includes red or luminance, the red or
luminance component of histogram enfy is incremented by one. If the format
of the HISTOGRAMable includes green, the green component of histogram entry
G, is incremented by one. The blue and alpha components of histogram entries
B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter i$ALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by callingznable or Disablewith the symbolic constarMINMAX

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (sectiok.1.1). There are no semantics defined for the treatment of
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group component values that are outside the representable range.

If the Minmax sink parameter i$~ALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLES enabled, and the value BAMPLEBUFFERSS one, then pixel
rectangles are rasterized using the following algorithm.(Dgt,, Y;,,) be the cur-
rent raster position. (If the current raster position is invalid, tbeawPixels is
ignored.) If a particular group (index or components) istiie in a row and be-
longs to themth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xop + Zz*n, Yy + Zy xm)

and
(Xop+Zp*x(n+1),Yp+ Zyx (m+1))

where Z, and Z, are the pixel zoom factors specified ByxelZoom, and may
each be either positive or negative. A fragment representing group) is pro-
duced for each framebuffer pixel with one or more sample points that lie inside,
or on the bottom or left boundary, of this rectangle. Each fragment so produced
takes its associated data from the group and from the current raster position, in a
manner consistent with the discussion in @enversion to Fragmentssubsection
of section3.6.4 All depth and color sample values are assigned the same value,
taken either from their group (for depth and color component groups) or from the
current raster position (if they are not). All sample values are assigned the same
set of texture coordinates, taken from the current raster position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps
Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-

ments to be produced. Each of these fragments has the same associated data. These
data are those associated with tugrent raster position
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Figure 3.9. A bitmap and its associated parameteysandy,; are not shown.

Bitmaps are sent using

void Bitmap(sizei w,sizei h,float ., float o,
float x4, float  y;, ubyte *data);

w andh comprise the integer width and height of the rectangular bitmap, respec-
tively. (zpo, ypo) Qives the floating-point: and y values of the bitmap’s origin.
(xvi, ypi) gives the floating-point andy increments that are added to the raster
position after the bitmap is rasterizathtais a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in sectioB.6.4for DrawPixels; it is as if thewidth and height
passed to that command were equalbtandh, respectively, théypewereBITMAP,
and theformatwere COLORNDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figures.o.

A bitmap sent usin@itmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(@, yu) = ([Trp — Tools [Yrp — Ybo))
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and upper right corner &t;; + w, y;; + h) wherew andh are the width and height

of the bitmap, respectively. Fragments in the array are produced if the correspond-
ing bit in the bitmap id and not produced otherwise. The associated data for each
fragment are those associated with the current raster position, with texture coordi-
natess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifg is less than or

equal to zero, the results are undefined. Once the fragments have been produced,
the current raster position is updated:

(wrpa yrp) — (xrp + Ty Yrp + ybi)~

Thez andw values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLEIs enabled, and the value §AMPLEBUFFERSIs one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner( &t.,,Y;,), and its upper

right corner at(X,, + w,Y;, + h), wherew andh are the width and height of

the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragmerttst, r) coordinates to modify the
fragment’s primary RGBA color. Texturing does not affect the secondary color.

An implementation may support texturing using more than one image at a time.
In this case the fragment carries multiple sets of texture coordifates:) which
are used to index separate images to produce color values which are collectively
used to modify the fragment’s RGBA color. Texturing is specified only for RGBA
mode; its use in color index mode is undefined. The following subsections (up
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to and including Sectiof.8.7) specify the GL operation with a single texture and
Section3.8.13specifies the details of how multiple texture units interact.

The GL provides a means to specify the details of how texturing of a primitive
is effected. These details include specification of the image to be texture mapped,
the means by which the image is filtered when applied to the primitive, and the
function that determines what RGBA value is produced given a fragment color and
an image value.

3.8.1 Texture Image Specification

The command

void Texlmage3D( enumtarget int level int internalformat
sizei width, sizei  height sizei  depthint border,
enumformat, enum type void *data);

is used to specify a three-dimensional texture imageget must be eitheTEX-
TURES3D, or PROXYTEXTURES3D in the special case discussed in sectiof. 10
format type anddatamatch the corresponding argument®i@wPixels (refer to
section3.6.9); they specify the format of the image data, the type of those data,
and a pointer to the image data in host memory. fbinmats STENCIL_INDEX and
DEPTHCOMPONENATe not allowed.

The groups in memory are treated as being arranged in a sequence of adja-
cent rectangles. Each rectangle is a two-dimensional image, whose size and or-
ganization are specified by thddth andheightparameters tdexlmage3D The
values ofUNPACKROWLENGTHand UNPACKALIGNMENTcontrol the row-to-row
spacing in these images in the same mann&rawPixels. If the value of the in-
teger parametad NPACKIMAGE HEIGHT is not positive, then the number of rows
in each two-dimensional image eight otherwise the number of rows $N-
PACKIMAGEHEIGHT. Each two-dimensional image comprises an integral number
of rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameteNPACKSKIP _IMAGES If UNPACKSKIP _IMAGES
is positive, the pointer is advanced UNPACKSKIP _IMAGEStimes the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Thendepthtwo-dimensional images are processed, each having a subimage
extracted in the same mannerlmwPixels.

The selected groups are processed exactly aPfawPixels, stopping just
before final conversion. Each R, G, B, and A value so generated is clamped to
[0, 1].
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Components are then selected from the resulting R, G, B, and A values to
obtain a texture with thbase internal formaspecified by (or derived fromipter-
nalformat Table3.15summarizes the mapping of R, G, B, and A values to texture
components, as a function of the base internal format of the texture inmagmnal-
formatmay be specified as one of the six base internal format symbolic constants
listed in table3.15 as one of thesized internal formasymbolic constants listed
in table3.16 as one of the specific compressed internal format symbolic constants
listed in table3.17 or as one of the six generic compressed internal format sym-
bolic constants listed in table. 18 internalformatmay (for backwards compati-
bility with the 1.0 version of the GL) also take on the integer valug2, 3, and
4, which are equivalent to symbolic constant$MINANCE LUMINANCEALPHA
RGB andRGBArespectively. Specifying a value farternalformatthat is not one
of the above values generates the emMALID _-VALUE

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value 9 MCOMPRESSEDEXTUREFORMATSThe
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value @OMPRESSEDEXTUREFORMATSThe only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. Ihternalformatis one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL's choosing with the same base internal format.
If no specific compressed format is availabfgernalformatis instead replaced by
the corresponding base internal format.infernalformatis given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borderig)ternalformatis replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

Theinternal component resolutias the number of bits allocated to each value
in a texture image. linternalformatis specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, and A values
to texture components is equivalent to the mapping of the corresponding base in-
ternal format’s components, as specified in tebles and the memory allocation
per texture component is assigned by the GL to match the allocations listed in
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Base Internal Format RGBA Values| Internal Components

ALPHA A A
LUMINANCE R L
LUMINANCEALPHA | R,A LA
INTENSITY R 1

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture, table, or
filter components. See secti@rB.12for a description of the texture components
R,G,B,A, L andl.

table3.16as closely as possible. (The definition of closely is left up to the imple-
mentation. Implementations are not required to support more than one resolution
for each base internal format.) If a compressed internal format is specified, the
mapping of the R, G, B, and A values to texture components is equivalent to the
mapping of the corresponding base internal format’s components, as specified in
table3.15 The specified image is compressed using a (possibly lossy) compression
algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on @@ylmage3D, TexImage2D(see be-
low), or TeximagelD(see below) parameter (excdptged, but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by ttata parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in se8t®iQ

The image itself (pointed to bglata) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of widthwidth from left to right; heightrows are stacked from bottom
to top forming a single two-dimensional image slice; alegthslices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to componentstekalas described by table15
Counting from zero, each resultingth texel is assigned internal integer coordi-
nates(i, j, k), where

i = (N mod width) — bs
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Sized Base R G B A L I
Internal Format Internal Format bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4

ALPHAS8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
LUMINANCE4 LUMINANCE 4
LUMINANCES8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4ALPHA4 LUMINANCEALPHA 4 4
LUMINANCEGALPHAZ2 LUMINANCEALPHA 2 6
LUMINANCESALPHAS8 LUMINANCEALPHA 8 8
LUMINANCE12ALPHA4 | LUMINANCEALPHA 4 12
LUMINANCE12ALPHA12 | LUMINANCEALPHA 12 | 12
LUMINANCE16ALPHA16 | LUMINANCEALPHA 16 | 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3.G3.B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGBS RGB 8 8 8

RGB10 RGB 10 | 10 | 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5A1 RGBA 5 5 5 1

RGBAS8 RGBA 8 8 8 8
RGB10A2 RGBA 10| 10| 10 | 2

RGBA12 RGBA 12 | 12 | 12 | 12
RGBA16 RGBA 16 | 16 | 16 | 16

Table 3.16: Correspondence of sized internal formats to base internal formats, and
desiredcomponent resolutions for each sized internal format.
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| Compressed Internal FormatBase Internal Format
| (none) | \

Table 3.17: Specific compressed internal formats. None are defined by OpenGL
1.3; however, several specific compression types are defined in GL extensions.

Generic Compressed Internal Fornﬁ%ase Internal Formdt

COMPRESSEBALPHA ALPHA
COMPRESSEDUMINANCE LUMINANCE
COMPRESSEDUMINANCEALPHA LUMINANCEALPHA
COMPRESSEINTENSITY INTENSITY
COMPRESSERGB RGB
COMPRESSERGBA RGBA

Table 3.18: Generic compressed internal formats.

. N ‘
Jj= (LMJ mod height) — bs

k=(l— N ‘
width X height
andb;, is the specifiedborderwidth. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest valde of
Each color component is converted (by rounding to nearest) to a fixed-point
value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each valug/ (2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0 is
represented in binary as a string of all ones).
Thelevelargument tafexlmage3Dis an integetevel-of-detaihumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID _VALUEIs generated.
The borderargument toTexlmage3Dis a border width. The significance of
borders is described below. The border width affects the required dimensions of
the texture image: it must be the case that

| mod depth) — bs

w, = 2" + 20, (3.11)
s = 2™ 4+ 2b, (3.12)
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ds = 2! + 2b, (3.13)

for some integera, m, andl, wherews, hs, andd, are the specified imageidth,
height anddepth If any one of these relationships cannot be satisfied, then the
errorINVALID _VALUEIs generated.

Currently, the maximum border width is 1. If b, is less than zero, or greater
thanb;, then the erroNVALID _VALUEIs generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at |@4st°? + 2b, for image arrays
of level-of-detaild throughk, wherek is the log base 2 dIAX3D_TEXTURESIZE ,
lod is the level-of-detail of the image array, abdis the maximum border width.

It may be zero for image arrays of any level-of-detail greater tharThe error
INVALID _VALUEIs generated if the specified image is too large to be stored under
any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at lezdst'? 4 20, for image arrays of level
0 throughk, wherek is the log base 2 dIAXTEXTURESIZE . The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least2k—!d + 2p, for image arrays level 0 through wherek is the log base 2 of
MAXCUBEMARTEXTURESIZE .

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in se&ctdh

The command

void Texlmage2d enumtarget int level
int internalformat sizei  width, sizei  height
int border, enum format enum type void *data);

is used to specify a two-dimensional texture imatgget must be one ofEX-
TURE2D for a two-dimensional texture,
or one of TEXTURECUBEMAPPOSITIVE _X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY, TEX-
TURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ for a cube
map texture. Additionallytarget may be eithePROXYTEXTUREZ2D for a two-
dimensional proxy texture dPROXYTEXTURECUBEMAPfor a cube map proxy
texture in the special case discussed in se@i8rlQ The other parameters match
the corresponding parametersieximage3D
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For the purposes of decoding the texture imagxImage2Dis equivalent to
calling Teximage3Dwith corresponding arguments addpthof 1, except that

e Thedepthof the image is always 1 regardless of the valubafer.

e Convolution will be performed on the image (possibly changingiigth
andheigh) if SEPARABLE2D or CONVOLUTIOND is enabled.

e UNPACKSKIP _IMAGESIs ignored.

A two-dimensional texture consists of a single two-dimensional texture image.

A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. TREXTURECUBEMAP* targets listed above up-

date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens suchT@&xTURECUBEMAPRPOSITIVE _X are used

when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), thHEEXTURECUBEMAPtarget is specified.

When thetarget parameter taleximage2Dis one of the six cube map two-
dimensional image targets, the erfgWALID _VALUEIs generated if thevidthand
heightparameters are not equal.

Finally, the command

void Texlmageld enumtarget int level
int internalformat sizei ~ width, int  border,
enum format, enum type void *data);

is used to specify a one-dimensional texture imageget must be eitheMEX-

TURELD, or PROXYTEXTURELD in the special case discussed in secBdh1Q)
For the purposes of decoding the texture imagxImagelDis equivalent to

calling Teximage2Dwith corresponding arguments ahdightof 1, except that

e Theheightof the image is always 1 regardless of the valubafler.

e Convolution will be performed on the image (possibly changinguitdth)
only if CONVOLUTIOND is enabled.

An image with zero width, heighfTeximage2D and Texlmage3Donly), or
depth Texlmage3Donly) indicates the null texture. If the null texture is specified
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for the level-of-detail specified by texture parameteXTUREBASELEVEL (see
section3.8.9), it is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL's internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable widihwhether or not a border has been
specified (see figurg.10 . If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image textine
array. A three-dimensional texture array has width, height, and depth

Wt = 2” +2bt
hy = 2™ + 2b,
dy = 2 + 20,

whereb; is the maximum allowable border width amng m, and! are defined in
equations3.11, 3.12 and3.13 A two-dimensional texture array has degih= 1,

with heighth; and widthw,; as above, and a one-dimensional texture array has
depthd; = 1, heighth; = 1, and widthw; as above.

An element(i, j, k) of the texture array is calledtaxel(for a two-dimensional
texture,k is irrelevant; for a one-dimensional textugeandk are both irrelevant).
The texture valueused in texturing a fragment is determined by that fragment’s
associateds, t, ) coordinates, but may not correspond to any actual texel. See
figure3.10

If the dataargument offexlmagelD, TexImage2D or Texlmage3Dis a null
pointer (a zero-valued pointer in the C implementation), a one-, two-, or three-
dimensional texture array is created with the specitieget level internalformat
width, height anddepth but with unspecified image contents. In this case no pixel
values are accessed in client memory, and no pixel processing is performed. Errors
are generated, however, exactly as thoughdtita pointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

! Figure3.10needs to show a three-dimensional texture image.
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Figure 3.10. A texture image and the coordinates used to access it. This is g two-
dimensional texture witm = 3 andm = 2. A one-dimensional texture would
consist of a single horizontal strip. and3, values used in blending adjacent texels
to obtain a texture value, are also shown.

Version 1.3 - August 14, 2001



3.8. TEXTURING 125

The command

void CopyTeximage2d enumtarget int level
enuminternalformatint  x, int vy, sizei  width,
sizei height int border);

defines a two-dimensional texture array in exactly the mannerTet-
Image2D, except that the image data are taken from the framebuffer
rather than from client memory. Currentlyarget must be one ofTEX-
TUREZ2D, TEXTURECUBEMAPPOSITIVE _X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY, TEX-
TURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ. X, Yy, width,
andheightcorrespond precisely to the corresponding argumer@spyPixels(re-
fer to sectiord.3.3); they specify the imagewidth andheight and the lower left
(z,y) coordinates of the framebuffer region to be copied. The image is taken from
the framebuffer exactly as if these arguments were pass@bpyPixels with
argumentypeset toCOLORstopping after pixel transfer processing is complete.
Subsequent processing is identical to that describeddrimage2D, beginning
with clamping of the R, G, B, and A values from the resulting pixel groups. Pa-
rameterdevel internalformat andborderare specified using the same values, with
the same meanings, as the equivalent argumentsxdmage2D, except thain-
ternalformatmay not be specified as, 2, 3, or 4. An invalid value specified
for internalformatgenerates the erroNVALID _ENUM The constraints omwidth,
height andborderare exactly those for the equivalent argument$efimage2D

When thetarget parameter tcCopyTeximage2Dis one of the six cube map
two-dimensional image targets, the enfeVALID _VALUEIs generated if thevidth
andheightparameters are not equal.

The command

void CopyTexlmagelld enumtarget int level
enuminternalformatint X, int vy, sizei  width,
int border);

defines a one-dimensional texture array in exactly the mann&eximagelD

except that the image data are taken from the framebuffer, rather than from client
memory. Currentlytarget must beTEXTURELD. For the purposes of decoding

the texture imageCopyTeximagelDis equivalent to callingCopyTexlmage2D

with corresponding arguments ahdightof 1, except that théeightof the image

is always 1, regardless of the valuelmdrder. level internalformat andborder

are specified using the same values, with the same meanings, as the equivalent
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arguments offeximagelD except thatnternalformatmay not be specified ds
2, 3, or4. The constraints owidth andborderare exactly those of the equivalent
arguments offexlmagelD

Six additional commands,

void TexSublmage3l enumtarget int level int  xoffset
int yoffsetint zoffsetsizei  width, sizei  height
sizei depth enum format enum type void *data);

void TexSublmage2l enumtarget int level int  xoffset
int yoffsetsizei  width, sizei  height enum format
enumtype void *data);

void TexSublmagell§ enumtarget int level int xoffset
sizei  width, enum format enum type void *data);

void CopyTexSublmage3 enumtarget int level
int xoffsetint yoffsetint zoffsetint x,int v,
sizei width, sizei  height);

void CopyTexSublmage2l} enumtarget int level
int xoffsetint yoffsetint x,int vy, sizei width,
sizei  height);

void CopyTexSublmagell enumtarget int level
int xoffsetint x,int vy, sizei  width);

respecify only a rectangular subregion of an existing texture array. No
change is made to thanternalformat width, height depth or border pa-
rameters of the specified texture array, nor is any change made to texel val-
ues outside the specified subregion. Currently tdaget arguments ofTex-
SublmagelD and CopyTexSublmagelDmust beTEXTURELD, the target ar-
guments ofTexSublmage2Dand CopyTexSublmage2Dmust be one offEX-
TUREZ2D, TEXTURECUBEMARPOSITIVE _X, TEXTURECUBEMARNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ, and the
targetarguments offexSublmage3Dand CopyTexSublmage3Dmust beTEX-
TURES3D. Thelevel parameter of each command specifies the level of the texture
array that is modified. Ifevelis less than zero or greater than the base 2 logarithm
of the maximum texture width or height, the ertNiVALID _VALUEIs generated.
TexSublmage3Dargumentsvidth, height depth format type anddatamatch
the corresponding argumentsTeximage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likevaz&ublmage2D
argumentswidth, height format type anddata match the corresponding argu-
ments toTexlmage2D, andTexSublmagelDargumentsvidth, format, type and
datamatch the corresponding argument§éximagelD
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CopyTexSublmage3Dand CopyTexSublmage2D argumentsx, y, width,
andheightmatch the corresponding argumentiopy Teximage2F. CopyTex-
SublmagelDargumentsx, y, andwidth match the corresponding arguments to
CopyTeximagelD Each of theTexSublmagecommands interprets and processes
pixel groups in exactly the manner of it@xImage counterpart, except that the
assignment of R, G, B, and A pixel group values to the texture components is
controlled by theinternalformatof the texture array, not by an argument to the
command.

Argumentsxoffset yoffset and zoffsetof TexSublmage3D and CopyTex-
Sublmage3Dspecify the lower left texel coordinates ofradth-wide by height
high bydepthdeep rectangular subregion of the texture array. déphargument
associated witlCopyTexSublmage3Dis always 1, because framebuffer memory
is two-dimensional - only a portion of a singlet slice of a three-dimensional
texture is replaced b€opyTexSublmage3D

Negative values okoffset yoffset andzoffsetcorrespond to the coordinates
of border texels, addressed as in fig@&Q Takingws, hs, ds, andbs to be
the specified width, height, depth, and border width of the texture array, (not the
actual array dimensions;, h:, d¢, andb,), and takingz, vy, z, w, h, andd to be
the xoffset yoffset zoffset width, height anddepthargument values, any of the
following relationships generates the erfeWALID _-VALUE

T < —by
T+ w > ws — b
y < —bs
y+h>hs—bs
z < —by
z+d>ds— bs

(Recall thatd,, w,, andh; include twice the specified border width.) Count-
ing from zero, thenth pixel group is assigned to the texel with internal integer
coordinatesi, j, k|, where

i =z + (n mod w)

j=y+(l:-] mod h)

2 Because the framebuffer is inherently two-dimensional, there i€y TexImage3Dcom-
mand.
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n
width * height

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ofvadth-wide byheighthigh rectangular
subregion of the texture array. Negative valuexaffsetandyoffsetcorrespond
to the coordinates of border texels, addressed as in figu@ Takingws, hs,
and b, to be the specified width, height, and border width of the texture array,
(not the actual array dimensions, h;, andb;), and takingz, y, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following
relationships generates the erldWALID _VALUE

k=z+(] | mod d

T < —by
T+ w > ws — by
y < —bs
y+h>hs—bs

(Recall thatw, andh include twice the specified border widifh) Counting from
zero, thenth pixel group is assigned to the texel with internal integer coordinates
[i, 7], where

i =+ (n mod w)
. n
J=Yy+ (LEJ mod h)

The xoffsetargument ofTexSublmagelDand CopyTexSublmagelDspeci-
fies the left texel coordinate ofwidth-wide subregion of the texture array. Neg-
ative values ofoffsetcorrespond to the coordinates of border texels. Takigg
andb, to be the specified width and border width of the texture array,zaadd

w to be thexoffsetandwidth argument values, either of the following relationships
generates the erréiVALID VALUE

T < —bs
T+ w > ws — by

Counting from zero, theth pixel group is assigned to the texel with internal integer
coordinatesi|, where

i =+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having

Version 1.3 - August 14, 2001



3.8. TEXTURING 129

to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. CallingiexSublmage3D CopyTexSublmage3D TexSublm-

age2D CopyTexSublmage2D TexSublmagelD or CopyTexSublmagelDwill

result in anINVALID _OPERATIONerror if xoffset yoffset or zoffsetis not equal to

—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

void CompressedTeximagelDenumtarget int level
enum internalformat sizei  width, int  border,
sizei imageSizevoid *data);

void CompressedTexlmage2Denumtarget int  level
enuminternalformat sizei ~ width, sizei  height
int border, sizei imageSizevoid *data);

void CompressedTexlmage3Denumtarget int level
enuminternalformat sizei  width, sizei  height
sizei depthint border, sizei imageSizgvoid *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format.tdrget level internal-
format, width, height depth andborder parameters have the same meaning as in
TexImagelD Texlmage2D, andTexlmage3D datapoints to compressed image
data stored in the compressed image format correspondintgtoalformat Since

the GL provides no specific image formats, using any of the six generic compressed
internal formats asternalformatwill result in anINVALID _ENUMerror.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining thernalformattoken. Com-
pressed texture images are treated as an arrajagfeSizeibyte s beginning at
addresslata All pixel storage and pixel transfer modes are ignored when decoding
a compressed texture image. If tineageSizgarameter is not consistent with the
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format, dimensions, and contents of the compressed imagé&\e&iLID VALUE
error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zerdoordervalues. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in atlNVALID _OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same image GompressedTexlmagelD Com-
pressedTeximage2D) or CompressedTeximage3Dwill not result in anIN-

VALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@eéyCompressedTex-
Image (section6.1.4).

e target level andinternalformatmatch thetarget, levelandformatparame-
ters provided to th&etCompressedTexImageall returningdata

e width, height depth border, internalformat and
imageSizenatch the values ofEXTUREWIDTH TEXTUREHEIGHT, TEX-
TUREDEPTH TEXTUREBORDERTEXTUREINTERNAL FORMATandTEX-
TURECOMPRESSEMAGESIZE for image levelevelin effect at the time
of the GetCompressedTexImageall returningdata

This guarantee applies not just to images returne@GéyCompressedTexImagge
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSublmagelDenumtarget int level
int xoffsetsizei  width, enum format sizei  imageSize
void *data);

void CompressedTexSublmage2Denumtarget int level
int xoffsetint yoffsetsizei  width, sizei  height
enumformat sizei  imageSizevoid *data);

void CompressedTexSublmage3Penumtarget int level
int xoffsetint yoffsefint zoffsetsizei  width,
sizei height sizei  depth enum format,
sizei imageSizevoid *data);
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respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. fEinget, level xoffset yoffset zoff-

set width, height anddepthparameters have the same meaning aekSublm-
agelD TexSublmage2D and TexSublmage3D data points to compressed im-
age data stored in the compressed image format correspondfogrtat Since

the core GL provides no specific image formats, using any of these six generic
compressed internal formats fasmatwill result in anINVALID _ENUMerror.

The image pointed to bylata and theimageSizeparameter are interpreted
as though they were provided @ompressedTexlmagelPCompressedTexIm-
age2D andCompressedTexlmage3DThese commands do not provide for im-
age format conversion, so dNVALID OPERATIONerror results ifformat does
not match the internal format of the texture image being modified. lirttegye-
Sizeparameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data)INWALID _VALUEerror results.

As with CompressedTexlmagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID _OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same imageCtmmpressedTexSublmagelPCom-
pressedTexSublmage2PCompressedTexSublmage3mvill not result in aniN-

VALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@éyCompressedTex-
Image (Section 6.1.4).

e target level andformat match thetarget, levelandformat parameters pro-
vided to theGetCompressedTexImageall returningdata

e width, height
depth format andimageSizematch the values ofEXTUREWIDTH TEX-
TUREHEIGHT, TEXTUREDEPTH TEXTUREINTERNAL FORMATandTEX-
TURECOMPRESSEMAGESIZE for image levelevelin effect at the time
of the GetCompressedTexImageall returningdata

e width, height depth format match the values ofEXTUREWIDTH TEX-
TUREHEIGHT, TEXTUREDEPTH and TEXTUREINTERNAL FORMATcur-
rently in effect for image levekvel
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o xoffset yoffset and zoffsetare all —b, where b is the value ofTEX-
TUREBORDERurrently in effect for image levaével

This guarantee applies not just to images returne@&yCompressedTexIm-
age but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSublmage3P CompressedTexSublmage2pP or
CompressedTexSublmagelWill result in anINVALID _OPERATIONerror if xoff-
set yoffset or zoffsetis not equal to-b, (border width), or ifwidth, height and
depthdo not match the values GEXTUREWIDTH TEXTUREHEIGHT, or TEX-
TUREDEPTH respectively. The contents of any texel outside the region modified
by the call are undefined. These restrictions may be relaxed for specific compressed
internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when applied to a frag-
ment. Each parameter is set by calling

void TexParameter{if }( enumtarget enum pnameT param);
void TexParameter{if }v( enumtarget enum pname
T params);

target is the target, eitheMEXTURELD, TEXTURE2D, TEXTURE3D, or TEX-
TURECUBEMAPR pnameis a symbolic constant indicating the parameter to be
set; the possible constants and corresponding parameters are summarized in ta-
ble 3.19 In the first form of the commandgyaramis a value to which to set a
single-valued parameter; in the second form of the commpaidmsis an array
of parameters whose type depends on the parameter being set. If the values for
TEXTUREBORDERCOLORare specified as integers, the conversion for signed inte-
gers from table?2.6 is applied to convert the values to floating-point. Each of the
four values set by EXTUREBORDERCOLORS clamped to lie irf0, 1].
In the remainder of sectior8.8, denote bylodin, (0dmaz, levelpase,
and level,,,,. the values of the texture parametefEXTUREMIN_LOD TEX-
TUREMAXLOD TEXTUREBASELEVEL, andTEXTUREMAXLEVEL respectively.
Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.
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Name | Type | Legal Values \
TEXTUREWRABS integer | CLAMRCLAMPTOEDGEREPEAT
CLAMPTO.BORDER
TEXTUREWRAPT integer | CLAMRCLAMPTO EDGEREPEAT
CLAMPTO.BORDER
TEXTUREWRAER integer | CLAMPCLAMPTO.EDGEREPEAT
CLAMPTO.BORDER
TEXTUREMIN_FILTER integer | NEAREST
LINEAR,

NEARESITMIPMARPNEAREST
NEARESTMIPMARLINEAR,
LINEAR_MIPMARPNEAREST
LINEAR_MIPMARLINEAR,

TEXTUREMAGFILTER integer | NEAREST

LINEAR
TEXTUREBORDERCOLOR| 4 floats | any 4 values ino, 1]
TEXTUREPRIORITY float | any value ino, 1]
TEXTUREMIN_LOD float | any value
TEXTUREMAXLOD float | any value
TEXTUREBASELEVEL integer | any non-negative integer
TEXTUREMAXLEVEL integer | any non-negative integer

Table 3.19: Texture parameters and their values.
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3.8.5 Texture Wrap Modes

If TEXTUREWRABS, TEXTUREWRAPT, or TEXTUREWRARR is set toREPEAT
then the GL ignores the integer part @ft, or r coordinates, respectively, using
only the fractional part. (For a numbér the fractional part i’ — | f |, regardless
of the sign of f; recall that thefloor function truncates towardsoc.) CLAMP
causes, t, or r coordinates to be clamped to the rangel]. The initial state is
for all of s, t, andr behavior to be that given BREPEAT

CLAMPTO.EDGEclamps texture coordinates at all mipmap levels such that the
texture filter never samples a border texel. The color returned when clamping is
derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the rajpugé, mazx|. The minimum value
is defined as

min = —
2N
whereN is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

maxr =1 — min

so that clamping is always symmetric about {hel] mapped range of a texture
coordinate.

CLAMPTOBORDER:lamps texture coordinates at all mipmaps such that the
texture filter always samples border texels for fragments whose corresponding tex-
ture coordinate is sufficiently far outside the ran@et]. The color returned when
clamping is derived only from the border texels of the texture image, or from the
constant border color if the texture image does not have a border.

Texture coordinates are clamped to the rajpugé:, max|. The minimum value
is defined as

min = —

2N

whereN is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

mar =1 — min

so that clamping is always symmetric about {hel] mapped range of a texture
coordinate.
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| Major Axis Direction | Target [ se |te | ma|
+7r, TEXTURECUBEMARPOSITIVE X | —1r, Ty | Tz
—Ty TEXTURECUBEMAPRNEGATIVEX | r, Ty | Tz
+7y TEXTURECUBEMARPOSITIVE LY | 7, T, Ty
—Ty TEXTURECUBEMARNEGATIVEY | 7, =Ty | Ty
+7r, TEXTURECUBEMARPOSITIVE Z | 7, Ty | T2
—r, TEXTURECUBEMARNEGATIVEZ | —715 | —7y | T2

Table 3.20: Selection of cube map images based on major axis direction of texture
coordinates.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, fe ¢ 1) texture coordinates are treated
as a direction vectofr, r, r,)emanating from the center of a cube (ihe
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
maghnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
(ro ry 7). The target column in table.20explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Using thes,, t., andm, determined by the major axis direction as specified in
table3.20 an updated s t) is calculated as follows:

2 ()
§= = +1
2\ |mq

2 (g *)
t=— +1
2 \|mq]

This new(s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sectioBgand3.8.8

3.8.7 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
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mapping to framebuffer space, then a filtering, followed finally by a resampling

of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemedrt@mgnifyor minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factdr, y) and thelevel of detailparameter
Az, y), defined as

N(x,y) = logy[p(z, y)]

lOdmax, N> lodmaz
>‘,7 lodmin < N < lodmaa
A= lOdmm, N < lOdmm (3.14)

undefined, lodmin > l0dmax

If A(z,y) is less than or equal to the constan{described below in sec-
tion 3.8.9 the texture is said to be magnified; if it is greater, the texture is minified.

The initial values oflod,,;;, andlod,,., are chosen so as to never clamp the
normal range of\. They may be respecified for a specific texture by callieg-
Parameter[if] with pname set toOTEXTUREMIN_LOD or TEXTUREMAXLOD re-
spectively.

Let s(x,y) be the function that associates atexture coordinate with each
set of window coordinateér, y) that lie within a primitive; define(z,y) and
r(x,y) analogously. Let(z,y) = 2"s(x,y), v(z,y) = 2™t(z,y), andw(z,y) =
er(x, y), wheren, m, and! are as defined by equatiofisl], 3.12 and3.13with
ws, hs, andds equal to the width, height, and depth of the image array whose level
is levely,se. FOr a one-dimensional texture, definer, y) = 0 andw(z,y) = 0;
for a two-dimensional texture, defing(z, y) = 0. For a polygony is given at a
fragment with window coordinatgs;, y) by

ou\ ? ov\? ow\ ? ou\ ? v\ 2 ow\ ?
om0 (30 () )+ G+ (520}
(3.15)
wheredu/0x indicates the derivative af with respect to window, and similarly

for the other derivatives.
For a line, the formula is
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ou ou 2 ov ov 2 ow ow 2
— —A —A —A —A —A —A
p \/(836 v oy y) * (Bw v 0y y) - (31’ v Ay y) /l,
(3.16)

whereAzr = zo — x1 and Ay = yo — y1 With (x1,y1) and (z2, y2) being the
segment’s window coordinate endpoints dnd \/Az? + Ay2. For a point, pixel
rectangle, or bitmap = 1.

While it is generally agreed that equatiohd5and3.16give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideawith a function f(x, y) subject to these
conditions:

1. f(x,y) is continuous and monotonically increasing in each|@i/dz|,
|Ou/dyl, |0v/dx|, |0v/dy|, |Ow/0z|, and|0w/dy|

2. Let
Mhu = 1ha ox|’ |0y
m—ma{@ @}
v T max ox|’ |y
e
M = ox |’ |oyl|) "

Thenmax{m,, my,, my} < f(x,y) < my + my + my,.

When\ indicates minification, the value assigned ®XTUREMIN_FILTER is
used to determine how the texture value for a fragment is selected. T&¥en
TUREMIN_FILTER is NEARESTthe texel in the image array of levielely, .. that
is nearest (in Manhattan distance) to that specifiedshy, ) is obtained. This
means the texel at locatidn, j, k) becomes the texture value, witlgiven by

. U/, s<1
z—{ %nJ_l s 1 (3.17)

(Recall that IfTEXTUREWRARBS is REPEAT then0 < s < 1.) Similarly, j is found
as

. v, t<1
]_{2’”—1, t=1 (3.18)
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andk is found as

w |, r<l
k:{%lJ_l Tl (3.19)

For a one-dimensional texturg¢,and k are irrelevant; the texel at locatianbe-
comes the texture value. For a two-dimensional textis jirrelevant; the texel at
location(i, j) becomes the texture value.

When TEXTUREMIN_FILTER is LINEAR, a2 x 2 x 2 cube of texels in the
image array of levelevely,s. is selected. This cube is obtained by first clamping
texture coordinates as described above ufféeture Wrap Modes (if the wrap
mode for a coordinate SBLAMPor CLAMPTO.EDGE and computing

~f |u—1/2] mod 2, TEXTUREWRAPS is REPEAT
O7 lu—1/2], otherwise

j { |v —1/2] mod 2, TEXTUREWRAPT is REPEAT
0 pr—

lv—1/2], otherwise
and
o _ | lw—1/2] mod2', TEXTUREWRAERis REPEAT
"7 |w—1/2], otherwise
Then
i = (io + 1) mod 2", TEXTUREWRABS is REPEAT
7Y g+ 1, otherwise
| o+ 1) mod 2™, TEXTUREWRAPT is REPEAT
M=\ G+, otherwise
and
. _ | (ko+1)mod 2!, TEXTUREWRARRisREPEAT
7Y ko +1, otherwise
Let

a = frac(u — 1/2)
B = frac(v — 1/2)
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v = frac(w — 1/2)

wherefrac(z) denotes the fractional part of
For a three-dimensional texture, the texture valug found as

T = (I-a)(1-p)(1- 7>Ti0joko +a(l—p)(1 - V) Tirgoko
+ (1= a)B(1 = ) Tigjuko + @B = ¥)Tirjiko
+ (1= )X = B)vTigjoks + (1 = BV Tirjoks
+ (1 — @) BYTigjiky + OBYTirjike

wherer;;, is the texel at locatiof, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

7= (1—a)(1 = B)7igjo + (1l = B)Tiyjo + (1 — @) BTigjy + afTiyjy  (3.20)

wherer;; is the texel at locatioi, j) in the two-dimensional texture image.
And for a one-dimensional texture,

T=01-a)71, +amn,

wherer; is the texel at locationin the one-dimensional texture.

If any of the selected;;;, 7;;, or 7; in the above equations refer to a border
texel withi < —bs, j < —bs, k < —bs, 1 > wg — bs, j > hs — bg, Orj > dg — by,
then the border color given by the current settingrlBXTUREBORDERCOLORS
used instead of the unspecified value or values. The RGBA values afetite
TUREBORDERCOLORare interpreted to match the texture’s internal format in a
manner consistent with tab15

Mipmapping

TEXTUREMIN_FILTER values NEAR-
EST.MIPMARPNEARESTNEARESTMIPMARLINEAR, LINEAR_MIPMARNEAREST

and LINEAR_MIPMAPLINEAR each require the use ofraipmap A mipmap is

an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of lévetl,, ., excluding its bor-

der, has dimensior® x 2™ x 2!, then there arenax{n, m,} + 1 image arrays in

the mipmap. Each array subsequent to the array of level;,,. has dimensions

oi—1)xo(j—1)xo(k—1)
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where the dimensions of the previous array are

o(i) x o(j) x o(k)
and

27 x>0
o(z) = 1 <0

until the last array is reached with dimensibx 1 x 1.

Each array in a mipmap is defined usifeximage3D Texlmage2D Copy-
TexImage2D TexlmagelD, or CopyTeximagelD the array being set is indicated
with the level-of-detail argumenrevel Level-of-detail numbers proceed from
levelp,se for the original texture array through = max{n, m,l} + levelpyse
with each unit increase indicating an array of half the dimensions of the previous
one as already described. All arrays frémely,s. throughg = min{p, level,q. }
must be defined, as discussed in secHdhQ

The values ofevely,s. andievel,,q, may be respecified for a specific texture
by calling TexParameter][if] with pname set toTEXTUREBASELEVEL or TEX-
TUREMAXLEVEL respectively.

The erroriNVALID _VALUEIs generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. d_bé the value
of A at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with valuasadfere
A > o).

For
mipmap filtersNEARESTMIPMAPNEARESTand LINEAR_.MIPMAPNEAREST the
dth mipmap array is selected, where

levelpgse, a<d
d= 1 [levelpgse + A+ %W —1, A>3, levelpgse + A < g+ % (3.21)
q, )‘>%alevelbase+)‘>q+%

The rules forNEARESTor LINEAR filtering are then applied to the selected
array.

For mipmap filtersSNEARESTMIPMAPLINEAR andLINEAR_MIPMAPLINEAR,
the leveld; andd, mipmap arrays are selected, where

_] % b+A=>gq
di = { b+ X], otherwise (3.22)
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_ ] % b+A>g¢q
dz = { dy +1, otherwise (323)

The rules forNEARESToOr LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture vaiyesnd 7». The final
texture value is then found as

7 =[1 — frac(\)]m + frac(A) 7.

3.8.8 Texture Magnification

When ) indicates magnification, the value assignedEXTUREMAGFILTER de-
termines how the texture value is obtained. There are two possible valueaXor
TUREMAGFILTER : NEARESTandLINEAR. NEARESTbehaves exactly dsEAR-
ESTfor TEXTUREMIN_FILTER (equations3.17, 3.18 and3.19are used)LINEAR
behaves exactly asINEAR for TEXTUREMIN_FILTER (equation3.20is used).
The level-of-detailevely,s. texture array is always used for magnification.
Finally, there is the choice af, the minification vs. magnification switch-
over point. If the magnification filter is given bNEAR and the minification
filter is given byNEARESTMIPMAPNEARESTor NEARESTMIPMAPLINEAR, then
¢ = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise= 0.

3.8.9 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application is consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a textuiapletef the fol-
lowing conditions all hold true:

e The set of mipmap arraykvel,.s throughq (wheregq is defined in the
Mipmapping discussion of sectiof.8.7) were each specified with the same
internal format.

e The border widths of each array are the same.

e The dimensions of the arrays follow the sequence described Miflraap-
ping discussion of sectiof.8.7.

o levelpyse < levelpmar
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o levelbase <p

Array levelsk wherek < levelp.se OF k > g are insignificant to the definition of
completeness.

For cube map textures, a texturecisbe completé the following conditions
all hold true:

e Thelevely,s. arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

e Thelevely,s. arrays were each specified with the same internal format.

e Thelevely,s. arrays each have the same border width.

Finally, a cube map texture mipmap cube compleié in addition to being
cube complete, each of the six texture images considered individually is complete.

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map texturing)
is enabled for a texture unit at the time a primitive is rasterizedTHK-
TUREMIN_FILTER is one that requires a mipmap, and if the texture image bound
to the enabled texture target is not complete, then it is as if texture mapping were
disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive is
rasterized, and if the bound cube map texture is not cube complete, then it is
as if texture mapping were disabled for that texture unit. Additionally,EK-
TUREMIN_FILTER is one that requires a mipmap, and if the texture is not mipmap
cube complete, then it is as if texture mapping were disabled for that texture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if amipmap completset of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays whetevelp,s. = 0 andievel,,.. = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array.
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3.8.10 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each ar-
ray has associated with it a width, height (two- and three-dimensional and cubemap
only), and depth (three-dimensional only), a border width, an integer describing the
internal format of the image, six integer values describing the resolutions of each
of the red, green, blue, alpha, luminance, and intensity components of the image,
a boolean describing whether the image is compressed or not, and an integer size
of a compressed image. Each initial texture array is null (zero width, height, and
depth, zero border width, internal fornatwith the compressed flag setRALSE,

a zero compressed size, and zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected minification and magnification fil-
ters, the wrap modes fat ¢ (two- and three-dimensional and cubemap only), and

r (three-dimensional only), tHEEXTUREBORDERCOLORtwo integers describing

the minimum and maximum level of detail, two integers describing the base and
maximum mipmap array, a boolean flag indicating whether the texture is resident
and the priority associated with each set of properties. The value of the resident flag
is determined by the GL and may change as a result of other GL operations. The
flag may only be queried, not set, by applications (see seétihi ). In the initial

state, the value assignedTBEXTUREMIN_FILTER is NEARESTMIPMAPLINEAR,

and the value foTEXTUREMAGFILTER is LINEAR. s, t, andr wrap modes are

all set toREPEAT The values offEXTUREMIN_LOD and TEXTUREMAXLOD are

-1000 and 1000 respectively. The valuesT&EXTUREBASELEVEL and TEX-
TUREMAXLEVEL are 0 and 1000 respectivellTEXTUREPRIORITY is 1.0, and
TEXTUREBORDERCOLORS (0,0,0,0). The initial value oFEXTURERESIDENTIS
determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3Dis executed witharget specified a®ROXYTEXTURESD, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and
updated. If the image array would not be supported®yimage3Dcalled with
targetset toTEXTURES3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
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be supported by such a call Teximage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexImagelDis executed withargetspecified aPROXYTEXTURELD, or TexIm-
age2Dis executed withargetspecified aPROXYTEXTUREZ2D.

The cube map proxy arrays are operated on in the same mannefMaxlem
age2Dis executed with theéargetfield specified aPROXYTEXTURECUBEMAR
with the addition that determining that a given cube map texture is supported with
PROXYTEXTURECUBEMAPIndicates that all six of the cube map 2D images are
supported. Likewise, if the specififtlROXYTEXTURECUBEMAPIs not supported,
none of the six cube map 2D images are supported.

There is no image associated with any of the proxy textures. There-
fore PROXYTEXTURELD, PROXYTEXTURE2D, and PROXYTEXTURE3D, and
PROXYTEXTURECUBEMAPcannot be used as textures, and their images must
never be queried usinGetTexlmage The errorINVALID _ENUMs generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, andetTexParameterivor GetTexParameterfvmay not be called
with a proxy texturetarget The errorINVALID _[ENUMSs generated if this is at-
tempted.

3.8.11 Texture Objects

In addition to the default textureEEXTURELD, TEXTURE2D, TEXTURES3D, and
TEXTURECUBEMAR named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created Hyindingan unused name BEXTURELD, TEX-
TURE2D, TEXTURESD, or TEXTURECUBEMAP The binding is effected by calling

void BindTexture( enumtarget uint texture);

with target set to the desired texture target atcttureset to the unused name.
The resulting texture object is a new state vector, comprising all the state values
listed in sectior3.8.1Q set to the same initial values. If the new texture object is
bound toTEXTURELD, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAR it is
and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to either
TEXTURELD, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAR The errorN-
VALID _OPERATIONIs generated if an attempt is made to bind a texture object
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of different dimensionality than the specifitarget If the bind is successful no
change is made to the state of the bound texture object, and any previous binding
to targetis broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURELD, TEXTURE2D, TEXTURE3D, and TEX-
TURECUBEMAPhave one-, two-, three-dimensional, and cube map texture state
vectors respectively associated with them. In order that access to these initial tex-
tures not be lost, they are treated as texture objects all of whose names are 0. The
initial one-, two-, three-dimensional, and cube map texture is therefore operated
upon, queried, and applied aEXTURELD, TEXTURE2D, TEXTURE3D, or TEX-
TURECUBEMAPrespectively while 0 is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextureg sizei n, uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targeiX TURELD, TEXTUREZ2D,
TEXTURES3D, or TEXTURECUBEMAPIs deleted, it is as thougBindTexture had
been executed with the sart@getandtexturezero. Unused names iaxturesare
silently ignored, as is the value zero.

The command

void GenTextureq sizei n, uint *textures);

returnsn previously unused texture object namegértures These names are
marked as used, for the purposesGé#nTexturesonly, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said torbsident The command

boolean AreTexturesResident sizei n, uint *textures
boolean *residences;
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returnsTRUEIf all of the n texture objects hamed btexturesare resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named itextureds not resident, theRALSEIs returned, and the residence

of each texture object is returned li@sidences Otherwise the contents oési-
dencesare not changed. If any of the namestéxturesare unused or are zero,
FALSEIs returned, the errdNVALID _VALUEIs generated, and the contentges-
idencesare indeterminate. The residence status of a single bound texture object
can also be queried by callifgetTexParameteriv or GetTexParameterfv with
target set to the target to which the texture object is bound, mmn@me set to
TEXTURERESIDENT.

AreTexturesResidentindicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures( sizei n,uint *textures
clampf *priorities );

sets the priorities of the texture objects named bexturesto the values irpriori-

ties Each priority value is clamped to the range [0,1] before itis assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calidParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfvwith target set to the target to
which the texture object is boungipame set toTEXTUREPRIORITY, andparam

or params specifying the new priority value (which is clamped to the range [0,1]
before being assignedprioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the stBIIVE_TEXTURE

If a texture object is deleted, it as if all texture units which are bound to that
texture object are rebound to texture object zero.

3.8.12 Texture Environments and Texture Functions

The command

Version 1.3 - August 14, 2001



3.8. TEXTURING 147

void TexEnv{if }( enumtarget enum pnameT param);
void TexEnv{if }v( enumtarget enum pnameT params);

sets parameters of thtexture environmenthat specifies how texture values are
interpreted when texturing a fragmetdrgetmust currently be the symbolic con-
stantTEXTUREENV. pnameis a symbolic constant indicating the parameter to be
set. In the first form of the commangdaramis a value to which to set a single-
valued parameter; in the second fomayamsis a pointer to an array of parameters:
either a single symbolic constant or a value or group of values to which the param-
eter should be set. The possible environment parameteTEXBJREENV. MODE
TEXTUREENV.COLORCOMBINERGB andCOMBINEALPHA TEXTUREENV.MODE
may be set to one AREPLACE MODULATEDECAL BLENDQ ADDQ or COMBINE
TEXTUREENV.COLORS set to an RGBA color by providing four single-precision
floating-point values in the rangé, 1] (values outside this range are clamped to
it). If integers are provided fOTEXTUREENV.COLORthen they are converted to
floating-point as specified in tabke6 for signed integers.

The value ofTEXTUREENV MODEspecifies aexture function The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

C and A;* are the primary color components of the incoming fragméht;
and A, are the components of the texture source color, derived from the filtered
texture valuesk;, Gy, B;, A;, L;, andI; as shown in tabl&.21; C. and A, are
the components of the texture environment coldy;and A, are the components
resulting from the previous texture environment (for texture environmetit @nd
A, are identical ta”y and Ay, respectively); and’, and A, are the primary color
components computed by the texture function.

All of these color values are in the ranffe 1]. The texture functions are spec-
ified in tables3.22 3.23 and3.24

If the value of TEXTUREENV MODEHES COMBINE the form of the texture func-
tion depends on the values GOMBINERGBand COMBINEALPHA according to
table 3.24 The RGBand ALPHA results of the texture function are then multi-
plied by the values dRGBSCALEandALPHASCALE respectively. The results are
clamped tdo, 1].

The argumentsdrg0, Argl, and Arg2 are determined by the values of
SOURCE_RGB SOURCE ALPHA OPERAND.RGBand OPERAND.ALPHA where

%In the remainder of sectidh8.12 the notatiorC, is used to denote each of the three components
R., G, and B, of a color specified by. Operations o, are performed independently for each
color component. Thel component of colors is usually operated on in a different fashion, and is
therefore denoted separately Hy.
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Texture Base Texture source colo
Internal Format Cs Ag
ALPHA (0,0,0) Ay
LUMINANCE (Ly¢, Ly, Ly) 1
LUMINANCEALPHA | (L;, Ly, Ly) | Ay
INTENSITY (Iy, Iy, Iy) I
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.21: Correspondence of filtered texture components to texture source com-

ponents.

Texture Base REPLACE| MODULATE | DECAL
Internal Format Function | Function Function
ALPHA C,=Cy | Cy =Cf undefined
Ay, =As | Ay = AsA,
LUMINANCE C,=0Cs | Cy, =C¢Cs | undefined
(orl) AUZAf AVZAf
LUMINANCEALPHA | C, = U | C, = C;C; | undefined
(or 2) Ay =As | Ay = AfA,
INTENSITY C,=Cs | Cy, =C¢Cs | undefined
Ay =As | Ay = AsA;
RGB C,=0Cs | C, =005 | Cp=Cy
(OI’3) Av:Af Av—Af A, :Af
RGBA Co=Cs | C, =CsCs | Cpy=Cp(1 — As) + C A,
(or 4) Ay =As | Ay =AfA, | Ay = Af

Table 3.22: Texture functiorREPLACEMODULATEaNdDECAL
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Texture Base BLEND ADD
Internal Format Function Function
ALPHA C, = Cf C, = Cf

Ay, = ApA; Ay, = ApA;
LUMINANCE Cy,=C¢(1-Cs)+C.Cs | Cp=Cp+Cs
(OI’ 1) AU:Af AU:Af
LUMINANCEALPHA | C, = C'f(l — CS) +C.Cs | Cy = C’f + Cs
(or 2) Ay, = ApA; Ay, = ApA
INTENSITY Co=Cr(1-Cy)+CCs | C, =Cy +Cs

Ay =Ap(1 - A) + AAs | Ay =Ap 4+ A,
RGB Co=Ct(1-Cs)+CCs | C, =C5+Cs
(0|'3) AU:Af AU:Af
RGBA Co=0Cp(1-C4)+CCs | Cp =Cr+Cs
(or 4) Ay = ApA; Ay, = ApA;

Table 3.23: Texture functiorBL.ENDandADD

n =0, 1, or 2, as shown in tabl&€?25and 3.26

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating th&@GBcombiner function and a six-valued integer indicating the
ALPHAcombiner function, six four-valued integers indicating the combR@eB
and ALPHAsource arguments, three four-valued integers indicating the combiner
RGBoperands, three two-valued integers indicating the comBibeHAoperands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eadlOoDULATRhe combineRGBandALPHAsources
are eaCMEXTUREPREVIOUS andCONSTANTor sources 0, 1, and 2 respectively,
the combineRGBoperands for sources 0 and 1 are eaREZCOLORthe combiner
RGBoperand for source 2, as well as for the combisePHAoperands, are each
SRCALPHA and the environment color {9, 0, 0, 0),

3.8.13 Texture Application

Texturing is enabled or disabled using the genéitable and Disable com-
mands, respectively, with the symbolic constaMB&XTURELD, TEXTURE2D,
TEXTURES3D, or TEXTURECUBEMAPto enable the one-, two-, three-dimensional,

or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
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COMBINERGB | Texture Function
REPLACE Arg0
MODULATE Arg0 = Argl
ADD Arg0 + Argl
ADDSIGNED | Arg0+ Argl —0.5
INTERPOLATE | Arg0* Arg2 + Argl x (1 — Arg2)
SUBTRACT ATgO Argl
DOT3RGB x ((Arg0, — 0.5) * (Argl, — 0.5)+
(Arg0, — 0.5) * (Argly — 0.5)+
(ArgOp — 0.5) * (Argl, — 0.5))
DOT3RGBA x ((Arg0, — 0.5) * (Argl, — 0.5)+
(Arg04 — 0. 5) (Argly — 0. 5)—i—
(Arg0, — 0.5) * (Argly —0.5))

COMBINEALPHA\ Texture Function

REPLACE Arg0

MODULATE Arg0 x Argl

ADD Arg0 + Argl

ADDSIGNED Arg0+ Argl — 0.5
INTERPOLATE | Arg0* Arg2 + Argl x (1 — Arg2)
SUBTRACT Arg0 — Argl

Table 3.24:COMBINEtexture functions. The scalar expression computed for the
DOT3RGBandDOT3RGBAfunctions is placed into each of the B&B or 4 (RGBA
components of the output. The result generated fGMBINEALPHAIS ignored

for DOT3RGBA
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SOURCE_RGB

OPERAND_RGB

Argument |

TEXTURE

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

Cs
1-C;
As
1— A,

CONSTANT

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

Ce
1-C,
Ac
1-— A,

PRIMARYCOLOR

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

PREVIOUS

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

Table 3.25: Arguments faZOMBINERGBfunctions.

SOURCE ALPHA | OPERAND ALPHA | Argument |
TEXTURE SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A,
CONSTANT SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A,
PRIMARYCOLOR| SRCALPHA Y
ONEMINUSSRCALPHA | 1 — Ay
PREVIOUS SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A4,

Table 3.26: Arguments faCOMBINEALPHAfunctions.
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is used. If the cube map texture and any of the three-, two-, or one-dimensional
textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate
dimensionality using the rules given in sectié8.6 3.8.7, and3.8.8 This texture

value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11 The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit's environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit's environment function and so on. The tex-
ture unit selected byActiveTexture determines which texture unit's environment
is modified byTexEnv calls.

If the value of TEXTUREENV.MODHEs COMBINEthe texture function associated
with a given texture unit is computed using the values specifieslyRCE_RGB
SOURCE_ALPHA OPERAND.RGBand OPERANBD_ALPHA If TEXTURR is spec-
ified asSOURCE_RGBor SOURCE_ALPHA the texture value from texture urit
will be used in computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit.

If the texture environment for a given texture unit references a texture unit that
is disabled or does not have a valid texture object bound to it, or if the texture object
bound to a texture unit is not complete, as defined in se@idrd then it is as if
texturing is disabled for that texture unit. Every texture unit implicitly references
the texture object that is bound to it, regardless of the texture function specified by
COMBINERGBor COMBINEALPHA

The required state, per texture unit, is four bits indicating whether each of one-,
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Cs

C ; . ’
TE, |

CTo— TE,

€Ty - TE, |—®

CT,

cT, -

TE,

=fragment primary color input to texturing

TE; =texture environment i

C'; =fragment color output from texturing

CT, =texture color from texture lookup i

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment|color
passed as input to the next texture unit in the pipeline.
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two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (Which texturing, if enabled, may have modified) and a secondary eglor
The components of these two colors are summed to produce a single post-texturing
RGBA colorc. The components af are then clamped to the ranffe1].

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factof. Fog is enabled and disabled with tBeableandDisable
commands using the symbolic constamG

This factorf is computed according to one of three equations:

f=exp(—d-2), (3.24)
f=exp(—(d- 2)2), or (3.25)
F="z (3.26)

e—s

(z is the eye-coordinate distance from the €¥e(), 0, 1) in eye coordinates, to the
fragment center). The equation, along with eiti@r e ands, is specified with

void Fog{if}(enumpnameT param);
void Fog{if }v(enumpnameT params);

If pnameis FOGMODE then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constaisP, EXP2, or LINEAR, in which case
equation3.24, 3.25 or 3.26 respectively, is selected for the fog calculation (if,
when3.26is selected¢ = s, results are undefined). pihameis FOGDENSITY,
FOGSTART, or FOGEND thenparamis or paramspoints to a value that i, s, or

e, respectively. Ifd is specified less than zero, the erlgWALID VALUEresults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center|by|. Further,f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.
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No matter which equation and approximation is used to computiee result
is clamped td0, 1] to obtain the finalf.

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, it”,. represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fC.+(1—f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values of”; are specified by callinfog with pnameequal toFOGCOLOR
in this casgparamspoints to four values comprising. If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table2.6 for signed integers. Each component(f is clamped td0, 1] when
specified.

In color index mode, the formula for fog blending is

=i+ (1 f)ig

where i, is the rasterized fragment's color index andis a single-precision
floating-point value. (1 — f)i; is rounded to the nearest fixed-point value with
the same number of bits to the right of the binary point,asnd the integer por-
tion of I is masked (bitwise ANDed) with™ — 1, wheren is the number of bits in

a color in the color index buffer (buffers are discussed in chaptefhe value of

iy is set by calling-og with pnameset toFOGINDEX andparambeing orparams
pointing to a single value for the fog index. The integer pari,of masked with
2" — 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point valuése, ands, an RGBA fog color and a fog color
index, and a single bit to indicate whether or not fog is enabled. In the initial state,
fog is disabledFOGMODEHS EXP, d = 1.0, e = 1.0, ands = 0.0; Cy = (0,0,0,0)
andiy = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized fragment
was produced, then the computed coverage value is applied to the fragment. In
RGBA mode, the value is multiplied by the fragment’s alpha (A) value to yield a
final alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in sectioh
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Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into abitplane each bitplane contains a single bit from each pixel. These bitplanes
are grouped into severddgical buffers These are theolor, depth stenci| and
accumulationbuffers. The color buffer actually consists of a number of buffers:
thefront left buffer, thefront right buffer, theback leftbuffer, theback rightbuffer,
and some number @fuxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.
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Fragment Pixel . Alpha
- Scissor
+ Ownership > — Test
Associated Test Test (RGBA Only)
Data

Depth buffer | — Stencil ———————
Test Test

Framebuffer J Framebuffer J

g Blending  L_gmf pihering [  Logicop [— TO
(RGBA Only) Framebuffer

Il Il

Framebuffer Framebuffer

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinate&f, v,,) mod-

ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
Figure4.1, in the order in which they are performed. Figurd diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location,, y,,) in the framebuffer

is currently owned by the GL (more precisely, by this GL context). If it is not,

the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL's behavior, for instance, when a GL window is obscured.
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4.1.2 Scissor test

The scissor test determineqif,,, y,,) lies within the scissor rectangle defined by
four values. These values are set with

void Scissofint left, int bottom sizei  width,
sizei  height);

If left < z,, < left+ width andbottom< y,, < bottom-+ height then the scissor

test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled usirignable or Disable using the constar8CISSORTEST.

When disabled, it is as if the scissor test always passes. If aitiadin or height

is less than zero, then the ertdtVALID VALUEIs generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial statk: ft = bottom = 0; width andheight are determined

by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the vaaas of
PLE ALPHATO COVERAGESAMPLEALPHATO.ONE SAMPLECOVERAGESAM-
PLE_.COVERAGKALUE andSAMPLECOVERAGHENVERT. No changes to the frag-
ment alpha or coverage values are made at this stdplifTISAMPLEs disabled,
or if SAMPLEBUFFERSS not a value of one.

SAMPLEALPHATO COVERAGE SAM-

PLE ALPHATOONE andSAMPLECOVERAGETre enabled and disabled by calling
Enable andDisable with capspecified as one of the three token values. All three
values are queried by callingEnabled with cap set to the desired token value.

If SAMPLEALPHATO.COVERAGIS enabled, a temporary coverage value is gener-
ated where each bit is determined by the alpha value at the corresponding sample
location. The temporary coverage value is then ANDed with the fragment coverage
value. Otherwise the fragment coverage value is unchanged at this point.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1's in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1's
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.
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Next, if SAMPLEALPHATO.ONEs enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.
Finally, if SAMPLECOVERAGHS enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated in the

same manner as the one described above, but as a function of the valam-of
PLE_.COVERAGKALUE The function need not be identical, but it must have the
same properties of proportionality and invarianceSAMPLECOVERAGENVERT
is TRUE the temporary coverage is inverted (all bit values are inverted) before it is
ANDed with the fragment coverage.

The values ofSAMPLECOVERAGEALUE and SAMPLECOVERAGINVERT
are specified by calling

void SampleCoveragéclampf valug boolean invert);

with value set to the desired coverage value, amekert set toTRUEOr FALSE
valueis clamped to [0,1] before being storedsMPLECOVERAGKALUE SAM-
PLE_.COVERAGRKALUEIs queried by callingsetFloatv with pnameset toSAM-
PLE_.COVERAGEALUE SAMPLECOVERAGINVERT is queried by callingGet-
Booleanvwith pnameset toSAMPLECOVERAGHENVERT.

4.1.4 Alphatest

This step applies only in RGBA mode. In color index mode, proceed to the next
step. The alpha test discards a fragment conditional on the outcome of a com-
parison between the incoming fragment’s alpha value and a constant value. The
comparison is enabled or disabled with the genériable andDisablecommands

using the symbolic constaAt PHATEST. When disabled, it is as if the comparison
always passes. The test is controlled with

void AlphaFunc( enumfung clampf ref);

funcis a symbolic constant indicating the alpha test functiefi;is a reference
value. ref is clamped to lie if0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in sectibh3.9 For purposes

of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test functioNBKERALWAYSLESS,
LEQUAL EQUAL GEQUALGREATERoOr NOTEQUALMeaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.
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The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value(to be
and the function to bALWAYSInitially, the alpha test is disabled.

415 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at locatian v,,) and a reference
value. The test is controlled with

void StencilFung enumfuncg int  ref, uint  mask);
void StencilOp( enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with tBeable andDisable commands, using the
symbolic constanBTENCIL_TEST. When disabled, the stencil test and associated
modifications are not made, and the fragment is always passed.

refis an integer reference value that is used in the unsigned stencil comparison.
It is clamped to the rang@, 2° — 1], wheres is the number of bits in the stencil
buffer. funcis a symbolic constant that determines the stencil comparison function;
the eight symbolic constants MEVERALWAYSLESS, LEQUAL EQUAL GEQUAL
GREATERoOr NOTEQUALAccordingly, the stencil test passes never, always, if the
reference value is less than, less than or equal to, equal to, greater than or equal to,
greater than, or not equal to the masked stored value in the stencil buffer|&dss
significant bits ofmaskare bitwise ANDed with both the reference and the stored
stencil value. The ANDed values are those that participate in the comparison.

StencilOptakes three arguments that indicate what happens to the stored sten-
cil value if this or certain subsequent tests fail or padail indicates what action
is taken if the stencil test fails. The symbolic constants<@EP, ZERQ REPLACE
INCR, DECR andINVERT. These correspond to keeping the current value, setting
it to zero, replacing it with the reference value, incrementing it, decrementing it,
or bitwise inverting it. For purposes of increment and decrement, the stencil bits
are considered as an unsigned integer; values clamauadl the maximum repre-
sentable value. The same symbolic values are given to indicate the stencil action if
the depth buffer test (below) failglpfail), or if it passesdppass.

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passe&tancilFunc and StencilOp, and a
bit indicating whether stencil testing is enabled or disabled. In the initial state,
stenciling is disabled, the stencil reference value is zero, the stencil comparison
function isALWAYSand the stencimaskis all ones. Initially, all three stencil

Version 1.3 - August 14, 2001



4.1. PER-FRAGMENT OPERATIONS 161

operations ar&EEP If there is no stencil buffer, no stencil modification can occur,
and it is as if the stencil tests always pass, regardless of any c&tsnicilOp.

4.1.6 Depth buffer test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the gertengble andDisable com-
mands using the symbolic constadEPTHTEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc enumfunc);

This command takes a single symbolic constant: onsSEfER ALWAYSLESS,
LEQUAL EQUAL GREATERGEQUAL NOTEQUALAccordingly, the depth buffer

test passes never, always, if the incoming fragmenf'value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment'sy., )
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’éz,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragments.,)
location is set to the fragments, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESSand the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

4.1.7 Blending

Blending combines the incoming fragment’s R, G, B, and A values with the R,
G, B, and A values stored in the framebuffer at the incoming fragmeént'sy.,)
location.

This blending is dependent on the incoming fragment’s alpha value and that of
the corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled &siagle or
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Disablewith the symbolic constarBLEND If it is disabled, or if logical operation
on color values is enabled (sectiéri.9, proceed to the next stage.

In the following discussion’; refers to the source color for an incoming frag-
ment,C, refers to the destination color at the corresponding framebuffer location,
andC. refers to a constant color in the GL state. Individual RGBA components of
these colors are denoted by subscripts,af, andc respectively.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme given in se@itf.9(Final Color Processing),
as are source (fragment) components. Constant color components are taken to be
floating point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating point. This conversion must leave the values 0 and 1 invariant.
Blending computations are treated as if carried out in floating point.

The commands that control blending are

void BlendColor( clampf red, clampf greenclampf blug
clampf alpha);
void BlendEquation( enum mode);

void BlendFunc( enumsrc, enum dst);

Using BlendColor

The constant colo€. to be used in blending is specified wiliendColor. The
four parameters are clamped to the raftgé| before being stored. The constant
color can be used in both the source and destination blending factors.

BlendColor is an imaging subset feature (see secfiofd, and is only al-
lowed when the imaging subset is supported.

Using BlendEquation

Blending capability is defined by thblend equation BlendEquation mode
FUNCADDdefines the blending equation as

C=0CsS+CyD

where C; and Cy; are the source and destination colors, a&hdnd D are
qguadruplets of weighting factors as specifiedBdgndFunc.
If modeis FUNCSUBTRACTthe blending equation is defined as
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C=0Cs8S—-CyD

If modeis FUNCREVERSESUBTRACTthe blending equation is defined as

C=CyD—-CsS

If modeis MIN, the blending equation is defined as

C = min(Cs, Cy)

Finally, if modeis MAX the blending equation is defined as

C = maz(Cs,Cy)

The blending equation is evaluated separately for each color component and
the corresponding weighting factors.

BlendEquation is an imaging subset feature (see secidh?). If the imaging
subset is not available, then blending always uses the blending eqeati@ADD

Using BlendFunc

BlendFunc srcindicates how to compute a source blending factor, wdsligndi-

cates how to compute a destination factor. The possible arguments and their cor-
responding computed source and destination factors are summarized inflables
and4.2. Addition or subtraction of quadruplets means adding or subtracting them
component-wise.

The computed source and destination blending quadruplets are applied to the
source and destination R, G, B, and A values to obtain a new set of values that are
sent to the next operation. Let the source and destination blending quadrugets be
andD, respectively. Then a quadruplet of values is computed using the blend equa-
tion specified byBlendEquation. Each floating-point value in this quadruplet is
clamped td0, 1] and converted back to a fixed-point value in the manner described
in section2.13.9 The resulting four values are sent to the next operation.

BlendFunc arguments CONSTANICOLOR ONEMINUSCONSTANICOLOR
CONSTANRLPHA and ONEMINUS CONSTANTALPHA are imaging subset fea-
tures (see sectioh 6.2, and are only allowed when the imaging subset is provided.

Version 1.3 - August 14, 2001



164

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

| Value | Blend Factors

ZERO (0,0,0,0)

ONE (1,1,1,1)

DST.COLOR (Rq, Ga, Ba, Aq)
ONEMINUSDST.COLOR (1,1,1,1) — (Rq, G, Ba, Aq)
SRCALPHA (A,, Ay, A, Ay)

ONEMINUS SRCALPHA (1,1,1,1) — (A, A, A, Ay)
DSTALPHA (Ag, Ag, Ag, Ag)
ONEMINUSDSTALPHA (1,1,1,1) — (Ag, Aq, Ag, Ay)
CONSTANTOLOR (Re, G, Be, Ac)
ONEMINUSCONSTANTOLOR | (1,1,1,1) — (R., Ge, B., A,)
CONSTANTALPHA (A., Ao, Ao, AL)
ONEMINUSCONSTANRLPHA | (1,1,1,1) — (A, A,, A,, A,)
SRCALPHASATURATE F D

Table 4.1: Values controlling the source blending function and the source blending
values they compute = min(A4s, 1

— Aa).

| Value | Blend factors

ZERO (0,0,0,0)

ONE (1,1,1,1)

SRCCOLOR (R,, Gy, B, Ay)
ONEMINUS SRCCOLOR (1,1,1,1) — (Rs, Gs, B, Ay)
SRCALPHA (As, Ay, Ay, Ay)

ONEMINUS SRCALPHA (1,1,1,1) — (A, A, A, Ay)
DSTALPHA (Ag, Ag, Ag, Ag)
ONEMINUSDSTALPHA (1,1,1,1) — (Ag, Aq, Ag, Ay)
CONSTANTOLOR (Re, G, Be, Ac)
ONEMINUSCONSTANTOLOR | (1,1,1,1) — (R, Ge, B, A,)
CONSTANTALPHA (A, A, A., AL
ONEMINUSCONSTANRLPHA | (1,1,1,1) — (A, A,, A,, A,)

Table 4.2: Values controlling the destination blending function and the destination

blending values they compute.
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Blending State

The state required for blending is an integer indicating the blending equation, two
integers indicating the source and destination blending functions, four floating-
point values to store the RGBA constant blend color, and a bit indicating whether
blending is enabled or disabled. The initial blending equatidrUsCADD The
initial blending functions ar®NEfor the source function andEROfor the des-
tination function. The initial constant blend color (R, G,B,A) = (0,0,0,0).
Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color fof';. If a color buffer has no A value, then
Agis taken to bd.

4.1.8 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value withits to the

left of the binary point, where. is the number of bits allocated to that component
in the framebuffer; call each such value For eache, dithering selects a value

c1 such thate; € {max{0, [c] — 1}, [c]} (after this selection, treat; as a fixed
point value in [0,1] withm bits). This selection may depend on thg andy,,
coordinates of the pixel. In color index mode, the same rule appliesaiging a
single color index.c must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragmetredy window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Dithering is enabled witEnable and disabled witlDisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.9 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or

index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(z,y) coordinates. The logical operation on color indices is enabled or disabled
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Argument value | Operation
CLEAR 0

AND sAd
ANDREVERSE s A —d
COPY S
ANDINVERTED | =sAd
NOOP d

XOR sxor d
OR sVd
NOR =(sVvd)
EQUIV —(s xor d)
INVERT -d
ORREVERSE sV —d
COPYINVERTED | —s
ORINVERTED —sVd
NAND (s Ad)
SET all 1's

Table 4.3: Arguments thogicOp and their corresponding operations.

with Enable or Disableusing the symbolic constamiDEX_LOGIC_OP. (For com-

patibility with GL version 1.0, the symbolic constar®@GIC_OPmay also be used.)

The logical operation on color values is enabled or disablediuitible or Disable

using the symbolic constattOLORLOGIC_OP, If the logical operation is enabled

for color values, it is as if blending were disabled, regardless of the vaBieEND
The logical operation is selected by

void LogicOp(enumop);

opis a symbolic constant; the possible constants and corresponding operations are
enumerated in Tablé.3. In this table,s is the value of the incoming fragment
andd is the value stored in the framebuffer. The numeric values assigned to the
symbolic constants are the same as those assigned to the corresponding symbolic
values in the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be gived@yy
and to be disabled.
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4.1.10 Additional Multisample Fragment Operations

If the DrawBuffer mode iSNONENno change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLEis enabled, and the value SAMPLEBUFFERSIs one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLEIs disabled, and the value 8AMPLEBUFFERSIs one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment's centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the color
sample values are combined to produce a single color value, and that value is writ-
teninto each color buffer that is currently enabled, based obitheBuffer mode.

An implementation may defer the writing of the color buffer until a later time,
but the state of the framebuffer must behave as if the color buffer was updated
as each fragment was processed. The method of combination is not specified,
though a simple average computed independently for each color component is rec-
ommended.

4.2 Whole Framebuffer Operations
The preceding sections described the operations that occur as individual fragments

are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.
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symbolic front | front | back | back | aux
constant left | right | left | right | 4
NONE

FRONTLEFT °

FRONTRIGHT °

BACKLEFT °
BACKRIGHT °
FRONT ° °

BACK ° °
LEFT °

RIGHT °

FRONTANDBACK ° ° °

AUX °

Table 4.4: Arguments tBDrawBuffer and the buffers that they indicate.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are written.
This is accomplished with

void DrawBuffer ( enum buf);

bufis a symbolic constant specifying zero, one, two, or four buffers for writing.
The constants aldONEFRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT,
FRONT BACK LEFT, RIGHT, FRONTANDBACK andAUX0throughAUX:, where
n + 1 is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffeositeft, front_right,
backleft, andbackright, and to theauxiliary buffers. Arguments other thakuX
that omit reference toEFT or RIGHT refer to both left and right buffers. Argu-
ments other thaaUX that omit reference tBRONTor BACKrefer to both front and
back buffers. AUX enables drawing only tauxiliary buffer ;. EachAUX adheres
to AUX = AUX0+ i. The constants and the buffers they indicate are summarized
in Table4.4. If DrawBuffer is is supplied with a constant (other thBI@ONE that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID _OPERATIONesults.

Indicating a buffer or buffers usingrawBuffer causes subsequent pixel color
value writes to affect the indicated buffers. If more than one color buffer is se-
lected for drawing, blending and logical operations are computed and applied in-
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dependently for each buffer. CallifgrawBuffer with a value ofNONENhibits
the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle buffer selection is a set of Upita: bits. 4 bits
indicate if the front left buffer, the front right buffer, the back left buffer, or the
back right buffer, are enabled for color writing. The othebits indicate which of
the auxiliary buffers is enabled for color writing. In the initial state, the front buffer
or buffers are enabled if there are no back buffers; otherwise, only the back buffer
or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask(uint mask);
void ColorMask( boolean r, boolean g, boolean b,
boolean a);

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significantbits of mask wheren is the number of
bits in a color index buffer, specify a mask. Wheré appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; whefieap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode,ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffers.r, g, b, anda indicate whether R, G, B, or A values, respectively,
are written or not (a value afRUEmeans that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.

The depth buffer can be enabled or disabled for writipgzalues using

void DepthMask( boolean mask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask( uint mask);
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controls the writing of particular bits into the stencil planes. The least significant
bits of maskcomprise an integer mask s the number of bits in the stencil buffer),
just as forindexMask. The initial state is for the stencil plane mask to be all ones.
The state required for the various masking operations is two integers and a bit:
an integer for color indices, an integer for stencil values, and a bit for depth values.
A set of four bits is also required indicating which color components of an RGBA
value should be written. In the initial state, the integer masks are all ones as are the
bits controlling depth value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value 06AMPLEBUFFERSS one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buffer. The color
mask has no effect on modifications to the color buffers. If the color mask is
entirely disabled, the color sample values must still be combined (as described
above) and the result used to replace the color values of the buffers enabled by
DrawBuffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear( bitfield buf);

is the bitwise OR of a number of values indicating which buffers are to
be cleared. The values af@OLORBUFFERBIT, DEPTHBUFFERBIT, STEN-

CIL BUFFERBIT , and ACCUMBUFFERBIT , indicating the buffers currently en-
abled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the ertdWALID _VALUEIs generated.

void ClearColor( clampf r,clampf g, clampf b,
clampf a);

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped {0, 1] and converted to fixed-point according to the rules
of section2.13.9

void Clearindex(float index);
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sets the clear color indeindexis converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2™ — 1, wherem is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth( clampd d);

takes a floating-point value that is clamped to the rajigé] and converted to
fixed-point according to the rules for a windowwalue given in sectior2.10.1
Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the rangel, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last sectidr2() are also effective. If a buffer is not
present, then €lear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by thiear mask bitCOLORBUFFERBIT and
the DrawBuffer mode. If theDrawBuffer mode iSNONEthe color samples of the
multisample buffer cannot be cleared.

If the Clear mask bitsDEPTHBUFFERBIT or STENCIL_.BUFFERBIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.
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4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum(enumop, float  value);

(except for clearing it)opis a symbolic constant indicating an accumulation buffer
operation, andsalueis a floating-point value to be used in that operation. The
possible operations areCCUMLOAD RETURNMULT, andADD

When the scissor test is enabled (sectdoh 2, then only those pixels within
the current scissor box are updated by &egum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[—1, 1]. UsingACCUMDbtains R, G, B, and A components from the buffer currently
selected for reading (sectigh3.2. Each component, considered as a fixed-point
value in|0, 1]. (see sectior2.13.9, is converted to floating-point. Each result is
then multiplied byvalue The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

The LOADoperation has the same effect /8CUMbut the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURNbperation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A componentsvajue and clamps the re-
sults to the rang@, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (sectioh.?, and dithering (sectiod.1.§. Color
masking (sectiod.2.2) is also applied.

TheMULToperation multiplies each R, G, B, and A in the accumulation buffer
by valueand then returns the scaled color components to their corresponding ac-
cumulation buffer locations. this casalueis clamped to the range-1, 1]. ADDis
the same asULTexcept thavalueis added to each of the color components.

The color components operated on Agcum must be clamped only if the
operation iSRETURNInN this case, a value sent to the enabled color buffers is first
clamped td0, 1]. Otherwise, results are undefined if the result of an operation on a
color component is out of the ran@ie1, 1]. If there is no accumulation buffer, or if
the GL is in color index modeéiccum generates the err¢tVALID _OPERATION
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No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer usinditsevPixels and
ReadPixelscommands.CopyPixelscan be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation oDrawPixels was described in sectidh6.4 except if theformat
argument wasSTENCIL_INDEX. In this case, all operations described Bnaw-
Pixels take place, but windowz,y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index
pair is sent directly to the per-fragment operations, bypassing the texture, fog, and
antialiasing application stages of rasterization. Each pair is then treated as a frag-
ment for purposes of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to its indicated loca-
tion in the framebuffer, subject to the current settingténcilMask.

The erroriNVALID OPERATIONesults if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure2. We describe the stages of the pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixelgint x,int vy, sizei width, sizei height
enumformat enum type void *data);

The arguments after andy to ReadPixelscorrespond to those drawPixels.
The pixel storage modes that applyReadPixelsand other commands that query
images (see sectidghl) are summarized in Tableb.

Obtaining Pixels from the Framebuffer

If the formatis DEPTHCOMPONENThen values are obtained from the depth buffer.
If there is no depth buffer, the errddVALID _OPERATIONoCCUrS.
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Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enab
or disabled. RGBA and color index pixel paths are shown; depth and stencil |
paths are not shown.
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Parameter Name | Type | Initial Value | Valid Range |
PACKSWABBYTES boolean FALSE TRUHFALSE
PACKLSB.FIRST boolean| FALSE TRUEFALSE
PACKROW.ENGTH integer 0 [0, 00)
PACKSKIP _ROWS integer 0 [0, 00)
PACKSKIP _PIXELS integer 0 [0, 00)
PACKALIGNMENT integer 4 1,2,4,8
PACKIMAGEHEIGHT | integer 0 [0, 00)
PACKSKIP _IMAGES integer 0 [0, 00)

Table 4.5: PixelStore parameters pertaining tdReadPixels GetTexIm-
agelD GetTeximage2D GetTexlmage3D GetColorTable, GetConvolution-
Filter, GetSeparableFilter, GetHistogram, andGetMinmax.

If there is a multisample buffeiSAMPLEBUFFERSIs 1), then values are ob-
tained from the depth samples in this buffer. It is recommended that the depth
value of the centermost sample be used, though implementations may choose any
function of the depth sample values at each pixel.

If the formatis STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the ertdiVALID _OPERATIONDCCUTS.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled wRkeadBuffer.

The command

void ReadBuffer( enumsrc);

takes a symbolic constant as argument. The possible valueSRONTLEFT,
FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONTBACK LEFT, RIGHT, andAUX0
throughAUX:. FRONTandLEFT refer to the front left bufferBACKrefers to the
back left buffer, andRIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the erroiNVALID _OPERATIONis generated. The initial setting fétead-
Buffer is FRONTIf there is no back buffer anBACKotherwise.

ReadPixelsobtains values from the selected buffer from each pixel with lower
left hand corner atz + i,y + j) for 0 < i < width and0 < j < height; this pixel
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is said to be théth pixel in thejth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. OtherwisBeadPixelsobtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, andormatis one ofREQ GREENBLUE, AL-
PHA RGB RGBABGRBGRA LUMINANCEOr LUMINANCEALPHA then red, green,
blue, and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If formatis COLORNDEX and the GL is in RGBA mode then the erndt-
VALID _OPERATIONoccurs. If the GL is in color index mode, afidrmatis not
DEPTHCOMPONENAJr STENCIL_INDEX, then the color index is obtained at each
pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then onlyoifmat is
neitherSTENCIL_INDEX nor DEPTHCOMPONENThe R, G, B, and A values form

a group of elements. Each element is taken to be a fixed-point val0elinwith

m bits, wherem is the number of bits in the corresponding color component of the
selected buffer (see secti@nl3.9.

Conversion of Depth values

This step applies only fiormatis DEPTHCOMPONEN®RAN element is taken to be a
fixed-point value in [0,1] withn bits, wherem is the number of bits in the depth
buffer (see sectiof.10.]).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5 After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups, and only ifeh@atis either
LUMINANCEor LUMINANCEALPHA A value L is computed as

L=R+G+B
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| typeParameter | Index Mask|

UNSIGNEDBYTE | 28 —1
BITMAP 1

BYTE 2T -1
UNSIGNEDSHORT| 216 — 1
SHORT 2 1
UNSIGNEDINT 232 _1
INT 231 1

Table 4.6: Index masks used BgadPixels Floating point data are not masked.

where R, G, and B are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if theypeis not FLOAT, final conversion consists of masking the
index with the value given in Table 6, if the typeis FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped®al]. Then the
appropriate conversion formula from takle is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
DrawPixels. That s, theith group of thejth row (corresponding to thi¢h pixel in

the jth row) is placed in memory just where thtl group of thejth row would be
taken from forDrawPixels. SeeUnpacking under sectior8.6.4 The only differ-

ence is that the storage mode parameters whose names begiAgithare used
instead of those whose names begin VWtMPACK. If the formatis REQ GREEN

BLUE ALPHA or LUMINANCE only the corresponding single element is written.
Likewise if theformatis LUMINANCEALPHA RGB or BGR only the corresponding

two or three elements are written. Otherwise all the elements of each group are
written.

4.3.3 Copying Pixels

CopyPixelstransfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in Figdr@.
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typeParameter GL Data Type| Component
Conversion Formula
UNSIGNEDBYTE ubyte c=(28-1)f
BYTE byte c=[22-1)f—1]/2
UNSIGNEDSHORT ushort c=(21% -1)f
SHORT short c=[21%-1)f —1]/2
UNSIGNEDINT uint c=(022-1)f
INT int c=[22-1)f -1]/2
FLOAT float c=f
UNSIGNEDBYTE3 .32 ubyte c=02VN -1)f
UNSIGNEDBYTE2 3 3 REV ubyte c=02N -1)f
UNSIGNEDSHORT5 6 5 ushort c=02N -1)f
UNSIGNEDSHORT5 6 5 REV ushort c=02N - 1)f
UNSIGNEDSHORT4 4 4 4 ushort c=02N -1)f
UNSIGNEDSHORT4 4 4 4 REV ushort c=02N -1)f
UNSIGNEDSHORT5 5 5 1 ushort c=02N -1)f
UNSIGNEDSHORTL 5 5 5 REV ushort c=02N -1)f
UNSIGNEDINT 8 8 8 8 uint c=02VN -1)f
UNSIGNEDINT -8 8 8 8 REV uint c=02N -1)f
UNSIGNEDINT -10.10.10 2 uint c=02N-1)f
UNSIGNEDINT 210 10 10 REV uint c=02N -1)f

Table 4.7: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representatiof) (o a datum of the specified GL

data type €) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
guery commands and to components of pixel data returned to client memory. The
eguations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See Taklg Equations withV as

the exponent are performed for each bitfield of the packed data type Mgttt to

the number of bits in the bitfield.
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Figure 4.3. Operation dopyPixels Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.
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void CopyPixelint x,int vy, sizei  width, sizei height
enumtype);

typeis a symbolic constant that must be oneCAILORSTENCIL, or DEPTH indi-
cating that the values to be transferred are colors, stencil values, or depth values,
respectively. The first four arguments have the same interpretation as the corre-
sponding arguments ReadPixels

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in sedi6érf just as ifRead-
Pixels were called with the corresponding arguments. If thge is STENCIL
or DEPTH then it is as if theformat for ReadPixelswere STENCIL_INDEX or
DEPTHCOMPONENTespectively. If theypeis COLORthen if the GL is in RGBA
mode, it is as if thdormatwereRGBAwhile if the GL is in color index mode, it is
as if theformatwere COLORNDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been givewidth andheight, beginning with final conversion
of elements. The effectii®rmatis the same as that already described.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore PixelTransfer, and PixelMap. This state has been summarized in
Tables3.1, 3.2, and3.3. The current setting oReadBuffer, an integer, is also
required, along with the current raster position (secfidi?). State set withPixel-
Storeis GL client state.

Version 1.3 - August 14, 2001



Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider theR*-valued polynomiap(u) defined by

p(u) =) B (u)R; (5.1)
1=0
with R; € R* and
Bj'(u) = (7) u' (1 —u)",

theith Bernstein polynomial of degree (recall that0® = 1 and (5) = 1). Each
R, is acontrol point The relevant command is

void Mapl{fd}(enumtarget T u;, T wug,int stride
int order, T points);
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| target | k | Values
MAP1VERTEX3 3 | z,y, z vertex coordinates
MAP1VERTEX4 4 | x,y, z, w vertex coordinates
MAPLINDEX 1 | color index
MAP1COLOR4 4| R G,BA
MAP1NORMAL 3 | z, y, z normal coordinates
MAPLTEXTURECOORN | 1 | stexture coordinate
MAPLTEXTURECOORD | 2 | s, t texture coordinates
MAPLTEXTURECOORD | 3 | s, t, r texture coordinates
MAPL1TEXTURECOORD} | 4 | s,t,r, q texture coordinates

Table 5.1: Values specified by thergetto Mapl. Values are given in the order in
which they are taken.

targetis a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in Ta-
ble5.1 order is equal ton 4 1; The erroriNVALID VALUEIs generated ibrder
is less than one or greater thetAXEVAL ORDERpointsis a pointer to a set of
n + 1 blocks of storage. Each block begins wittsingle-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Tablke.1indicates howt depends omtargetand what
the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The errtdVALID VALUE results if stride is less than
k. The order of the polynomiabrder, is also the number of blocks of storage
containing control points.

u1 andusy give two floating-point values that define the endpoints of the pre-
image of the map. When a valug is presented for evaluation, the formula used
is

T
p'(v') = p(

U2 — U1 '

The errorINVALID _VALUEresults ifu; = us.
Map?2 is analogous tMapl, except that it describes bivariate polynomials of
the form

n m

p(u,v) =Y Y B (u)Bj(v)Ry;.

i=0 j=0

The form of theMap2 command is
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Integers Reals
Vertices
EvalM@_,k fug.uol [0, Normals
EvalPoint ! S [0,1] 28K, Texture Coordinates
[vyvol Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

void Map2{fd}(enumtarget T u;, T wug,int ustride
int uorder, T vy, T wo,int vstridg int vorder, T points);

targetis a range type selected from the same group as is usaéddpi, except
that the stringlAP1is replaced wittMAP2 pointsis a pointer ta(n + 1)(m + 1)
blocks of storageuorder = n + 1 andwvorder = m + 1; the errorIN-
VALID VALUEIs generated if eithetiorder or vorder is less than one or greater
thanMAXEVAL ORDER The values comprisinR;; are located

(ustride)i 4 (vstride)yj

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to byoints wu1, us, v1, andvy define the pre-image rectangle
of the map; a domain poirit.’, v’) is evaluated as

u —u; v —w

/ / /
1D(u,v)—1o(u2_u17v2_v1 :
The evaluation of a defined map is enabled or disabled Buitable andDis-
able using the constant corresponding to the map as described above. The eval-
uator map generates only coordinates for texture TBXKTUREQ The erroriN-
VALID _VALUETresults if eitherustride or vstride is less thark, or if u is equal
to w2, orif vy is equal tovs. If the value of ACTIVE_TEXTURES not TEXTUREQ
callingMap{12} generates the err¢tVALID _OPERATION
Figure5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}( T arg);
void EvalCoord{12}{fd}v( T arg);
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EvalCoordl causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordiratéyal-
Coord?2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates,andv’, in that order.

When one of thé&evalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, itis as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except thatrtex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. IColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.gMAP1TEXTURECOORLO andMAP1TEXTURECOORL2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if eitherMAP2VERTEX3 or MAP2VERTEX4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes vyields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled Erigble
andDisablewith symbolic the constamUTQNORMALIf automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MARVERTEX3, letq = p. FOrMARVERTEX4, letq = (z/w, y/w, z/w),
where(z,y, z,w) = p. Then let

_0q _0q
—%X%

Then the generated analytic norma),is given byn = m/|m/||.

The second way to carry out evaluations is to use a set of commands that pro-
vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.
This is done using

m
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void MapGridl {fd}(int n, T u}, T uf);
for a one-dimensional map or

void MapGrid2 {fd}(int n,, T u}, T uh,int n,, T o,
Tuy);

for a two-dimensional map. In the case MfapGridl «) and v/, describe an
interval, whilen describes the number of partitions of the interval. The error
INVALID _VALUEresults ifn < 0. For MapGrid2, (u},v}) specifies one two-
dimensional point an¢lu), v}) specifies another,, gives the number of partitions
betweenu| andu), andn, gives the number of partitions betweehandvj. If
eithern, < 0 orn, < 0, then the erroNVALID _VALUEoOccurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMeshl( enummodeint pq,int  po);

modeis eitherPOINT or LINE . The effect is the same as performing the following
code fragment, witld\v' = (ub — u})/n:

Begin( typs);
for i = py to po Stepl.0
EvalCoord1(i * Au + u});
End();

where EvalCoord1f or EvalCoord1d is substituted folEvalCoordl as appro-
priate. If modeis POINT, thentypeis POINTS; if modeis LINE, thentypeis
LINE _STRIP. The one requirement is that if either= 0 or i = n, then the value
computed from « Av’ + u] is preciselyu) or uf, respectively.

The corresponding commands for two-dimensional maps are

void EvalMeshX enummodeint pq,int  po,int ¢,
int g2);

modemust beFILL , LINE, or POINT. Whenmodeis FILL , then these commands
are equivalent to the following, withu' = (u, — u})/n andAv’' = (v5, —v})/m:

for i = ¢ to gy — 1 stepl.0
Begin(QUAD.STRIP);
for j = py to ps stepl.0
EvalCoord2(j * Au' + uf , i * AV + o));
EvalCoord2(j * Au' + o} , (i+1) * AV + o))
End();
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If modeis LINE, then a call tdEvalMesh2is equivalent to

for i = ¢ to ¢, stepl.0
Begin(LINE _STRIP);
for j = py to py stepl.0
EvalCoord2(j * Au' + o} , i * AV + o)
End(); ;
for i = p; to po stepl.0
Begin(LINE _STRIP);
for j = ¢q1 to g0 Stepl.0
EvalCoord2(i * Au + u} , j * AV + v));
End();

If modeis POINT, then a call taevalMesh2is equivalent to

Begin(POINTS);
for i = ¢1 to ¢ stepl.0
for j = py to ps stepl.0
EvalCoord2(j * Au' + o} , i * AV + v));
End();

Again, in all three cases, there is the requirementhakvu’ +u) = u), nx Au’'+
) = ub, 0% Av' + v} = 0], andm * Av' + v] = v},
An evaluation of a single point on the grid may also be carried out:

void EvalPointl(int p);

Calling it is equivalent to the command
EvalCoord1( p * Au' + u});

with Au' andu) defined as above.

void EvalPoint2(int p,int gq);
is equivalent to the command

EvalCoord2(p * Au' + u} , ¢ * Av + v));

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specifica-
tion consists of one or two orders, an appropriately sized array of control points,
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and a set of two values (for a one-dimensional map) or four values (for a two-
dimensional map) to describe the domain. The maximum possible order, for either
u Or v, is implementation dependent (one maximum applies to bathdv), but

must be at least 8. Each control point consists of between one and four floating-
point values (depending on the type of the map). Initially, all maps have order
1 (making them constant maps). All vertex coordinate maps produce the coordi-
nates(0, 0,0, 1) (or the appropriate subset); all normal coordinate maps produce
(0,0,1); RGBA maps produc¢l, 1,1, 1); color index maps produce 1.0; texture
coordinate maps produd®, 0,0, 1); In the initial state, all maps are disabled.

A flag indicates whether or not automatic normal generation is enabled for two-
dimensional maps. In the initial state, automatic normal generation is disabled.
Also required are two floating-point values and an integer number of grid divisions
for the one-dimensional grid specification and four floating-point values and two
integer grid divisions for the two-dimensional grid specification. In the initial state,
the bounds of the domain interval for 1-Ddsand1.0, respectively; for 2-D, they
are(0,0) and(1.0, 1.0), respectively. The number of grid divisions is 1 for 1-D and

1 in both directions for 2-D. If any evaluation command is issued when no vertex
map is enabled, nothing happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn into
some region of a window. The region is defined by the current model-view and
perspective matrices.

Selection works by returning an array of integer-valueanes This array
represents the current contents of tleene stackThis stack is controlled with the
commands

void InitNames( void );
void PopNamd void );
void PushNamé€ uint name);
void LoadName uint name);

InitNames empties (clears) the name staélopNamepops one name off the top
of the name stackPushNamecausesameto be pushed onto the name stack.
LoadNamereplaces the value on the top of the stack wigtme Loading a name
onto an empty stack generates the efMALID _OPERATIONPopping a name off
of an empty stack generatsSACKUNDERFLOVMpushing a name onto a full stack
generateSTACKOVERFLOWIhe maximum allowable depth of the name stack is
implementation dependent but must be at least 64.
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In selection mode, no fragments are rendered into the framebuffer. The GL is
placed in selection mode with

int RenderModg enum mode);

modeis a symbolic constant: one &ENDERSELECT, or FEEDBACKRENDERS
the default, corresponding to rendering as described until BBLECTspecifies
selection mode, anHEEDBACKspecifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer( sizei n, uint  *buffer);

bufferis a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, andis an integer indicating the maximum number

of values that can be stored in that array. Placing the GL in selection mode before
SelectBufferhas been called results in an errof¥ALID _OPERATIONas does
calling SelectBufferwhile in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by aRasterPoscommand intersects the clip volume (sectibhl) then this primi-
tive (or RasterPoscommand) causes a selecthih In the case of polygons, no hit
occurs if the polygon would have been culled, but selection is based on the polygon
itself, regardless of the setting BblygonMode When in selection mode, when-
ever a name stack manipulation command is executdteoderMode is called
and there has been a hit since the last time the stack was manipuldRedader-

Mode was called, then hit recordis written into the selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinatezalues of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was
written. The minimum and maximum (each of which lies in the rajige]|) are
each multiplied by23? — 1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (settoB
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
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the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceed then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calliiRenderModewith an argument value other
than SELECT WhenevermRenderMode s called in selection mode, it returns the
number of hit records copied into the selection array and resetSdleetBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array untiRenderMode is called. If the selection array overflow flag
was set, therRenderMode returns—1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset wheriRgaderModeis called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the ctReaider-

Mode value. In the initial state, the GL is in ttRENDERmode. Another flag is

used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the

maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by c&lng
derMode with FEEDBACKWhen the GL is in feedback mode, no fragments are
written to the framebuffer. Instead, information about primitives that would have
been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBuffer( sizei n, enum type float  *buffer);

bufferis a pointer to an array of floating-point values into which feedback in-
formation will be placed, and is a number indicating the maximum number of
values that can be written to that arratypeis a symbolic constant describing
the information to be fed back for each vertex (see Figu&®. The erroriN-
VALID _OPERATIONresults if the GL is placed in feedback mode before a call to
FeedbackBufferhas been made, or if a call EeedbackBufferis made while in
feedback mode.
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While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (secti8rb.l) andPolygonModeinterpretation
of polygons (sectiors.5.4 has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decompositian)y, andz coordinates returned
by feedback are window coordinatesuifis returned, it is in clip coordinates. No
depth offset arithmetic (sectiob5.9 is performed on the values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in Secti®i3.8 Only coordinates for texture uriex-
TUREOare returned even for implementations which support multiple texture units.
The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

The GL is taken out of feedback mode by calliRgnderMode with an ar-
gument value other thafEEDBACKWhen called while in feedback modegen-
derMode returns the number of values placed in the feedback array and resets the
feedback array pointer to bdmiffer. The return value never exceeds the maximum
number of values passedfeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this casRenderModereturns—1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed
to be written into the feedback buffer befdRenderModeis called.

Figure5.2gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.

A vertex is fed back as some number of floating-point values determined by the
feedbacktype Table5.2 gives the correspondence between feedlimdter and
the number of values returned for each vertex.
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Type | coordinates| color | texture | total values|
2D T,y - - 2
3D T, Y, 2 - - 3
3D_.COLOR T, Y, 2 k - 3+k
3D_COLORTEXTURE| z, vy, 2 k 4 7T+ k
4D_COLORTEXTURE| z, vy, 2, w k 4 8+ k

Table 5.2: Correspondence of feedback type to number of values per Versek.
in color index mode and in RGBA mode.

The command
void PassThrough{ float token);

may be used as a marker in feedback madkenis returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThroughcommands with respect to primitive specification is maintained by
feedback.PassThroughmay not occur betweeBegin andEnd. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feetjgaekAn over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client
state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the
command is issued. (Vertex array pointers are dereferenced when the commands
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feedback-list:
feedback-item feedback-list
feedback-item

CHAPTER 5. SPECIAL FUNCTIONS

pixel-rectangle:
DRAWPIXEL TOKENvertex
COPYPIXEL _TOKENvertex

feedback-item: passthrough:
point PASSTHROUGHOKENf
line-segment
polygon vertex:
bitmap 2D:
pixel-rectangle rr
passthrough 3D:
Frr
point: 3D_COLOR
POINT_TOKENvertex f f f color
line-segment: 3D_.COLORTEXTURE

LINE _TOKENvertex vertex f f f color tex
LINE _RESETTOKENvertex vertex 4D_COLORTEXTURE

polygon: f f f f color tex
POLYGON OKENn polygon-spec
polygon-spec: color:
polygon-spec vertex frrf
vertex vertex vertex f
bitmap:
BITMAP_TOKENvertex tex:
Frrf

Figure 5.2: Feedback syntag.is a floating-point numbenr is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending WHKEN

are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedtygek LINE _TOKEN
andLINE _RESETTOKENare identical except that the latter is returned only when
the line stipple is reset for that line segment.
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ArrayElement, DrawArrays, DrawElements, or DrawRangeElementsare ac-
cumulated into a display list.)
A display list is begun by calling

void NewdList(uint n, enum mode);

nis a positive integer to which the display list that follows is assignednaodkis a
symbolic constant that controls the behavior of the GL during display list creation.
If modeis COMPILE then commands are not executed as they are placed in the
display list. If modeis COMPILEANDEXECUTEhen commands are executed as
they are encountered, then placed in the display listn K= 0, then the error
INVALID _VALUEIs generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void );

occurs, after which the GL returns to its normal command execution state. It is
only whenEndList occurs that the specified display list is actually associated with
the index indicated wittNewList. The errorINVALID _OPERATIONS generated
if EndList is called without a previous matchimdgewList, or if NewList is called
a second time before callifgndList. The errorOUTOFMEMORY¥ generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list moded$PILEANDEXECUTE

Once defined, a display list is executed by calling

void CallList(uint n);
n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. Ifn. = 0, then the errofNVALID _VALUEIs generated.
The command

void CallLists(sizei n,enum type void *lists);

provides an efficient means for executing a number of display listsan integer
indicating the number of display lists to be called, $ists is a pointer that points
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to an array of offsets. Each offset is constructed as determindistsyas fol-

lows. First,typemay be one of the constarg8 TE, UNSIGNEDBYTE, SHORTUN-
SIGNEDSHORTINT, UNSIGNEDINT , or FLOATindicating that the array pointed

to bylistsis an array of bytes, unsigned bytes, shorts, unsigned shorts, integers, un-
signed integers, or floats, respectively. In this case each offset is found by simply
converting each array element to an integer (floating point values are truncated).
Further,typemay be one ob BYTES 3_BYTES or 4 BYTES indicating that the

array contains sequences of 2, 3, or 4 unsigned bytes, in which case each integer
offset is constructed according to the following algorithm:

of fset «— 0

fori=1tob
of fset — of fset shifted left 8 bits
of fset — of fset + byte
advance to nextytein the array

bis 2, 3, or 4, as indicated kype If n = 0, CallLists does nothing.

Each of then constructed offsets is taken in order and added to a display list
base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.

Indicating a display list index that does not correspond to any display list has no
effect. CallList or CallLists may appear inside a display list. (If theodesupplied
to NewList is COMPILEANDEXECUTE then the appropriate lists are executed,
but theCallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least4.

Two commands are provided to manage display list indices.

uint GenlLists( sizei s);

returns an integet such that the indices, . . ., n+s—1 are previously unused (i.e.
there ares previously unused display list indices startinghgt GenlLists also has
the effect of creating an empty display list for each of the indices.,n + s —1,
so that these indices all become us@gnLists returns 0 if there is no group af
contiguous previously unused display list indices, or# 0.
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boolean IsList(uint list);

returnsTRUEIf list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteListq uint list, sizei  range);

wherelist is the index of the first display list to be deleted aadgeis the number

of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are
not compiled into the display list but are executed immediately. These
are: IsList, GenLists, DeleteLists FeedbackBuffer, SelectBuffer, Render-
Mode, VertexPointer, NormalPointer, ColorPointer, IndexPointer, TexCoord-
Pointer, ClientActiveTexture, EdgeFlagPointer, InterleavedArrays, Enable-
ClientState, DisableClientState PushClientAttrib , PopClientAttrib , ReadPix-
els PixelStore GenTextures DeleteTextures AreTexturesResident IsTexture,
Flush, Finish, as well adsEnabled and all of theGet commands (see Chapte.

TexiImage3D Texlmage2D TexlmagelD Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXYTEXTURE3D, PROXYTEXTURE2D or
PROXYTEXTURECUBEMAR PROXYTEXTURELD, PROXYHISTOGRAM
and PROXYCOLORTABLE, PROXYPOSTCONVOLUTIONCOLORTABLE, or
PROXYPOSTCOLORMATRIX COLORTABLE

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the culristBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

5.5 Flush and Finish

The command

void Flush(void );
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indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish( void );

forces all previous GL commands to completéinish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint( enumtarget enum hint);

targetis a symbolic constant indicating the behavior to be controlled, tant
is a symbolic constant indicating what type of behavior is desirgget may
be one ofPERSPECTIVECORRECTIOMINT, indicating the desired quality of
parameter interpolationPOINT_SMOOTHHINT, indicating the desired sampling
quality of points;LINE _SMOOTHHINT, indicating the desired sampling quality of
lines; POLYGONSMOOTHHINT, indicating the desired sampling quality of poly-
gons; FOGHINT, indicating whether fog calculations are done per pixel or per
vertex; andTEXTURECOMPRESSIOMINT, indicating the desired quality and per-
formance of compressing texture imagemt must be one ofFASTEST, indicating
that the most efficient option should be choS@IGEST, indicating that the highest
quality option should be chosen; aD®NTCARE indicating no preference in the
matter.

For the texture compression hinthat of FASTESTindicates that texture im-
ages should be compressed as quickly as possible, WHIEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTESTshould be used for one-time texture compression, MIGEST should
be used if the compression results are to be retrieve@dtompressedTexIm-
age(section6.1.9) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints iDONTCARE
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Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in sécidviost
state is set through the calls described in previous chapters, and can be queried
using the calls described in sectibri.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a $8ebtommands. There are
four commands for obtaining simple state variables:

void GetBoolean{ enumvalue boolean *data);
void Getintegerv( enumvalueg int  *data);

void GetFloatv( enumvalue float  *data);

void GetDouble\ enumvalug double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables.valueis a symbolic constant indicating the state variable to retdata

is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled( enumvalue);
can be used to determinevlueis currently enabled (as witBnable) or disabled.
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6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performedsdtBooleanvis called,

a floating-point or integer value converts RALSE if and only if it is zero (oth-
erwise it converts tdRUB. If Getintegerv (or any of theGet commands below)

is called, a boolean value is interpreted as either 0, and a floating-point value

is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRangevalue, a depth buffer clear value, or a normal coordinate. In these
cases, th&et command converts the floating-point value to an integer according
the INT entry of Table4.7; a value not in[—1, 1] converts to an undefined value.

If GetFloatv is called, a boolean value is interpreted as eithéror 0.0, an in-

teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twbepthRangeparameters are returned in the order
followed byf. Similarly, points for evaluator maps are returned in the order that
they appeared when passedMapl. Map2 returnsR;; in the [(uorder)i + j]th
block of values (see pade32for ¢, j, uorder, andR;;).

Matrices may be queried and returned in transposed form by caBielg
Booleany, Getlntegerv, GetFloatv, andGetDoublev with pname set to one of
TRANSPOSEMODELVIEWMATRIX TRANSPOSEPROJECTIONMATRIX, TRANS-
POSETEXTUREMATRIX or TRANSPOSEEOLORMATRIX The effect of

GetFloatv( TRANSPOSEMODELVIEWMATRIX, m);
is the same as the effect of the command sequence

GetFloatv( MODELVIEWMATRIX, m);
T

m=m",
Similar conversions occur when queryiiBANSPOSIPROJECTIONMATRIX,
TRANSPOSHEXTUREMATRIX, andTRANSPOSEOLORMATRIX
Most texture state variables are qualified by the valuA®TIVE_TEXTURE
to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by the
value of CLIENT_ACTIVE_TEXTURE Tables6.5, 6.6, 6.8, 6.14 6.17, and 6.28
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indicate those state variables which are qualified ATIVE_TEXTURE or
CLIENT _ACTIVE_TEXTUREJuring state queries.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane( enum plang double eqn[4]);
void GetLight{if }v( enumlight, enum value T data);
void GetMaterial {if }v( enumface enum value T data);
void GetTexEnV{if }v( enumeny, enum valug T data);
void GetTexGenif }v( enumcoord enum valug T data);
void GetTexParametexif }v( enumtarget enum value
T data);
void GetTexLevelParametefif }v( enumtarget int lod,
enumvalug T data);
void GetPixelMap{ui us f}v(enummap T data);
void GetMap{ifd }v( enummap enum valug T data);

GetClipPlane always returns four double-precision valuesein these are the
coefficients of the plane equation planein eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information abowialue(a symbolic constant) fdight (also a
symbolic constant) imlata POSITION or SPOTDIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexGen GetTexEnv, andGetTexParameterare similar to
GetLight, placing information aboutalue for the target indicated by their first
argument intadata Thefaceargument tdGetMaterial must be eitheFRONTor
BACK indicating the front or back material, respectively. Tém argument to
GetTexEnv must currently bEEXTUREENV. Thecoordargument taGetTexGen
must be one o6, T, R, or Q For GetTexGen EYELINEAR coefficients are re-
turned in the eye coordinates that were computed when the plane was specified;
OBJECTLINEAR coefficients are returned in object coordinates.

GetTexParameter parametertarget may be one ofTEXTURELD, TEX-
TURE2D, TEXTURE3D, or TEXTURECUBEMAR indicating the currently bound
one-, two-, three-dimensional, or cube map texture objeGetTexLevelPa-
rameter parametertarget may be one OfTEXTURELD, TEXTURE2D, TEX-
TURE3D, TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
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TEXTURECUBEMAPPOSITIVE .Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMARPOSITIVE _Z,

TEXTURECUBEMAPNEGATIVEZ, PROXYTEXTURELD, PROXYTEXTURE2D,
PROXYTEXTURES3D, or PROXYTEXTURECUBEMAR indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note thakEXTURECUBEMAPIs not a validtarget parameter for
GetTexLevelParameter because it does not specify a particular cube map face.
valueis a symbolic value indicating which texture parameter is to be obtained. The
lod argument taGetTexLevelParameterdetermines which level-of-detail’s state

is returned. If thdod argument is less than zero or if it is larger than the maximum
allowable level-of-detail then the errtdVALID VALUEoOCcuUrs.

For texture images with uncompressed in-
ternal formats, queries ofalue of TEXTUREREDSIZE , TEXTUREGREENSIZE,
TEXTUREBLUESIZE , TEXTUREALPHASIZE , TEXTURELUMINANCESIZE , and
TEXTUREINTENSITY _SIZE return the actual resolutions of the stored image array
components, not the resolutions specified when the image array was defined. For
texture images with a compressed internal format, the resolutions returned specify
the component resolution of an uncompressed internal format that produces an im-
age of roughly the same quality as the compressed image in question. Since the
quality of the implementation’s compression algorithm is likely data-dependent,
the returned component sizes should be treated only as rough approximations.

Querying
value TEXTURECOMPRESSEMAGESIZE returns the size (iubyte s) of the
compressed texture image that would be returneéGbiCompressedTexlmage
(section6.1.4. QueryingTEXTURECOMPRESSEMAGESIZE is not allowed on
texture images with an uncompressed internal format or on proxy targets and will
result in anNVALID _OPERATIONerror if attempted.

Queries ofvalue TEXTUREWIDTH TEXTUREHEIGHT, TEXTUREDEPTH and
TEXTUREBORDEReturn the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
asTEXTUREINTERNAL FORMATor asTEXTURECOMPONENT®r compatibility
with GL version 1.0.

For GetPixelMap, themapmust be a map name from Taliles. For GetMap,
mapmust be one of the map types described in sediidnandvaluemust be one
of ORDERCOEFF or DOMAIN

6.1.4 Texture Queries

The command
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void GetTexlmagg enumtex int lod, enum format
enumtype void *img);

is used to obtain texture images. It is somewhat different from the other
get commands;tex is a symbolic value indicating which texture (or tex-
ture face in the case of a cube map texture target name) is to be obtained.
TEXTURELD, TEXTURE2D, and TEXTURE3D indicate a one-, two-, or three-
dimensional texture respectively, whit€EXTURECUBEMAPPOSITIVE _X, TEX-
TURECUBEMAPNEGATIVEX, TEXTURECUBEMAPPOSITIVE .Y,
TEXTURECUBEMAPNEGATIVEY, TEXTURECUBEMAPPOSITIVE _Z, andTEX-
TURECUBEMAPNEGATIVEZ indicate the respective face of a cube map texture.
lod is a level-of-detail numbeformatis a pixel format from Table.6, typeis a

pixel type from Table3.5, andimgis a pointer to a block of memory.

GetTexlmageobtains component groups from a texture image with the indi-
cated level-of-detail. The components are assigned among R, G, B, and A ac-
cording to Tables.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. These
groups are then packed and placed in client memory. No pixel transfer operations
are performed on this image, but pixel storage modes that are applicadéath
Pixelsare applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACKIMAGEHEIGHT andPACKSKIP _IMAGESare applied. The correspondence
of texels to memory locations is as defined Teximage3Din section3.8.1

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). CdBieig
TexIlmage with lod less than zero or larger than the maximum allowable causes
the errorINVALID _VALUE. Calling GetTexImagewith formatof COLORNDEX,
STENCIL_INDEX, or DEPTHCOMPONENJauses the erroNVALID _ENUM

The command

void GetCompressedTeximagéenumtarget int lod,
void *img);

is used to obtain texture images stored in compressed form. The parataggets

lod, andimg are interpreted in the same manner as in GetTexlmage. When called,
GetCompressedTexImagevrites TEXTURECOMPRESSEMAGESIZE ubyte s

of compressed image data to the memory pointed taniy The compressed
image data is formatted according to the definition of the texture’s internal format.
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Base Internal Format | R | G | B | A |
ALPHA 0] 0] 04
LUMINANCHOor 1) Lilo[o0]1
LUMINANCEALPHA(or2) | L; | 0 | 0 | 4;
INTENSITY I; 0 0 1
RGB(OI’?J) R, | G; | B; 1
RG BA(OF 4) R, | G| B; | 4

Table 6.1: Texture, table, and filter return valuds,, G;, B;, A;, L;, andI; are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

All pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImagevith anlod value less than zero or greater
than the maximum allowable causesIHNALID _VALUEerror. CallingGetCom-
pressedTeximagewith a texture image stored with an uncompressed internal for-
mat causes aiNVALID _OPERATIONerror.

The command

boolean IsTexture( uint texture);

returnsTRUEIf textureis the name of a texture object.téxtureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A hame returned bgenTextures but not yet bound, is

not the name of a texture object.

6.1.5 Stipple Query

The command
void GetPolygonStippld void *pattern);

obtains the polygon stipple. The pattern is packed into memory according to the
procedure given in sectiof.3.2for ReadPixels it is as if theheightandwidth
passed to that command were both equal to 32 tythe were BITMAP, and the
formatwere COLORNDEX.
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6.1.6 Color Matrix Query

The scale and bias variables are queried usBggFloatv with pnameset to

the appropriate variable name. The top matrix on the color matrix stack is
returned byGetFloatv called with pnameset to COLORMATRIX or TRANS-
POSECOLORMATRIX The depth of the color matrix stack, and the maximum
depth of the color matrix stack, are queried wiBletintegerv, settingpname

to COLORMATRIX STACKDEPTHandMAXCOLORMATRIX STACKDEPTHespec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable( enumtarget enum format enum type
void *table);

targetmust be one of theegular color table names listed in tabB4. formatand
typeaccept the same values as do the corresponding parame(esTeximage
The one-dimensional color table image is returned to client memory starting at
table No pixel transfer operations are performed on this image, but pixel storage
modes that are applicableReadPixelsare performed. Color components that are
requested in the specifiédrmat but which are not included in the internal format
of the color lookup table, are returned as zero. The assignments of internal color
components to the components requestetbhyatare described in Table 1.

The functions

void GetColorTableParameter{if }v( enumtarget
enumpname T params);

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed
in table 3.4 pnameis one of COLORTABLE SCALE COLORTABLEBIAS,
COLORTABLEFORMAT COLORTABLEWIDTH  COLORTABLEREDSIZE,
COLORTABLE. GREENSIZE , COLORTABLEBLUESIZE,
COLORTABLEALPHASIZE, COLORTABLE LUMINANCESIZE,
or COLORTABLEINTENSITY _SIZE. The value of the specified parameter is re-
turned inparams
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6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter ( enumtarget enum format,
enumtype void *image);

target must beCONVOLUTIOND or CONVOLUTIOND. format and type accept
the same values as do the corresponding parametégtdeximage The one-
dimensional or two-dimensional images is returned to client memory starting at
image Pixel processing and component mapping are identical to thaSetdex-
Image.

The current contents of a separable filter image are queried using

void GetSeparableFiltel enumtarget enum format,
enumtype void *row, void *column void *span);

targetmust beSEPARABLE2D. formatandtypeaccept the same values as do the
corresponding parameters GetTexlmage The row and column images are re-
turned to client memory starting edw andcolumnrespectivelyspanis currently
unused. Pixel processing and component mapping are identical to th@et-of
Texlmage

The functions

void GetConvolutionParameter{if }v( enumtarget,
enumpname T params);

are used for integer and floating point query. target must be CON-
VOLUTION1D, CONVOLUTIOND, or SEPARABLE2D. pname is one of
CONVOLUTIONBORDERCOLOR  CONVOLUTIONBORDERMODE CONVOLU-
TION_FILTER _SCALE CONVOLUTIONILTER _BIAS, CONVOLUTIONFORMAT
CONVOLUTIONWIDTH CONVOLUTIONHEIGHT, MAXCONVOLUTIONVIDTH or
MAXCONVOLUTIOMEIGHT. The value of the specified parameter is returned in
params

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram( enumtarget boolean reset
enumformat enum type void*  values);
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targetmust beHISTOGRAMtypeandformataccept the same values as do the corre-
sponding parameters @etTexImage The one-dimensional histogram table im-
age is returned toalues Pixel processing and component mapping are identical
to those ofGetTexlmage

If resetis TRUE then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified fésetis FALSE

Calling

void ResetHistogran({ enumtarget);

resets all counters of all elements of the histogram table to zarget must be
HISTOGRAM

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if }v( enumtarget,
enumpnameT params);

are used for integer and floating point queryarget must beHISTOGRAMor
PROXYHISTOGRAMpnameis one ofHISTOGRAMFORMATHISTOGRAMNIDTH
HISTOGRAMREDSIZE, HISTOGRAMSREENSIZE, HISTOGRAMBLUESIZE,
HISTOGRAMALPHASIZE, or HISTOGRAM.UMINANCESIZE. pname may be
HISTOGRAMSINK only for target HISTOGRAM The value of the specified
parameter is returned params

6.1.10 Minmax Query
The current contents of the minmax table are queried using

void GetMinmax( enumtarget boolean resef enum format
enumtype void* values);

target must beMINMAX type andformataccept the same values as do the corre-
sponding parameters @etTeximage A one-dimensional image of width 2 is
returned tovalues Pixel processing and component mapping are identical to those
of GetTexlmage

If resetis TRUE then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified iesetis FALSE

Calling
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void ResetMinmax enumtarget);

resets all minimum and maximum valuestafgetto to their maximum and mini-
mum representable values, respectiviygetmust beMINMAX
The functions

void GetMinmaxParameter{if }v( enumtarget enum pname
T params);

are used for integer and floating point quetgrget must beMINMAX pnameis
MINMAXFORMATor MINMAXSINK. The value of the specified parameter is re-
turned inparams

6.1.11 Pointer and String Queries

The command
void GetPointerv( enumpnamevoid **params);

obtains the pointer or pointers nameguhame in the array params
The possible values fopname are SELECTIONBUFFERPOINTER FEED-
BACKBUFFERPOINTER VERTEXARRAYPOINTER NOR-
MALARRAYPOINTER COLORARRAYPOINTER INDEX_ ARRAYPOINTER TEX-
TURECOORMMRRAYPOINTER andEDGEFLAGARRAYPOINTER Each returns a
single pointer value.

Finally,

ubyte *GetString( enum name);

returns a pointer to a static string describing some aspect of the current GL con-
nection. The possible values flaameareVENDORRENDERER/ERSION andEX-
TENSIONS The format of the(RENDERERNAVERSIONSstrings is implementation
dependent. ThEXTENSIONSSstring contains a space separated list of extension
names (The extension names themselves do not contain any spac¥EREION

string is laid out as follows:

<version number <space-<vendor-specific information
The version number is either of the forrmajor_.number.minomumberor ma-

jor_number.minomumber.releasemumber where the numbers all have one or
more digits. The vendor specific information is optional. However, if it is present
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then it pertains to the server and the format and contents are implementation de-
pendent.

GetString returns the version number (returned in ¥#eRSIONstring) and
the extension names (returned in TASTENSIONSstring) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variable®ughattrib,
PushClientAttrib , PopAttrib andPopClientAttrib commands are used for this
purpose. The commands

void PushAttrib ( bitfield mask);
void PushClientAttrib ( bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stackRushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The erBYACKOVERFLOWs gener-
ated ifPushAttrib or PushClientAttrib is executed while the corresponding stack
depth iISMAXATTRIB_STACKDEPTHor MAXCLIENT _ATTRIB_STACKDEPTHre-
spectively. Bits set imaskthat do not correspond to an attribute group are ignored.
The speciamaskvaluesALL_ATTRIB_BITS andCLIENT_ALL_ATTRIB_BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib (void );
void PopClientAttrib ( void );

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib . Those not saved remain unchanged. The er-
ror STACKUNDERFLOVE generated iPopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

WhenPushAttrib is called withTEXTUREBIT set, the priorities, border col-
ors, filter modes, and wrap modes of the currently bound texture objects, as well
as the current texture bindings and enables, are pushed onto the attribute stack.

Version 1.3 - August 14, 2001



208 CHAPTER 6. STATE AND STATE REQUESTS

Stack Attribute Constant

server| accum-buffer ACCUMBUFFERBIT
server| color-buffer COLORBUFFERBIT
server current CURRENBIT
server| depth-buffer DEPTHBUFFERBIT
server enable ENABLEBIT

server eval EVALBIT

server fog FOGBIT

server hint HINT BIT

server lighting LIGHTING _BIT
server line LINE _BIT

server list LIST BIT

server| multisample MULTISAMPLEBIT
server pixel PIXEL _MODEBIT
server point POINT.BIT

server polygon POLYGOMBIT
server| polygon-stipplel POLYGOMNSTIPPLE BIT
server scissor SCISSORBIT
server| stencil-buffer STENCIL BUFFERBIT
server texture TEXTUREBIT
server transform TRANSFORMIT
server viewport VIEWPORTBIT
server ALL_ATTRIB_BITS
client | vertex-array | CLIENT_VERTEXARRAYBIT
client pixel-store CLIENT_PIXEL _STOREBIT
client select can't be pushed or pop'd
client feedback can't be pushed or pop'd
client CLIENT_ALL_ATTRIB_BITS

Table 6.2: Attribute groups
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(Unbound texture objects are not pushed or restored.) When an attribute set that
includes texture information is popped, the bindings and enables are first restored
to their pushed values, then the bound texture objects’ priorities, border colors,
filter modes, and wrap modes are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state correspondiigto
TUREQOIs pushed first, followed by state correspondin@EXTURE] and so on up
to and including the state correspondingrf@XTUREK wherek + 1 is the value of
MAXTEXTUREUNITS. When state for a group is popped, texture state is restored
in the opposite order that it was pushed, starting with state corresponditigxto
TURK and ending withTEXTUREO ldentical rules are observed for client texture
state push and pop operations. Matrix stacks are never pushed or popped with
PushAttrib , PushClientAttrib , PopAttrib , or PopClientAttrib .

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Tal#eex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned,;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “-" in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped RitbhAttrib , PushClientAttrib ,
PopAttrib , or PopClientAttrib ).

The M andm entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using @&wtBboleany
Getintegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands — the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained usiBgabled. However, state vari-
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| Type code| Explanation

B Boolean

C Color (floating-point R, G, B, and A values)

Ccl Color index (floating-point index value)

T Texture coordinates (floating-poist ¢, r, ¢ val-

ues)

N Normal coordinates (floating-point y, z values)

1% Vertex, including associated data

Z Integer

Zt Non-negative integer
Z, Zre | k-valued integerkx indicatesk is minimum)

R Floating-point number

R* Non-negative floating-point number

Rlo?] Floating-point number in the rande, ]

RF k-tuple of floating-point numbers

P Position ¢, y, z, w floating-point coordinates)

D Direction (z, y, z floating-point coordinates)

M 4 x 4 floating-point matrix

1 Image

A Attribute stack entry, including mask

Y Pointer (data type unspecified)
n X type | ncopies of typeype (n* indicatesn is minimum)

Table 6.3: State variable types
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ables for whichisEnabled is listed as the query command can also be obtained
using GetBooleany Getlintegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2 are types¢ against a gray background
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Table 6.4. GL Internal begin-end state variables (inaccessible)
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Table 6.5. Current Values and Associated Data
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Table 6.6. Vertex Array Data
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Table 6.7. Vertex Array Data (cont.)
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Table 6.8. Transformation state
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Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer stadetor, and for any GL command,

the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.
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A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

¢ Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

e Framebuffer contents (all bitplanes)
e The color buffers enabled for writing
e The values of matrices other than the top-of-stack matrices
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Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)
Clear values (color, index, depth, stencil, accumulation)

o Current values (color, index, normal, texture coords, edgeflag)
Current raster color, index and texture coordinates.

(@]

o

Material properties (ambient, diffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

e Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

¢ Depth test parameters (other than enable)

e Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage and transfer state

e Evaluator state (except as it affects the vertex data generated by the
evaluators)

e Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked withe in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

e Current values (color, color index, normal, texture coords, edgeflag)
e Current raster color, color index, and texture coordinates
e Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).
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Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent commaalivaysis executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.
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Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The CURRENRASTERTEXTURECOORD®NuUSt be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are always

valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

. The error semantics of upward compatible OpenGL revisions may change.

Otherwise, only additions can be made to upward compatible revisions.

. GL query commands are not required to satisfy the semantics dfltisé

or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

. Application specified point size and line width must be returned as specified

when queried. Implementation dependent clamping affects the values only
while they are in use.

. Bitmaps and pixel transfers do not cause selection hits.

. The mask specified as the third argumerstencilFuncaffects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified 8fencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.
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10.

11.

12.

13.

14.

15.

16.

245

. Polygon shading is completed before the polygon mode is interpreted. If the

shade model i5LAT, all of the points or lines generated by a single polygon
will have the same color.

. Adisplay list is just a group of commands and arguments, so errors generated

by commands in a display list must be generated when the list is executed.
If the list is created iCOMPILEmMode, errors should not be generated while
the list is being created.

RasterPosdoes not change the current raster index from its default value
in an RGBA mode GL context. Likewis®asterPosdoes not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

A material property that is attached to the current colorGdorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewistgterial can be used to
modify the color index material properties, even in an RGBA context.

There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix ar&cale(with positive scaling values onlyRotate, and
Translate; (3) exactly one of eithdfrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far valudfgpthRange

If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

ColorMaterial has no effect on color index lighting.
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17.

18.

19.

20.

21.

APPENDIX B. COROLLARIES

(No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

OpenGL state continues to be modifiedHBEDBACKnode and irSELECT
mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot directions
and the light positions fotIGHT:, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed duritmpat-

trib , or when copying a context.

Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.
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Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 \Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
the EXT.vertex _array extension, except that static array data are not supported
(because they complicated the interface, and were not being used), and the pre-
defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).
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C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of tl#XT _polygon _offset extension, with two
exceptions. First, the offset is enabled separatelyP@INT, LINE, andFILL ras-
terization modes, all sharing a single affine function definition. (Shifting the depth
values of the outline fragments, instead of the fill fragments, allows the contents of
the depth buffer to be maintained correctly.) Second, the offset bias is specified in
units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer us-
ing a logical operation, just as color index fragments are in GL version 1.0. Blend-
ing is disabled during such operation because itis rarely desired, because many sys-
tems could not support it, and to match the semantics dtieblend _logic _op
extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known asitibernal format rather than a
simple count of components. The internal format is represented as a single enumer-
ated value, indicating both the organization of the image dat(NANCE RGB

etc.) and the number of bits of storage for each image component. Clients can use
the internal format specification to suggest the desired storage precision of texture
images. Newbase formatsALPHAandINTENSITY , provide new texture environ-
ment operations. These additions match those of a subset &Xthexture
extension.

C.5 Texture Replace Environment
A common use of texture mapping is to replace the color values of generated

fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated
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by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
EXT.texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
gueries without adding new routines to the GL interface. These additions match
those of a subset of tHeXT_texture  extension, except that implementations re-
turn allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
EXT.copy texture andEXT.subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single ob-
ject. Such treatment allows for greater implementation efficiency when multiple
arrays are used. In conjunction with the subtexture capability, it also allows clients
to make gradual changes to existing texture arrays, rather than completely redefin-
ing them. These additions match those of EX€T texture _object extension,

with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinates, ¢, andr are divided byg during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.
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3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chaptand chapte# were combined
into a single discussion in chaptér

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equati@oi
orMaterial is enabled.
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Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of tEXT texture3D  extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRAextends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows plat-
forms. The additions match those of th&T_bgra extension.
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D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of tlEXT packed _pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on tBXT.rescale _normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of thEXT_separate _specular _color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
rangel0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithmGCLAMPTO.EDGE clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 1.3 - August 14, 2001



254 APPENDIX D. VERSION 1.2

The additions match those of tI8&IS texture _edge clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parametare added. One
constraint clamps\ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of\tiparameter, it is
possible to avoid "popping” artifacts when higher resolution images are provided.

The additions match those of tB&IS texture _lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElementsthat provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of tBXT.draw _range _elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as thénaging subset

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal formal. PHAmodifies only the A component of each

pixel group, leaving the R, G, and B components unmodified.
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Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from host memory or
from the framebuffer.

The additions match those of theEXTcolor _table and
EXT.color _subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of theEXT.convolution and
HP.convolution  _border _modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C'=MC,
where
R
G
C= B
A

and M is the4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of tB&]1 _color _matrix extension.
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D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-

togram) and that track the minimum and maximum color component values (min-

max) are performed at the end of the pixel transfer pipeline. An optional mode

allows pixel data to be discarded after the histogram and/or minmax operations are

completed. Otherwise the pixel data continues on to the next operation unaffected.
The additions match those of tBXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of tBXT blend _color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of theEXTblend minmax and
EXT.blend _subtract extensions.
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Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see Appendix). The only ARB extension defined in this version is multitexture,
allowing application of multiple textures to a fragment in one rendering pass. Mul-
titexture is based on th&GIS_multitexture extension, simplified by removing
the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to Appendi® on April 1, 1999.
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Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GL ARBtexture _compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragifa¢n} selects
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one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A newst) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the(réews used to lookup

into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. ThHREFLECTIONMAPmMode generates tex-
ture coordinategstr) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherentSPHEREMAPmMapping.

The NORMAIMAPmMode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from tAe ARBtexture _cube _mapextension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by téGLARBmultisample  extension.

Multisampling was promoted from tHeL ARBmultisample  extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color
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for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from theL ARB multitexture extension.

F.5 Texture Add Environment Mode

The TEXTUREENV.MODEtexture environment functiodDD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from the ARBtexture _env _add exten-
sion.

F.6 Texture Combine Environment Mode

The TEXTUREENV.MODHexture environment functio@OMBINEprovides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from tGe ARBtexture _env _combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTUREENV.MODE COMBIN@&perations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from tAe ARBtexture _env _dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap paramet€LAMPTOBORDERNode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture
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image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GLARBtexture _border _clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from the ARBtranspose _matrix exten-
sion.
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ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in theOpenGL Extension Regist(gs are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

Brief descriptions of ARB extensions are provided below.

G.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A uniguename stringof the form"GL _ARBname" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in th&XTENSIONSstring described in sectioh1.11

e All functions defined by the extension will have names of the féumc-
tionARB

269


http://oss.sgi.com/projects/ogl-sample/registry/

270 APPENDIX G. ARB EXTENSIONS

e All enumerants defined by the extension will have names of the form
NAMEARB

G.2 Promoting Extensions to Core Features

ARB extensions can bpromotedto required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have theARB affix removed

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in tBETENSIONSstring, and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

G.3 Multitexture

The name string for multitexture GL_ARB multitexture
Multitexture was promoted to a core feature in OpenGL 1.3 (see appEhdix

G.4 Transpose Matrix
The name string for transpose matrix3s ARBtranspose _matrix
Transpose matrix was promoted to a core feature in OpenGL 1.3 (see ap-
pendixF).
G.5 Multisample
The name string for multisample &L ARBmultisample
Multisample was promoted to a core feature in OpenGL 1.3, and is described
in appendix-.
G.6 Texture Add Environment Mode
The name string for texture add modeas ARBtexture _env _add.
Texture add mode was promoted to a core feature in OpenGL 1.3 (see ap-

pendixF).
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G.7 Cube Map Textures

The name string for cube mappingd& ARBtexture _cube _map.
Cube mapping was promoted to a core feature in OpenGL 1.3 (see appgndix

G.8 Compressed Textures

The name string for compressed textureGlisARBtexture _compression
Compressed texture was promoted to a core feature in OpenGL 1.3 (see ap-
pendixF).

G.9 Texture Border Clamp

The name string for texture border clampEk ARBtexture _border _clamp .
Border clamp was promoted to a core feature in OpenGL 1.3 (see appgndix

G.10 Point Parameters

Point parameters supports additional geometric characteristics of points, allowing
the size of a point to be affected by linear or quadratic distance attenuation, and
increasing control of the mapping from point size to raster point area and point
transparency.

The name string for point parametersik ARBpoint _parameters

G.11 \Vertex Blend

Vertex blending replaces the single modelview transformation with multiple vertex
units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the modelview matrices.

The name string for vertex blend@_ARBvertex _blend .

G.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of modelview matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

Version 1.3 - August 14, 2001



272 APPENDIX G. ARB EXTENSIONS

The name string for matrix palette @ ARBmatrix _palette

G.13 Texture Combine Environment Mode

The name string for texture combine mod&isARBtexture _env _combine .
Texture combine was promoted to a core feature in OpenGL 1.3 (see ap-
pendixF).

G.14 Texture Crossbar Environment Mode

Texture crossbar extends the texture combine environment mode by allowing use
of the texture color from different texture units as sources to the texture combine
function.

The name string for texture crossbar mode is
GLARBtexture _env _crosshar

G.15 Texture Dot3 Environment Mode

The name string for DOT3 iISLARBtexture _env _dot3 .
DOT3 was promoted to a core feature in OpenGL 1.3 (see app&hndix
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x_BIAS, 82, 228

x_SCALE, 82, 228

2D, 191, 192 239

2 BYTES, 194

3D, 191, 192

3D_COLOR,191, 192
3D_COLORTEXTURE,191, 192
3.BYTES, 194
4D_COLORTEXTURE, 191, 192
4 BYTES, 194

1,117,125 126, 143 202, 222
2,117,125 126, 202 222
3,117,125 126, 202, 222
4,117,125 126 202

ACCUM, 172

Accum, 172

ACCUM_BUFFERBIT, 170, 208

ACTIVE_TEXTURE, 20, 35, 42, 146,
183 198 199

ActiveTexture 35, 152

ADD, 147,149 150, 172, 263

ADD _SIGNED, 150

ALL _ATTRIB_BITS, 207, 208

ALPHA, 82, 95, 106, 107, 118-120,
147149, 176, 177, 202, 228
229, 231, 238,248 254

ALPHA12,119

ALPHA16,119

ALPHA4, 119

ALPHAS, 119

ALPHA_BIAS, 104

ALPHA_SCALE, 104, 147

ALPHA_TEST,159

AlphaFunc,159
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ALWAYS, 159-161, 226
AMBIENT, 51, 52, 54
AMBIENT _AND _DIFFUSE,51, 52, 54
AND, 166

AND_INVERTED, 166
AND_REVERSE,166
Antialiasing,72
AreTexturesResident45 146 195
ArrayElement,19, 23-25, 193
AUTO_NORMAL, 184

AUX1i, 168

AUXn, 168 175

AUXO0, 168 175

BACK, 50, 51,53, 73, 76, 168, 175, 199,
220

BACK_LEFT, 168 175

BACK_RIGHT, 168 175

Begin,12, 13, 15-19, 24, 25, 28, 56, 66,
70,73, 76,185, 186,191

BGR, 95,176,177

BGRA, 95, 97, 101, 176, 252

BindTexture, 144, 145

BITMAP, 75, 83, 86, 93, 94, 101, 114,
177,202

Bitmap,114

BITMAP_TOKEN, 192

BLEND, 147, 149, 162, 166

BlendColor,81, 162

BlendEquation81, 162, 163

BlendFuncg81, 162 163

BLUE, 82, 95, 176, 177, 228 229, 23],
238

BLUE_BIAS, 104

BLUE_SCALE, 104

BYTE, 22,94, 177,178,194
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C3F.V3F, 26, 27

C4F.N3F_V3F, 26, 27

C4UB.V2F, 26, 27

C4UB.V3F, 26, 27

CallList, 19, 193 194

CallLists, 19, 193 194

CCW, 50, 220

CLAMP, 133 134, 138

CLAMP_TO_BORDER,133 134, 263

CLAMP_TO_EDGE, 133 134, 138 253

CLEAR, 166

Clear,170,171

ClearAccum,]171

ClearColor,170

ClearDepth171

ClearIndex,170

ClearStencil 171

CLIENT_ACTIVE_TEXTURE, 23, 198
199

CLIENT_ALL _ATTRIB_BITS, 207, 208

CLIENT_PIXEL_STOREBIT, 208

CLIENT_VERTEX_ARRAY _BIT, 208

ClientActiveTexture23, 195

CLIP_PLANE;, 40

CLIP_PLANEDO, 40

ClipPlane 40

COEFF,200

COLOR, 31, 35, 85, 88, 89, 125,180

Color, 19, 21, 44, 57

Color3,21

Color4,21

COLORARRAY, 23, 26

COLORARRAY _POINTER,206

COLORBUFFERBIT, 170,171, 208

COLORINDEX, 75, 83, 86, 93, 95,
105, 114, 176, 180, 201, 202

COLOR.INDEXES,52, 55

COLORLOGIC.OP, 166

COLORMATERIAL, 51,54

COLOR.MATRIX, 203

COLORMATRIX _STACK_DEPTH,
203

COLOR.TABLE, 83, 86, 105

COLOR.TABLE_ALPHA_SIZE, 203

COLOR.TABLE_BIAS, 83, 84, 203

INDEX

COLORTABLE BLUE_SIZE, 203
COLORTABLE _FORMAT, 203
COLORTABLE GREENSIZE, 203
COLORTABLE _INTENSITY_SIZE,
203
COLORTABLE _LUMINANCE _SIZE,
203
COLORTABLE _RED_SIZE, 203
COLORTABLE _SCALE, 83-85, 203
COLORTABLE WIDTH, 203
ColorMask,169, 170
ColorMaterial,51, 53, 54, 184, 245, 250
ColorPointer,19, 22, 23, 26, 195
ColorSubTableg5
ColorTable82, 84-86, 110,111, 195
ColorTableParamete84
ColorTableParameterf@3
Colorub,57
Colorui,57
Colorus,57
COMBINE, 147, 150 152, 263
COMBINE_ALPHA, 147, 1506-152
COMBINE_RGB, 147, 150-152
COMPILE, 193 245
COMPILELAND _EXECUTE, 193 194
COMPRESSEDALPHA, 120
COMPRESSEDNTENSITY, 120
COMPRESSEDLUMINANCE, 120
COMPRESSEDLUMINANCE _ALPHA,
120
COMPRESSEDRGB, 120
COMPRESSEDRGBA, 120
COMPRESSEDTEXTURE_ FORMATS,
117
CompressedTeximage3l
CompressedTexlmagelD29-131
CompressedTeximage2D?29-131
CompressedTeximage3D29-131
CompressedTexSublmagelTR0-132
CompressedTexSublmage230-132
CompressedTexSublmage330-132
CONSTANT, 149 151, 225
CONSTANTALPHA, 81, 163 164
CONSTANTATTENUATION, 52
CONSTANT.BORDER,108 109
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CONSTANT.COLOR,81, 163 164
CONVOLUTION_1D, 87, 89, 106, 122,
204
CONVOLUTION_2D, 86-88, 106, 122,
204
CONVOLUTION_.BORDER COLOR,
108 204
CONVOLUTION_.BORDERMODE,
108 204
CONVOLUTION_FILTER_BIAS,
86-88, 204
CONVOLUTION_FILTER_SCALE,
86-89, 204
CONVOLUTION_FORMAT, 204
CONVOLUTION_HEIGHT, 204
CONVOLUTION_WIDTH, 204
ConvolutionFilter1D 87-89
ConvolutionFilter2D 86-89
ConvolutionParameteg?, 108
ConvolutionParameterf6, 87, 108
ConvolutionParameterigs, 108
COPY, 166, 226
COPY.INVERTED, 166
COPY_PIXEL_TOKEN, 192
CopyColorSubTableg5
CopyColorTable84, 85
CopyConvolutionFilter1 D89
CopyConvolutionFilter2Dg88
CopyPixels,79, 81, 84, 85, 88, 89, 106,
125173 177,179 180 190
CopyTeximagelD106, 125 127, 140
CopyTeximage2D]106, 125 127, 140
CopyTeximage3D127
CopyTexSublmagel,06 126-129
CopyTexSublmage2,06, 126-129
CopyTexSublmage3D106, 126 127,
129
CULL _FACE, 73
CullFace,73, 78
CURRENTBIT, 208

CURRENT.RASTERTEXTURE.COORDS,

42,244
CURRENT.TEXTURE_.COORDS 20
CW, 50
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DECAL, 147,148

DECR, 160

DeleteLists,195

DeleteTexturesl45 195

DEPTH, 180 228

DEPTHBIAS, 82, 104

DEPTHBUFFERBIT, 170, 171, 208

DEPTH.COMPONENT,83, 86, 93, 95,
116,173 176,180, 201

DEPTHSCALE,82, 104

DEPTHTEST, 161

DepthFuncl161

DepthMask,169, 170

DepthRange30, 198 245

DIFFUSE,51, 52

Disable,36, 39, 40, 46, 51, 62, 63, 66,
69, 73, 75, 77, 110-112, 149,
154, 158-162, 165 166, 183
184

DisableClientState]l9, 22, 23, 26, 28,
195

DITHER, 165

DOMAIN, 200

DONT_CARE, 196, 234

DOT3.RGB, 150

DOT3.RGBA, 150

DOUBLE, 22

DRAW_PIXEL_TOKEN, 192

DrawArrays,24, 193

DrawBuffer,16 7171

DrawElements24, 25, 193 254

DrawPixels, 75, 79-81, 83, 86, 92-96,
101, 103 106, 113 114, 116
173 177,180 190

DrawRangeElement&5, 193 237

DST_ALPHA, 164

DST.COLOR,164

EDGEFLAG_ARRAY, 23, 26
EDGE.FLAG_ARRAY _POINTER,206
EdgeFlag,18, 19

EdgeFlagPointef9, 22, 23, 195
EdgeFlagv]18

EMISSION,51, 52
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Enable 36, 39, 40, 46,51, 62, 63, 66, 69,
73,75,77,110-112, 149, 154,
158-161, 165 166, 183 184,
197

ENABLE_BIT, 208

EnableClientState]l9, 22, 23, 26, 28,
195

End, 12, 13, 15-19, 24, 25, 28, 56, 66,
73, 76,185 186, 191

EndList,193

EQUAL, 159-161

EQUIV, 166

EVAL _BIT, 208

EvalCoord,19, 183 184

EvalCoord1,184-186

EvalCoord1d 185

EvalCoord1f,185

EvalCoord2,184-186

EvalMesh1,185

EvalMesh2,185 186

EvalPoint,19

EvalPoint1,186

EvalPoint2,186

EXP, 154, 155 217

EXP2,154

EXT _bgra,252

EXT_blendcolor, 256

EXT_blendlogic_op, 248

EXT_blendminmax,256

EXT _blendsubtract256

EXT _color_subtable255

EXT _color_table,255

EXT _convolution,255

EXT _copy.texture,249

EXT_draw.rangeelements254

EXT_histogram 256

EXT_packedpixels,253

EXT _polygonoffset,248

EXT_rescalenormal,253

EXT _separatespecularcolor, 253

EXT _subtexture249

EXT _texture,248, 249

EXT _texture3D,252

EXT _textureobject,249

EXT _vertexarray,247

INDEX

EXTENSIONS,81, 206, 207, 269, 270
EYE_LINEAR, 38, 39, 199, 225
EYE_PLANE, 38

FALSE, 18, 47, 49, 79, 80, 82, 90, 91,
101, 104, 112 113 143 146,
159 175 198 202, 205

FASTEST,196

FEEDBACK, 188-190, 246

FEEDBACK BUFFERPOINTER,206

FeedbackBuffer] 89, 190, 195

FILL, 76-79, 185 220, 245, 248

Finish,195 196, 244

FLAT, 56, 245

FLOAT, 22, 26-28, 94, 177, 178 194,
214,215

Flush,195 244

FOG,154

Fog, 154, 155

FOG.BIT, 208

FOG.COLOR,155

FOG.DENSITY, 154

FOG.END, 154

FOG_HINT, 196

FOG.INDEX, 155

FOG.MODE, 154, 155

FOG.START, 154

FRONT, 50, 51, 54, 73, 76, 168, 175
199

FRONT.AND_BACK, 50, 51, 53, 54,
73, 76,168

FRONT.LEFT, 168 175

FRONT.RIGHT, 168, 175

FrontFaceb0, 73

Frustum 33, 34, 245

FUNC_ADD, 162 163 165, 226

FUNC_REVERSESUBTRACT, 163

FUNC_SUBTRACT, 162

Genlists, 194, 195
GenTextures] 45, 195, 202
GEQUAL, 159-161

Get, 20, 31, 42,195, 197,198
GetBooleanv159 197,198 209, 211
GetClipPlane199
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GetColorTable86, 175, 203
GetColorTableParametet3
GetCompressedTexlmage, 130-132,
196, 200-202
GetConvolutionFilterl75 204
GetConvolutionParametetD4
GetConvolutionParameterig,/
GetDoublev,197, 198 209, 211
GetError,11
GetFloatv,159 197, 198, 203 209 211
GetHistogram91, 175 204
GetHistogramParamet&t05
Getlintegerv,25, 35, 62, 197, 198 203
209 211
GetLight,199
GetMap,199, 200
GetMaterial 199
GetMinmax,175, 205
GetMinmaxParamete?06
GetPixelMap,199 200
GetPointerv206
GetPolygonStipple202
GetSeparableFiltef,75 204
GetString,206, 207
GetTexEnv,199
GetTexGen]199
GetTexlmagel06, 144, 201, 203-205
GetTeximagelD]175
GetTeximage2D]175
GetTeximage3D175
GetTexLevelParametet99, 200
GetTexParametei,99
GetTexParameterfi,44, 146
GetTexParameteri,44, 146
GL_ARB _matrix palette, 272
GL_ARB_multisample262, 270
GL_ARB_multitexture,263 270
GL_ARB_point parameters}71
GL_ARB _textureborderclamp, 264,
271
GL_ARB_texturecompression?61, 271
GL_ARB_texturecubemap,262 271
GL_ARB_textureenv.add,263 270
GL_ARB_textureenv.combine, 263
272
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GL_ARB_textureenv.crossbar272

GL_ARB_textureenv.dot3,263 272

GL_ARB_transposamatrix, 264, 270

GL_ARB_vertexblend,271

GREATER,159-161

GREEN,82,95,176,177,228 229,231,
238

GREENBIAS, 104

GREENSCALE, 104

Hint, 196
HINT _BIT, 208
HISTOGRAM, 90, 91, 112, 205
Histogram,90, 91, 112, 195
HISTOGRAM_ALPHA_SIZE, 205
HISTOGRAM_BLUE_SIZE, 205
HISTOGRAM_FORMAT, 205
HISTOGRAM_GREENSIZE, 205
HISTOGRAM_LUMINANCE _SIZE,
205
HISTOGRAM_RED_SIZE, 205
HISTOGRAM_SINK, 205
HISTOGRAM_WIDTH, 205
HP_convolutionbordermodes 255

INCR, 160
INDEX, 238
Index, 19, 21
INDEX_ARRAY, 23, 26
INDEX_ARRAY _POINTER,206
INDEX_LOGIC_OP,166
INDEX_OFFSET82, 104, 228
INDEX_SHIFT, 82, 104, 228
IndexMask,169, 170
IndexPointer]19, 22, 23, 195
InitNames,187
INT, 22,94, 177,178,194
INTENSITY, 90, 91, 106, 107, 118-120,
148, 149, 202 229, 248
INTENSITY12,90, 91, 119
INTENSITY16,90, 91, 119
INTENSITY4, 90, 91, 119
INTENSITYS, 90, 91, 119
InterleavedArraysl9, 26, 27, 195
INTERPOLATE, 150
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INVALID _ENUM, 12, 23, 35, 38, 39,
50, 80, 86, 90, 91, 93 125
129 131, 144, 201

INVALID _.OPERATION,12, 19, 80, 93,
97, 129-132, 144, 168 172
173 175 176, 183 187189,
193 200, 202

INVALID _VALUE, 12, 22, 25, 31, 34,
51, 63, 66, 79, 81, 82, 84, 85,
87, 90, 117, 120-122, 125
128 130, 131, 140 146, 154
158 170, 182 183 185 193
200-202

INVERT, 160, 166

IsEnabled;158 195 197, 209,211

IsList, 195

IsTexture, 195, 202

KEEP,160, 161, 226

LEFT, 168 175

LEQUAL, 159-161

LESS,159-161, 226

Light, 50-52

LIGHT3, 50, 51, 246

LIGHTO, 50

LIGHT_MODEL_AMBIENT, 52

LIGHT _MODEL_COLOR CONTROL,
52

LIGHT_MODEL_LOCAL .VIEWER,
52

LIGHT_MODEL_TWO_SIDE, 52

LIGHTING, 46

LIGHTING _BIT, 208

LightModel, 50, 52

LINE, 76-78, 185, 186, 220, 248

LINE_BIT, 208

LINE_LOOP, 15

LINE_RESETTOKEN, 192

LINE_SMOOTH, 66, 72

LINE_SMOOTHHINT, 196

LINE_STIPPLE,69

LINE_STRIP,15, 185

LINE_TOKEN, 192

LINEAR, 133 138§ 140, 141, 143 154

INDEX

LINEAR_ATTENUATION, 52

LINEAR _MIPMAP_LINEAR, 133 139,
140

LINEAR _MIPMAP_NEAREST, 133
139 140

LINES, 15, 70

LineStipple,69

LineWidth, 66

LIST_BIT, 208

ListBase, 194, 195

LOAD, 172

Loadldentity,32

LoadMatrix, 31, 32

LoadMatrix[fd], 32

LoadName 187

LoadTransposeMatrix32

LoadTransposeMatrix[fd]32

LOGIC_OP,166

LogicOp, 166

LUMINANCE, 95, 102, 106, 107, 117~
120, 148 149 176, 177, 202,
229 231, 248

LUMINANCE12, 119

LUMINANCE12 ALPHA12,119

LUMINANCE12 ALPHA4, 119

LUMINANCEL1S6, 119

LUMINANCE16_ALPHA16,119

LUMINANCEA4, 119

LUMINANCE4 _ALPHA4, 119

LUMINANCEG6_ALPHA2, 119

LUMINANCES, 119

LUMINANCES8 _ALPHAS, 119

LUMINANCE _ALPHA, 95, 102 106,
107, 117-120, 148 149 176,
177,202

Map1,181-183 198

MAP1_.COLORA4, 182

MAP1_INDEX, 182

MAP1_NORMAL, 182
MAP1.TEXTURE.COORD1,182 184
MAP1.TEXTURE.COORD?2,182, 184
MAP1.TEXTURE.COORD3, 182
MAP1.TEXTURE.COORDA4, 182
MAP1.VERTEX_3, 182
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MAP1.VERTEXA4, 182

Map2,182, 183 198

MAP2_VERTEX_3, 184

MAP2_VERTEX 4, 184

MAP_COLOR,82, 104, 105

MAP_STENCIL,82, 105

MAP_VERTEX_3, 184

MAP_VERTEX 4, 184

Map{12}, 183

MapGrid1,185

MapGrid2,185

Material, 19, 50-52, 55, 245

MatrixMode, 31

MAX, 163

MAX _3D_TEXTURE_SIZE, 121

MAX _ATTRIB_STACK_DEPTH, 207

MAX _CLIENT_ATTRIB_STACK_DEPTH,
207

MAX _COLORMATRIX _STACK_DEPTH,
203

MAX _CONVOLUTION_HEIGHT, 87,
204

MAX _CONVOLUTION_WIDTH, 87,
204

MAX _CUBE_.MAP_TEXTURE_SIZE,
121

MAX _ELEMENTS.INDICES, 25

MAX _ELEMENTSVERTICES,25

MAX _EVAL _ORDER,182, 183

MAX _PIXEL_MAP_TABLE, 82, 104

MAX _TEXTURE_SIZE, 121

MAX _TEXTURE_UNITS, 13, 20, 21,
28, 209

MIN, 163

MINMAX, 91, 112, 205, 206

Minmax, 91, 113

MINMAX _FORMAT, 206

MINMAX _SINK, 206

MODELVIEW, 31, 35

MODELVIEW _MATRIX, 198

MODULATE, 147-150, 225

MULT, 172

MULTISAMPLE, 62, 66, 72, 78, 113
115 158 167

MULTISAMPLE _BIT, 208
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MultiTexCoord,20, 23, 35
MultMatrix, 31-33
MultMatrix[fd], 32
MultTransposeMatrix32
MultTransposeMatrix[fd] 32

N3F.V3F, 26, 27

NAND, 166

NEAREST,133 137, 140, 141

NEARESTMIPMAP_LINEAR, 133
139-141, 143

NEARESTMIPMAP_NEAREST, 133
139-141

NEVER, 159-161

NewList,193 194

NICEST, 196

NO_ERROR,11

NONE, 167169, 171

NOOP,166

NOR, 166

Normal, 19, 20

Normal3,8, 20

Normal3d,8

Normal3dv,8

Normal3f,8

Normal3fv,8

NORMAL _ARRAY, 23, 28

NORMAL_ARRAY _POINTER,206

NORMAL_MAP, 38, 39, 262

NORMALIZE, 36

NormalPointer]19, 22, 23, 28, 195

NOTEQUAL, 159-161

NUM_COMPRESSEDTEXTURE_FORMATS,

117

OBJECTLINEAR, 38, 39, 199
OBJECTPLANE, 38
ONE, 164, 165 226
ONE_.MINUS_CONSTANT.ALPHA,
81,163 164
ONE.MINUS_CONSTANT.COLOR,
81,163 164
ONE.MINUS_DST_ALPHA, 164
ONE.MINUS_DST_.COLOR, 164
ONE.MINUS_SRCALPHA, 151, 164
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ONE_.MINUS_SRCCOLOR, 151, 164
OPERANDN_ALPHA, 147,151, 152
OPERANIN_RGB, 147, 151, 152
OR, 166

OR.INVERTED, 166
OR_.REVERSE,166

ORDER,200

Ortho, 33, 34, 245
OUT_.OF.MEMORY, 11, 12,193

PACK_ALIGNMENT, 175,228
PACK_IMAGE _HEIGHT, 175, 201, 228
PACK_LSB_FIRST, 175 228
PACK_ROW_LENGTH, 175, 228
PACK_SKIP_.IMAGES, 175, 201, 228
PACK_SKIP_PIXELS, 175,228
PACK_SKIP_.ROWS,175, 228
PACK_SWAPBYTES, 175, 228
PASSTHROUGH.TOKEN, 192
PassThroughl 91
PERSPECTIVECORRECTIONHINT,
196
PIXEL_.MAP_A_TO_A, 83, 104
PIXEL_.MAP_B_TO_B, 83, 104
PIXEL.MAP_G_TO_G, 83,104
PIXEL_MAP_I_TO_A, 83, 105
PIXEL_MAP_I_TO_B, 83, 105
PIXEL_MAP_I_TO_G, 83, 105
PIXEL_.MAP_I_TO.I, 83, 105
PIXEL_.MAP_I_TO.R, 83, 105
PIXEL_.MAP_R_TO_R, 83, 104
PIXEL_.MAP_S_TO_S, 83, 105
PIXEL_MODE_BIT, 208
PixelMap,79, 81-83, 180
PixelStore 19, 79-81, 175 180, 195
PixelTransfer,/9, 81, 82, 110, 180
PixelZoom,103 113
POINT, 76-78, 185, 186, 220, 248
POINT_BIT, 208
POINT_.SMOOTH, 63, 66
POINT_.SMOOTHHINT, 196
POINT_TOKEN, 192
POINTS,15, 185
PointSize 63
POLYGON, 16, 18

INDEX

POLYGONBIT, 208

POLYGONOFFSETFILL, 77,78

POLYGONOFFSETLINE, 77,78

POLYGON. OFFSETPOINT, 77

POLYGON.SMOOTH,73, 78

POLYGON.SMOOTHHINT, 196

POLYGON.STIPPLE,75

POLYGON.STIPPLEBIT, 208

POLYGON.TOKEN, 192

PolygonMode/1, 76, 78, 188 190

PolygonOffset/7

PolygonStippley5

PopAttrib,207, 209, 246

PopClientAttrib,19, 195 207, 209

PopMatrix,35

PopName]187

POSITION,52, 199

POSTCOLORMATRIX _z_BIAS, 82

POSTCOLORMATRIX _z_SCALE,
82

POSTCOLORMATRIX _ALPHA BIAS,
111

POSTCOLORMATRIX _ALPHA _SCALE,
111

POSTCOLORMATRIX BLUE_BIAS,
111

POSTCOLORMATRIX BLUE_SCALE,
111

POSTCOLORMATRIX _COLORTABLE,
83 111

POSTCOLORMATRIX _GREENBIAS,
111

POSTCOLORMATRIX _GREENSCALE,
111

POST.COLORMATRIX _RED_BIAS,
111

POSTCOLORMATRIX _RED_SCALE,
111

POST.CONVOLUTION_z_BIAS, 82

POST.CONVOLUTION_z_SCALE, 82

POSTCONVOLUTION_ALPHA BIAS,
110

POSTCONVOLUTION_ALPHA_SCALE,
110

POSTCONVOLUTION_BLUE_BIAS,
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110
POST.CONVOLUTION_BLUE_SCALE,
110
POST.CONVOLUTION_.COLORTABLE,
83,110
POSTCONVOLUTION_GREENBIAS,
110
POST.CONVOLUTION_GREENSCALE,
110
POSTCONVOLUTION_RED_.BIAS,
110
POST.CONVOLUTION_RED_SCALE,
110
PREVIOUS,149 151, 225
PRIMARY_COLOR,151
PrioritizeTextures146
PROJECTIONZ31, 35
PROXY_COLORTABLE, 83, 86, 195
PROXY_HISTOGRAM, 90, 91, 195
205

PROXY_POST.COLORMATRIX ,COLORTA%FQ
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RasterPos242

RasterPos3}2

RasterPos#42

ReadBuffer,175, 180

ReadPixels,79, 81, 94-96, 106, 173
177,180 195 201-203

Rect,28, 73

RED, 82, 95, 176, 177, 228 229, 231,
238

RED_BIAS, 104

RED_SCALE, 104

REDUCE,108 110 230

REFLECTION.MAP, 38, 39, 262

RENDER,188 189 239

RENDERER 206

RenderMode188-190, 195

REPEAT,133 134, 137,138 143 224

REPLACE,147, 148 150, 160

REPLICATE. BORDER,108 109

SCALENORMAL, 36

83 195 SetHistogran?05
PROXY_POSTCONVOLUTION.COLOR TAB[JE SetMinmaxz06

83,195 TURN, 172

' RGB, 95, 97, 101, 106, 107, 117-120

PROXY,TZ%)(()TURElD, 122, 144, 195, SO o8 Lo
PROXY_TEXTURE 2D, 121, 144, 195, RGB10,119

200 RGB10A2, 119
PROXY_TEXTURE.3D, 116, 143 144, RGB12,119

195, 200 RGB16,119
PROXY.TEXTURE CUBE MAP, 121, RGB4,119

144, 195, 200 RGB5,119
PushAttrib,207, 209 RGB5A1, 119

RGB8,119

PushClientAttrib,19, 195, 207, 209
PushMatrix,35
PushName]87

Q,37-39, 199
QUAD_STRIP,17
QUADRATIC_ATTENUATION, 52
QUADS, 18

R, 37,38,199
R3.G3.B2,119
RasterPos42, 188, 245

RGB_SCALE, 147

RGBA, 85, 89-91, 95,97, 101, 106, 107,
117120, 148 149 176, 180,
202 229232

RGBA12,119

RGBA16,119

RGBA2,119

RGBA4,119

RGBAS, 119

RIGHT, 168, 175

Rotate, 33, 245
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S, 37, 38,199

SAMPLE ALPHA _TO_COVERAGE,
158

SAMPLEALPHA _TO_ONE, 158, 159

SAMPLE BUFFERS, 62, 66, 72, 78,
113 115 158 167,170,175

SAMPLE_COVERAGE,158 159

SAMPLE_COVERAGEINVERT, 158
159

SAMPLE_COVERAGEVALUE, 158
159

SampleCoveragéd,59

SAMPLES,62

Scale,33, 245

Scissor,158

SCISSORBIT, 208

SCISSORTEST, 158

SELECT,188 189, 246

SelectBuffer,188, 189, 195

SELECTION.BUFFERPOINTER,206

SEPARABLEZ2D, 88, 106, 122 204

SeparableFilter2C88

SEPARATESPECULARCOLOR,48

SET,166

SGl.color.matrix, 255

SGIS multitexture,260

SGIStextureedgeclamp,254

SGIStexturelod, 254

ShadeModel56

SHININESS 52

SHORT,22, 94, 177,178, 194

SINGLE.COLOR,47, 48, 218

SMOOQTH, 56, 217

SOURCH_ALPHA, 147,151, 152

SOURCHL_RGB, 147,151, 152

SPECULAR,51, 52

SPHEREMAP, 38, 39, 262

SPOTCUTOFF,52

SPOTDIRECTION,52, 199

SPOTEXPONENT,52

SRCALPHA, 149, 151, 164, 225

SRCALPHA_SATURATE, 164

SRCCOLOR, 149,151, 164, 225

STACK_OVERFLOW, 12, 35, 187, 207

INDEX

STACK_.UNDERFLOW, 12, 35, 187,
207

STENCIL, 180

STENCILBUFFERBIT, 170,171, 208

STENCILINDEX, 83, 86, 93, 95, 103
116,173 175 176, 180, 201

STENCIL.TEST, 160

StencilFunc160, 244

StencilMask,169, 170,173 244

StencilOp,160, 161

SUBTRACT, 150

T, 37,199

T2F_.C3F.V3F, 26, 27

T2F.C4FN3F.V3F, 26, 27

T2F.C4UB_V3F, 26, 27

T2F_N3F.V3F, 26, 27

T2F.V3F, 26, 27

T4F_C4F.N3F_V4F, 26, 27

T4F.VAF, 26, 27

TABLE_TOO_LARGE, 12, 84, 90

TexCoord,19, 20

TexCoord120

TexCoord220

TexCoord320

TexCoord4 20

TexCoordPointer]9, 22, 23, 26, 195

TexEnv,147, 152

TexGen,37-39

Texlmage 127

TexlmagelD,80, 106, 108 118 122
123 125, 126, 129 140, 144,
195

Texlmage2D 80, 90, 91, 106, 108 118,
121-123 125, 126, 129 140,
144,195

TexImage3D,80, 116, 118 120-123
126, 129, 140, 143 144, 195,
201

TexParametef, 32

TexParameter][if]136 140

TexParameterfl 46

TexParameterfvl 46

TexParameteril 46

TexParameterivi46
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TexSublmagel27
TexSublmagelD,106, 126, 128 129
131
TexSublmage2D,106, 126, 128 129,
131
TexSublmage3D126, 127, 129 131
TEXTURE, 31, 34, 35, 149, 151, 225
TEXTURE;, 20
TEXTUREDO, 20, 35, 183 190, 209, 214,
225
TEXTUREZ1,209
TEXTURE.zD, 222
TEXTURE_1D, 106,122 125 126,132,
144,145 149 199, 201
TEXTURE.2D, 121, 125,126,132, 144,
145 149 199 201
TEXTURE.3D, 116,126, 132, 143-145
149,199 201
TEXTURE.ALPHA _SIZE, 200
TEXTURE.BASE LEVEL, 123 132
133 140, 143
TEXTUREBIT, 207, 208
TEXTURE_BLUE_SIZE, 200
TEXTURE.BORDER,130, 132,200
TEXTURE.BORDERCOLOR, 132
133 139 143
TEXTURE_.COMPONENTS200
TEXTURE.COMPRESSEDMAGE _SIZE,
130, 131, 200, 201
TEXTURE_.COMPRESSIONHINT,
196
TEXTURE_.COORDARRAY, 23, 26
TEXTURE.COORDARRAY _POINTER,
206
TEXTURE.CUBE.MAP, 122 132, 144,
145, 149 199, 200, 222
TEXTURE.CUBE.MAP_*, 122
TEXTURE.CUBE.MAP_NEGATIVE_X,
121,125 126,135 199 201
TEXTURE.CUBE_.MAP_NEGATIVE.Y,
121,125 126, 135, 200, 201
TEXTURE.CUBE.MAP_NEGATIVE_Z,
121,125,126, 135 200 201
TEXTURE.CUBE.MAP_POSITIVEX,
121, 122 125 126, 135 199,
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201
TEXTURE.CUBE.MAP_POSITIVEY,
121,125 126, 135 200, 201
TEXTURE.CUBE.MAP_POSITIVEZ,
121,125 126, 135 200, 201
TEXTURE.DEPTH,130-132, 200
TEXTURE.ENV, 147, 199
TEXTURE.LENV_COLOR,147
TEXTURE.ENV_MODE, 147, 152, 263
TEXTURE.GEN_MODE, 38, 39
TEXTURE.GENQ, 39
TEXTURE.GEN.R, 39
TEXTURE.GENSS, 39
TEXTURE.GEN.T, 39
TEXTURE.GREENSIZE, 200
TEXTURE.HEIGHT, 130-132, 200
TEXTUREINTENSITY_SIZE, 200
TEXTURE.INTERNAL_FORMAT,
130, 131, 200
TEXTURE_.LUMINANCE _SIZE, 200
TEXTURE.MAG_FILTER, 133 141

143

TEXTURE.MAX _LEVEL, 132 133
140, 143

TEXTURE.MAX _LOD, 132, 133 136,
143

TEXTUREMIN _FILTER, 133 137
139 141143

TEXTURE.MIN_LOD, 132 133 136
143

TEXTURE_PRIORITY, 133 143 146

TEXTURE_RED_SIZE, 200

TEXTURE_RESIDENT,143 146

TEXTURE.WIDTH, 130-132 200

TEXTURE.WRAP.R, 133 134, 138

TEXTURE.WRAP.S, 133 134 137,
138

TEXTURE.WRAP_T, 133 134, 138

TEXTUREN, 152

TRANSFORMBIT, 208

Translate 33, 245

TRANSPOSECOLORMATRIX, 198
203

TRANSPOSEMODELVIEW _MATRIX,
198
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TRANSPOSEPROJECTIONMATRIX,
198

TRANSPOSETEXTURE.MATRIX,
198

TRIANGLE_FAN, 16

TRIANGLE_STRIP,16

TRIANGLES, 16, 18

TRUE, 18, 19, 41, 47, 49, 79, 80, 82, 90,
91, 146, 159 169 175 195
19§ 202, 205

UNPACK_ALIGNMENT, 80, 96, 116
228

UNPACK_IMAGE _HEIGHT, 80, 116
228

UNPACK_LSB_FIRST,80, 101, 228

UNPACK_ROW_LENGTH, 80, 93, 96,

116,228
UNPACK_SKIP_IMAGES, 80, 116
122,228
UNPACK_SKIP_PIXELS, 80, 96, 101,
228
UNPACK_SKIP_.ROWS, 80, 96, 101,
228
UNPACK_SWAP_BYTES, 80, 93, 95,
228
UNSIGNED.BYTE, 22, 24, 27, 94, 98,
177,178 194
UNSIGNED.BYTE_2_3_3_REYV, 94,
96-98, 178
UNSIGNEDBYTE_3.3.2, 94, 96-98,
178
UNSIGNEDL.INT, 22, 24, 94, 100, 177,
178 194
UNSIGNED.INT_10.10.10.2, 94, 97,
100,178
UNSIGNED.INT_2_10_.10_10_REV, 94
97,100,178
UNSIGNED.INT_8.8.8.8, 94, 96, 97,
100, 178
UNSIGNED.INT_8.8_8_.8_REYV, 94, 96,
97,100,178
UNSIGNED.SHORT, 22, 24, 94, 99,
177,178 194

INDEX

UNSIGNED.SHORT.1.5.5.5.REV, 94
96, 97,99, 178

UNSIGNED.SHORTA4.4_4_4, 94, 96,
97,99, 178

UNSIGNED.SHORT 4.4 4 4 REV, 94,
96, 97,99, 178

UNSIGNED.SHORT5.5.5.1, 94, 96,
97,99, 178

UNSIGNED.SHORT.5.6.5, 94, 96, 97,
99, 178

UNSIGNED.SHORT.5.6.5.REV, 94,
96, 97,99, 178

V2F, 26, 27

V3F, 26, 27

VENDOR, 206

VERSION, 206, 207

Vertex,7, 19, 42, 184
Vertex2,19, 28

Vertex2sv,7

Vertex3,19

Vertex3f,7

Vertex4,19

VERTEX_ARRAY, 23, 28
VERTEX_ARRAY _POINTER,206
VertexPointer19, 22, 23, 28, 195
Viewport, 30

VIEWPORT.BIT, 208

WGL_ARB_multisample 262
XOR, 166

ZERO, 160, 164, 165, 226
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