Part 2 - Lecture 15

The Camera Analogy

1. Model Transformations

Arranging objects in a scene
2. View Transformation

Positioning the camera

3. Projection

Choosing a lens \& taking a photo

4. Viewport Transformation

Printing a photo

The View Coordinate System

```
gluLookAt(
    eyeX, eyeY, eyeZ,
    lookAtX, lookAtY, lookAtZ,
    upX, upY, upZ
)
    n = Normalised(Eye - LookAt)
    u = Normalised(Cross(Up, n))
    v=Cross(n, u)
```


View Transformation

- Camera is at the origin looking down negative Z axis
- Could change camera position with translation \mathbf{T} and rotation \mathbf{R}
- But instead of rotating and moving camera, transform our scene inversely so that the camera sees what we want it to see:

- In other words: we translate and rotate view coordinate system so that it is aligned with world coordinate system
- Viewing transform can be done as the last transform in $\mathbf{M}_{\text {ModelView }}$ (i.e. must be set first in program)

Orthographic vs. Perspective Projection

Eyepoint

Perspective Projection of a Vertex

- What are the coordinates of P^{\prime} ?
- Camera-A-P' and Camera-B-P are similar triangles
- Ratios of similar sides are equal:

$$
\frac{P_{y^{\prime}}}{\text { near }}=\frac{P_{y}}{-P_{z}} \Leftrightarrow P_{y^{\prime}}=\frac{\text { near }}{-P_{z}} P_{y}
$$

- When looking from the bottom, we get analogous calculations for the x -coordinate of P^{\prime} :
- $\begin{aligned} & \text { Perspective } \\ & \text { scaling factor }\end{aligned}$ Spersp $=\frac{\text { near }}{-P_{z}}$

$$
\frac{P_{x}^{\prime}}{\text { near }}=\frac{P_{x}}{-P_{z}} \Leftrightarrow P_{x^{\prime}}^{\prime}=\frac{\text { near }}{-P_{z}} P_{x}
$$

Pseudodepth

- Transformed z^{*} not linear function of $z \quad z^{*}=\frac{(\text { far }+ \text { near }) z+2 \text { far } * \text { near }}{(\text { far }- \text { near }) z}$

Clipping

- Determine which lines are in the canonical view volume (using NDC)
- Outside of the view volume is given by:
$\mathrm{p}_{\mathrm{x}}<-1, \mathrm{p}_{\mathrm{x}}>+1, \mathrm{p}_{\mathrm{y}}<-1, \mathrm{p}_{\mathrm{y}}>+1$,
$\mathrm{p}_{\mathrm{z}}<-1, \mathrm{p}_{\mathrm{z}}>+1$
(\rightarrow clip planes)
- Each line is either...

1. completely inside
\rightarrow trivial accept
2. completely outside

$$
\rightarrow \text { trivial reject }
$$

3. Partially in the view volume
\rightarrow need to find out which part is inside

Trivial accept for: CB and GF

Trivial reject for: DA

Partially visible:
$A B, C D, E F$ and EG

Trivial Accept and Reject Tests

- For each point, check if it is outside of left (L), right (R), bottom (B), top (T), near (N) and far (F) clip plane
- Create table with outcodes:

1 if point is outside, 0 if inside

- Trivial reject of a line PQ :
$=P$ and Q outside of the same clip plane
= outcodes for same plane both 1
$=($ outcode $P \&$ outcode Q)!=0
- Trivial accept of a line PQ :
= both endpoints inside of all clip planes
= all outcodes 0
$=($ outcode C | outcode D)==0

	L	R	B	T	N	F
A	0	0	0	$\mathbf{1}$	0	$\mathbf{1}$
B	0	0	0	0	0	0
C	0	0	0	0	0	0
D	0	0	0	$\mathbf{1}$	0	0
E	0	0	1	0	0	0
F	0	0	0	0	0	0
G	0	0	0	0	0	0

Phong Illumination Model

- Idea: calculate intensity \mathbf{R} (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
- Variables taken into account:
\square Intensities $\mathbf{I}_{\mathrm{a}}, \mathbf{I}_{\mathrm{d}}, \mathbf{I}_{\mathrm{s}}$ for incident light
\square Surface normal vector \mathbf{m}
\square Vector \mathbf{s} describing the direction to the light source
\square Distance d to light source

\square Vector \mathbf{v} describing the direction to the viewer
\square Reflection coefficients of the surface material $\boldsymbol{\rho}_{\mathrm{a}}, \boldsymbol{\rho}_{\mathrm{d}}, \boldsymbol{\rho}_{\mathrm{s}}$

Phong Illumination Equation

Setting Up Lights

float lightPos0[] = \{-1.0, 2.0, 3.0, 1.0\}; // point source glLightfv(GL_LIGHT0, GL_POSITION, lightPos0);
float lightPos1[] = \{0.0, 1.0, 2.0, 0.0\}; // directional glLightfv(GL_LIGHT1, GL_POSITION, lightPos1);
glEnable(GL_LIGHTING); // enable lighting in general glEnable(GL_LIGHT0); // enable light number 0 glEnable(GL_LIGHT1); // enable light number 1

For setting the properties of lights, use one of
glLightfv(GLenum light, GLenum pname, float* params) glLightf(GLenum light, GLenum pname, float param)
\square light selects a light GL_LIGHTi with $0<i<G L _M A X _L I G H T S ~(8) ~$
\square pname selects a property to set (e.g. GL_POSITION)

- For point sources: set position to $(x, y, z, 1)$
- For directional light sources: set position to ($x, y, z, 0$) (x, y, z) points towards the light source

Using Materials

| float ambient[] = \{0.1, $0.1,0.1,1.0\} ;$ | $/ / \boldsymbol{\rho}_{\mathrm{ar}}, \boldsymbol{\rho}_{\mathrm{ag}}, \boldsymbol{\rho}_{\mathrm{ab}}, 1$ |
| :--- | :--- | :--- |
| float diffuse[] = \{0.4, $0.4,0.6,1.0\} ;$ | $/ / \boldsymbol{\rho}_{\mathrm{dr}}, \boldsymbol{\rho}_{\mathrm{dg}}, \boldsymbol{\rho}_{\mathrm{db}}, 1$ |
| float specular[] = \{0.8, $0.8,1.0,1.0\} ;$ | $/ / \boldsymbol{\rho}_{\mathrm{sr}} / \boldsymbol{\rho}_{\mathrm{sg}}, \boldsymbol{\rho}_{\mathrm{sb}}, 1$ |
| glMaterialfv(GL_FRONT, GL_AMBIENT, ambient); | |
| glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse); | |
| glMaterialfv(GL_FRONT, GL_SPECULAR, specular); | |
| glMaterialf(GL_FRONT, GL_SHININESS, 40.0); | $/ / \boldsymbol{\alpha = 4 0}$ |

Set the current material, then draw primitives (they will use the material) glMaterialfv(GLenum face, GLenum pname, float* params) glMaterialf(GLenum face, GLenum pname, float param)
\square face selects side to use material on (GL_FRONT, GL_BACK or GL_FRONT_AND_BACK)
\square pname selects a property to set (e.g. GL_AMBIENT, GL_EMISSION, GL_AMBIENT_AND_DIFFUSE, GL_SHININESS, ...)

- Set coefficients as RGBA: A (alpha) for color blending, is usually $1{ }_{13}$

Shading Algorithms

Ray Casting Algorithm

Constructing Rays

Wanted: ray (startPoint, direction) from eye through every pixel

- Corners of the view plane in world coords: bottomLeft = centre + (-Wu, -Hv) bottomRight $=$ centre $+(\mathrm{Wu},-\mathrm{Hv})$ topLeft $=$ centre $+(-\mathrm{Wu}, \mathrm{Hv})$ topRight $=$ centre $+(W \mathbf{u}, \mathrm{Hv})$

- Go through all pixels, with column 0 and row 0 at bottomLeft
- Ray direction d=pixeIPos - eye

$$
\mathbf{d}=-N \mathbf{n}+W\left(\frac{2 c}{n C o l s}-1\right) \mathbf{u}+H\left(\frac{2 r}{n R o w s}-1\right) \mathbf{v}
$$

Ray-Object Intersection

- Define each object as an implicit function f :
$f(\mathbf{p})=0$ for every point \mathbf{p} on the surface of the object
(if p is not on surface, then $f(p) \neq 0$)
- Examples for simple objects ("primitives"):
\square Sphere (center at origin, radius 1)
$f(\mathbf{p})=x^{2}+y^{2}+z^{2}-1=|p|^{2}-1$

\square Cylinder (around z-axis, radius 1)

$$
f(\mathbf{p})=x^{2}+y^{2}-1
$$

- Where a ray (eye $+\mathbf{d} t)$ meets the object:

$\mathrm{f}($ eye $+\mathbf{d} t)=0$
\rightarrow solve for t and get intersection point eye $+\mathbf{d} t$

Shadow Feelers

Problem: How do we know if a point \mathbf{p} is in shadow of a light I?
Solution: Check if there is something between \mathbf{p} and \mathbf{I}

1. Calculate (source, d) for a ray that starts at \mathbf{p} and goes to I (a "shadow feeler")
2. Check if there is an intersection with any scene object (\rightarrow use intersect)
3. If there is a ray-object intersection
 do not illuminate \mathbf{p} with the light i.e. do not add R_{d} and R_{s} Otherwise: normal illumination

Transformed Primitives

Problem: How to intersect with transformed primitives? (e.g. scaled and translated unit sphere)

Solution: intersection of ray with transformed primitive is the same as intersection with inversely transformed ray and primitive

- Intersect with transformed ray $\left(\mathbf{e y e}_{\mathbf{t}}+\mathbf{d}_{\mathbf{t}} t\right)$ i.e. eye $e_{t}=M^{-1}$ eye and $d_{t}=M^{-1} d$
- t for the intersection is the same in world and primitive space

Ray Tracing Reflections

Idea: the color of a point is influenced by the color that the ray carries over from the previous reflection

Ray is reflected at \mathbf{q} (blue sphere) before being reflected at \mathbf{p} (white box)
\rightarrow ray has bluish color when it hits the box

Reflectivity: fraction of incident radiation reflected by a surface (between 0 and 1)
Add the fraction of light reflected from q to the reflection at p :

$$
R_{p}=R_{\text {ambient }, p}+R_{\text {diffuse }, p}+R_{\text {specular }, p}+\text { reflectivity }_{p} R_{q}
$$

Seeing Red, Green, Blue (cont'd)

- Example L, M, S responses for various SDF's

Sunlight SDF

Green reflecting object SDF

Yellow reflecting object SDF
- Resulting L, M, and S SRF responses are independent values
- The 3 SRF response values are interpreted as hues by our brain, e.g. red + green $=$ yellow, red + green + blue $=$ white

Aliasing

A signal looks like another signal (the "alias") after sampling

- Not a problem if the signals are still very similar
- But is a problem if the alias looks really different (\rightarrow aliasing artifacts)
- Happens particularly when sampling a high-frequency signal with a low sample frequency

Color Coordinate Space

- Defines 3 SRFs (color matching functions) for some sensing system
- One dimension for each SRF (\rightarrow tristimulus color space)
\square Each dimension represents a primary color \mathbf{P}
\square Coordinate value $=$ resulting SDF integral normalized to $(0,1)$
- Color triple is 3D point defined by chromaticity values ($\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}$)
- Example: RGB color space
\square Primaries:
Red, Green, Blue with basis vectors $R=(0,0,1)$
$G=(1,0,0)$
$B=(0,1,0)$
\square Chromaticity values:
$(r, g, b)=r(R)+g(G)+b(B)$

RGB "color cube"

Exam

- Multiple-choice only
- Closed book
- Question types in my part:
\square A few calculations (involving matrices)
\square Which formula is correct?
\square Which of the statements is false?

\square Given some code:
- "What needs to be changed to achieve X?"
- "What happens if you change X?"

