
Computer Graphics:Computer Graphics:
RecapRecap

Part 2 – Lecture 15

1

The Camera AnalogyThe Camera Analogy
1. Model Transformations

Arranging objects in a scene

2. View Transformation
Positioning the camerag

3 Projection3. Projection
Choosing a lens & taking a photo Lens

4. Viewport Transformation
Printing a photoPrinting a photo

2

The View Coordinate SystemThe View Coordinate System
gluLookAt(gluLookAt(

eyeX, eyeY, eyeZ,
lookAtX, lookAtY, lookAtZ,lookAtX, lookAtY, lookAtZ,
upX, upY, upZ

) n
v

)

n = Normalised(Eye – LookAt)
yu

(y)
u = Normalised(Cross(Up, n))
v = Cross(n, u) xz(,)

3

View TransformationView Transformation
Camera is at the origin looking down negative Z axis
Could change camera position with translation T and rotation R
But instead of rotating and moving camera, transform our scene
inversely so that the camera sees what we want it to see:

T-1 R-1

I th d t l t d t t i di t t

z
x

z
x

z
x

In other words: we translate and rotate view coordinate system
so that it is aligned with world coordinate system
Viewing transform can be done as the last transform in MViewing transform can be done as the last transform in MModelView
(i.e. must be set first in program) 4

Orthographic vs. Perspective Projectiong p p j
Orthographic Projection Perspective Projection
y y

z z

Eyepoint Near planeEyepoint yepo t Near plane
Near plane

Eyepoint

ViewingViewing
volume

Far plane

Look
directionFar plane

Look direction

5

Perspective Projection of a VertexPerspective Projection of a Vertex
What are the coordinates of P’ ?y What are the coordinates of P ?
Camera-A-P’ and Camera-B-P
are similar triangles

y

P
Ratios of similar sides are equal:

z

P’

A B yy PnearPPP
⇔ ''

near

y
z

y
z

P
P

P
Pnear −

=⇔
−

= '

When looking from the bottom, we get analogous calculations g , g g
for the x-coordinate of P’:

Perspective
x

z
x

z

xx P
P

nearP
P

P
near
P

−
=⇔

−
= ''

near

6

Perspective
scaling factor z

persp
P

s
−

=

PseudodepthPseudodepth
Transformed z* not linear function

x: depthof z
near=1
far=2

x: depth
y: pseudodepth()

()znearfar
nearfarznearfarz

−
++

=
∗2*

This is ok because
1. z* monotonic increasing, and near=0 5 near=1g,
2. z* = -1 for z = -near

z* = +1 for z = -far

near=0.5
far=2

near 1
far=10

Avoid very small near
and very large f

near=0.1
far=2

near=1
far=50

and very large far
→ resolution too low for points

that are further awayy

7

near=0.01
far=2

near=1
far=100

ClippingClipping
Determine which lines are in the

y

+1
A

C

D

canonical view volume (using NDC)
Outside of the view volume is given by:
p < 1 p > +1 p < 1 p > +1

z
B

C

Fpx < -1 , px > +1 , py < -1 , py > +1 ,
pz < -1 , pz > +1
(→ clip planes) -1

-1
+1E

F
G

Each line is either…
1. completely inside

t i i l t

E

Trivial accept for:
→ trivial accept

2. completely outside
→ trivial reject

p
CB and GF

Trivial reject for:→ trivial reject
3. Partially in the view volume

→ need to find out which part

j
DA

Partially visible:p
is inside

y
AB, CD, EF and EG

8

Trivial Accept and Reject TestsTrivial Accept and Reject Tests
For each point, check if it is outside

y

+1
A

D

of left (L), right (R), bottom (B), top
(T), near (N) and far (F) clip plane
Create table with outcodes: z

+1

B
C

Create table with outcodes:
1 if point is outside, 0 if inside
Trivial reject of a line PQ:

z

1
-1

+1

F
G

= P and Q outside of the same
clip plane

= outcodes for same plane both 1

-1 +1E

L R B T N F
A 0 0 0 1 0 1

p
= (outcode P & outcode Q)!=0

Trivial accept of a line PQ:
= both endpoints inside of all

A 0 0 0 1 0 1
B 0 0 0 0 0 0
C 0 0 0 0 0 0= both endpoints inside of all

clip planes
= all outcodes 0
= (d | d) 0

C 0 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 1 0 0 0

= (outcode C | outcode D)==0

9

F 0 0 0 0 0 0
G 0 0 0 0 0 0

Phong Illumination ModelPhong Illumination Model
Idea: calculate intensity R (and color) of visible light at a point as the
sum of ambient, diffuse and specular reflection
Variables taken into account:

I t iti I I I f i id t li ht IIntensities Ia, Id, Is for incident light
Surface normal vector m
Vector s describing the direction to the light source

v
m s

I

dVector s describing the direction to the light source
Distance d to light source
Vector v describing the direction to the viewer

ρ
d

Vector v describing the direction to the viewer
Reflection coefficients of the surface material ρa, ρd, ρs

10

Phong Illumination EquationPhong Illumination Equation
Rd RsRa

Angle between
s and m

Angle between
v and r

Ia Specular highlight
s

m

s and m v and r Specular highlight
for different shininess α

Rd,s

)(/)(2dkdkkmhms
++⎟

⎟
⎞

⎜
⎜
⎛ ⋅

+
⋅

+=
α

ρρρ IIIR

v
d

)(/)(dkdkk
mhms qlcsda ++⎟
⎟
⎠

⎜
⎜
⎝

++= ρρρ sda IIIR

11

Setting Up LightsSetting Up Lights
float lightPos0[] = {-1.0, 2.0, 3.0, 1.0}; // point source
glLightfv(GL LIGHT0, GL POSITION, lightPos0);glLightfv(GL_LIGHT0, GL_POSITION, lightPos0);

float lightPos1[] = {0.0, 1.0, 2.0, 0.0}; // directional
glLightfv(GL_LIGHT1, GL_POSITION, lightPos1);

glEnable(GL_LIGHTING); // enable lighting in general
glEnable(GL_LIGHT0); // enable light number 0
glEnable(GL LIGHT1); // enable light number 1

For setting the properties of lights, use one of
glLightfv(GLenum light, GLenum pname, float* params)

g (_); // g

glLightfv(GLenum light, GLenum pname, float params)
glLightf(GLenum light, GLenum pname, float param)

light selects a light GL_LIGHTi with 0 < i < GL_MAX_LIGHTS (8)_ _ _
pname selects a property to set (e.g. GL_POSITION)

For point sources: set position to (x, y, z, 1)
For directional light sources: set position to (x, y, z, 0)
(x,y,z) points towards the light source 12

Using MaterialsUsing Materials
float ambient[] = {0.1, 0.1, 0.1, 1.0}; // ρar,ρag,ρab ,1
float diffuse[] = {0.4, 0.4, 0.6, 1.0}; // ρdr,ρdg,ρdb,1[] { , , , }; // ρdr,ρdg,ρdb ,
float specular[] = {0.8, 0.8, 1.0, 1.0}; // ρsr,ρsg,ρsb ,1

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);
glMaterialfv(GL FRONT GL DIFFUSE diffuse);glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular);

glMaterialf(GL_FRONT, GL_SHININESS, 40.0); // α=40

Set the current material, then draw primitives (they will use the material)
glMaterialfv(GLenum face, GLenum pname, float* params)g ate a (G e u ace, G e u p a e, oat pa a s)
glMaterialf(GLenum face, GLenum pname, float param)

face selects side to use material on (GL_FRONT, GL_BACK or
GL_FRONT_AND_BACK)
pname selects a property to set (e.g. GL_AMBIENT, GL_EMISSION,
GL AMBIENT AND DIFFUSE GL SHININESS)GL_AMBIENT_AND_DIFFUSE, GL_SHININESS, …)

Set coefficients as RGBA: A (alpha) for color blending, is usually 1 13

Shading AlgorithmsShading Algorithms
Flat Shading Gouraud Shading Phong Shading

Simple and fast
Phong equation only
once per face

Still fast
Phong equation at each
vertex

Crisp highlights with
few vertices

once per face vertex
No 0th-order color
discontinuities

Mach Bands Slight mach bands,
Color invariance with
quadrilaterals

Slow
Phong calculation for
every Pixelquadrilaterals,

Problems with highlights
every Pixel

14

Ray Casting AlgorithmRay Casting Algorithm

define scene = ({ objects }, { lights })
define camera (eye, u, v, n)
for (int r = 0; r < nRows; r++) {

for (int c = 0; c < nCols; c++) {
construct ray going through (c, r)
find closest intersection of ray

with an object (smallest t)with an object (smallest t)
find intersection point P
get the surface normal at P

intersect

get the surface normal at P
get the color at the intersection
pixel(c, r) = color

shade

p (,)
} }

15

Constructing RaysConstructing Rays
Wanted: ray (startPoint, direction) from eye through every pixel

Corners of the view plane in world coords:
bottomLeft = centre + (-Wu, -Hv)
bottomRight = centre + (Wu, -Hv)
topLeft = centre + (-Wu, Hv)
topRight = centre + (Wu Hv)topRight = centre + (Wu, Hv)

Go through all pixels, with column 0 and row 0 at bottomLeft
R di ti d i lPRay direction d = pixelPos - eye

vund ⎟
⎞

⎜
⎛ −+⎟

⎞
⎜
⎛ −+−= 1212 rHcWN

16

vund ⎟
⎠

⎜
⎝

−+⎟
⎠

⎜
⎝

−+−= 11
nRows

H
nCols

WN

Ray-Object IntersectionRay-Object Intersection
Define each object as an implicit function f:
f(p) = 0 for every point p on the surface of the object
(if p is not on surface, then f(p) ≠ 0)(p (p))

Examples for simple objects (“primitives”):

Sphere (center at origin radius 1)Sphere (center at origin, radius 1)

f(p) = x2 + y2 + z2 – 1 = |p|2 – 1

Cylinder (around z-axis, radius 1)

f(p) = x2 + y2 – 1 () y

Where a ray (eye + d t) meets the object:
f(eye + d t) = 0f(eye d t) 0
→ solve for t and get intersection point eye + d t

17

Transformed PrimitivesTransformed Primitives
Problem: How to intersect with transformed primitives?

(e.g. scaled and translated unit sphere)

MM
Primitive
Space

World
Space

M-1

Solution: intersection of ray with transformed primitive is the same
as intersection with inversely transformed ray and primitive
Intersect with transformed ray (eyet + dt t)
i.e. eyet = M-1 eye and dt = M-1 d

ft for the intersection is the same in world and primitive space
18

Shadow FeelersShadow Feelers
Problem: How do we know if a point p is in shadow of a light l ?
Solution: Check if there is something between p and l
1. Calculate (source, d) for a ray

that starts at p and goes to l
(a “shadow feeler”)

2. Check if there is an intersection
with any scene object
(→ use intersect)(→ use intersect)

3. If there is a ray-object intersection
between p and l then:between p and l then:
do not illuminate p with the light
i.e. do not add Rd and Rsd s
Otherwise: normal illumination

19

Ray Tracing ReflectionsRay Tracing Reflections
Idea: the color of a point is influenced by the color that the ray

carries over from the previous reflection

Ray is reflected at q (blue sphere)Ray is reflected at q (blue sphere)
before being reflected at p (white box)
→ ray has bluish color when it hits

q

the boxp

Reflectivity: fraction of incident radiation reflected by a surface
(between 0 and 1)
Add the fraction of light reflected from q to the reflection at p:

RtyreflectiviRRRR +++=
20

qppspecularpdiffusepambientp RtyreflectiviRRRR +++= ,,,

Seeing Red Green Blue (cont’d)Seeing Red, Green, Blue (cont d)
Example L, M, S responses for various SDF’s

= =

Sunlight SDF Blue reflecting object SDFg g j

==

Yellow reflecting object SDFGreen reflecting object SDF

Resulting L, M, and S SRF responses are independent values
The 3 SRF response values are interpreted as hues by our brain,
e g red + green = yellow red + green + blue = whitee.g. red + green = yellow, red + green + blue = white

21

Color Coordinate SpaceColor Coordinate Space
Defines 3 SRFs (color matching functions) for some sensing system
One dimension for each SRF (→ tristimulus color space)

Each dimension represents a primary color P
Coordinate value = resulting SDF integral normalized to (0, 1)

Color triple is 3D point defined by chromaticity values (c0, c1, c2)
E l RGB lExample: RGB color space

Primaries:
Red Green Blue

Blue Cyan RGB “color cube”
Red, Green, Blue
with basis vectors
R = (0,0,1)
G (1 0 0)

Magenta
White

G = (1,0,0)
B = (0,1,0)
Chromaticity values:

Green

Chromaticity values:
(r,g,b) = r (R) + g (G) + b (B)

Red Yellow
22

AliasingAliasing
A signal looks like another signal (the “alias”) after sampling

Not a problem if the signals are still very similar
But is a problem if the alias looks really differentBut is a problem if the alias looks really different
(→ aliasing artifacts)
Happens particularly when sampling a high-frequencyHappens particularly when sampling a high frequency
signal with a low sample frequency

Original

Alias

23

ExamExam
Multiple-choice only
Closed book
Question types in my part:Question types in my part:

A few calculations (involving matrices)
Which formula is correct?Which formula is correct?
Which of the statements is false?
Gi dGiven some code:

“What needs to be changed to achieve X?”
“What happens if you change X?”

24

