
Computer Graphics:Computer Graphics:
Rasterization IIRasterization II

Part 2 – Lecture 13

1

Today’s OutlineToday s Outline
Anti-Aliasingas g

Prefiltering
PostfilteringPostfiltering
Supersampling

Drawing Text in OpenGL

2

ANTI-ALIASING

3Images thanks to Sébastien Loisel

Sampling and QuantizationSampling and Quantization
Sampling: reducing a continuous (or very fine-grained) signal to
a discrete (or more coarse-grained) signal by taking samples of it
Quantization: approximating a continuous range (or very large

t) f l ith ll t f di t lset) of values with a smaller set of discrete values
Both needed to represent real-world information digitally
However: means loss of information

4

AliasingAliasing
A signal looks like another signal (the “alias”) after sampling

Not a problem if the signals are still very similar
But is a problem if the alias looks really differentBut is a problem if the alias looks really different
(→ aliasing artifacts)
Happens particularly when sampling a high-frequencyHappens particularly when sampling a high frequency
signal with a low sample frequency

Original

Alias

5

Aliasing ExamplesAliasing Examples
“Jaggies” on edges Moiré patterns when sampling

i i i l ()repetitive signals (e.g. textures)

Original Alias

High-freq signalHigh freq. signal

L f tif t

6Small objects missed
Low-freq. artifact

Anti-AliasingAnti-Aliasing
Trying to avoid that the sampled signal looks too much like a

completely different signal (an “alias”)

1. Prefiltering: determine actual coverageg g
of objects visible in a pixel, and weigh
object color by coverage

2. Postfiltering: smooth image
by calculating pixels as y g p
weighted sum of several pixels

3. Supersampling: increase the
number of samples per pixel,
perform postfilteringperform postfiltering
over subpixels

7

Sampling FiltersSampling Filters
Weighting function for averaging around a sample point

Applied by performing a convolution operation:
1. Place kernel center on the pixel to filter
2. Multiply pixel values with corresponding kernel values
3. Sum up and normalize (sum of weights should be 1)(g)

Reduces artifacts (esp. jaggies) but also blurs the image

B filtBox filter
Average in a square region around each pixel 1 1 1

Kernel is filled with same value everywhere
Rather poor quality, but ok for reducing jaggies

1 1 1
1 1 1

1/9 ⋅

Kernel

8

Kernel

High-Quality FiltersHigh-Quality Filters
1. Weights of high-quality filters drop off radially
2. Better to average over a larger neighborhood

B l filBartlett filter
Pixels closer to the center weigh more 1 2 1

wLike placing a cone onto the kernel
(height = relative weight)

2 4 2
1 2 1

1/16 ⋅
w

r

Gaussian Filter
Pixels near the center weigh morePixels near the center weigh more
according to Gauss function
Like placing 3-dimensional bell curvep g
onto the kernel

9

SupersamplingSupersampling
Sample more pixels than are actually visible (subpixels), then

average over them (using a filter)
Compute N samples in x and y for each screen pixelp p y p
Approximates prefiltering

Ad t
N=2

Advantages
Less jaggies
Can also capture small objects

DisadvantagesDisadvantages
Expensive (N2 times as many pixels to compute)
Doesn't eliminate Moiré because samples are still uniformlyDoesn t eliminate Moiré because samples are still uniformly
spaced

10

Anti-Aliasing ExampleAnti-Aliasing Example

No anti-aliasing Simple 3 x 3 supersampling

11

Adaptive SupersamplingAdaptive Supersampling
Use supersampling only where it is needed

Supersample only if high variance between adjacent pixels,
e.g. if difference between pixel and its 4 neighbors exceeds g p g
a threshold
Can be done recursively,

Supersampling here

y
i.e. supersample subpixels
again
Big performance gain
(commonly used in Problem: no supersampling here

ray tracing)
But still Moiré patterns and other artefacts
(e.g. small objects that disappear during animation)

12

Stochastic SamplingStochastic Sampling
Place sampling points randomly into pixels

Monte Carlo method to estimate integral of shape in pixel
Defeat artefacts in regular high-frequencyDefeat artefacts in regular high frequency
patterns by making sampling irregular
Instead of Moiré pattern: high-frequency noisep g q y
("speckle")
Can be combined with (adaptive)(p)
supersampling and proper postfiltering

Normal Sampling Stochastic Sampling

13No Supersampling Supersampling No Supersampling Supersampling

Prefiltering with OpenGLPrefiltering with OpenGL
Points and Lines
Pixel alpha values are calculated according to line/point coverage
glEnable(GL_LINE_SMOOTH); // or GL_POINT_SMOOTH
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Polygons
Similar approach as as above with GL POLYGON SMOOTH but:Similar approach as as above with GL_POLYGON_SMOOTH but:
1. Disable depth buffering (because we must combine “hidden” pixels

with “seen” pixels along polygon edges)
2. Sort polygons according to the depth (relative to current view position)

and render them into frame buffer in front-to-back order
U bl di t d3. Use blending parameters GL_SRC_ALPHA_SATURATE and GL ONE
(polygons that are further away cannot easily draw over closer ones)

Supersampling with OpenGLSupersampling with OpenGL
Automatic Supersampling
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_MULTISAMPLE);
glEnable(GL_MULTISAMPLE);

Stochastic Supersampling
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_ACCUM); ...
l l ()glClear(GL_ACCUM_BUFFER_BIT);

for(int i = 0; i<n; i++) { // n = number of subpixels
// jitter camera position with random x/y in (-0.5, 0.5)// jitter camera position with random x/y in (0.5, 0.5)
cam.slide(jitter[i].x, jitter[i].y, 0);
... draw scene ...
glAccum(GL_ACCUM, 1.0/n); // scale & add to acc. buffer

}
lA (GL RETURN 1 0) // b ff tglAccum(GL_RETURN, 1.0); // copy acc. buffer to screen

15

DRAWING TEXT IN OPENGL

16

Drawing Text to the ScreenDrawing Text to the Screen
Need to draw a sequence of character pixmaps (bitmaps)
Requires bitmaps for all characters of a font type and font size

Bitmap drawing functionBitmap drawing function
void glBitmap(GLsizei width, GLsizei height, GLfloat xorig,

GLfloat yorig, GLfloat xmove, GLfloat ymove,
const GLubyte *bitmap)const GLubyte bitmap)

Draw width×height bitmap so that bitmap pos xorig/yorig is at
raster pos, then increment raster pos by xmove/ymove

GLUT text drawing functions
void glutBitmapCharacter(void* font, int character)g p (,)
font given by GLUT constant; character code usually ASCII
int glutBitmapWidth(GLUTbitmapFont font, int character)
Returns the width of a font’s character

Drawing Text at Window CoordsDrawing Text at Window Coords.
int textStringWrite(int xStart, int yStart, void* font,

float textColour[3] char* textString) {float textColour[3], char* textString) {
// store lighting & depth test state and disable them
glPushAttrib(GL_CURRENT_BIT | GL_LIGHTING_BIT

| GL DEPTH BUFFER BIT)| GL_DEPTH_BUFFER_BIT);
glDisable(GL_LIGHTING); glDisable(GL_DEPTH_TEST);
glColor3f(textColour[0], textColour[1], textColour[2]);
int xPos = xStart;
glWindowPos2i(xPos, yStart);
int numChars = strlen(textString);
for (int c = 0; c < numChars; c++) {
glutBitmapCharacter(font , textString[c]);
xPosn += glutBitmapWidth(font, textString[c]);
lWi d P 2i(P St t)glWindowPos2i(xPos, yStart);

}
glPopAttrib(); // restore state
return xPosn; // return next x position for convenience

}

Drawing Text at World CoordsDrawing Text at World Coords.
void textStringWrite(float x, float y, float z, void* font,

float textColour[3], char* textString) {
glPushAttrib(GL_CURRENT_BIT | GL_LIGHTING_BIT);
glColor3f(textColour[0], textColour[1], textColour[2]);
glDisable(GL_LIGHTING);

// set raster position to transformed world coords.
// then get current raster position in window coords.
float rasterWinCoords[4];
glRasterPos3f(x, y, z);
glGetFloatv(GL_CURRENT_RASTER_POSITION, rasterWinCoords);

int numChars = strlen(textString);
for (int c = 0; c < numChars; c++) {

glutBitmapCharacter(font , textString[c]);glutBitmapCharacter(font , textString[c]);
rasterWinCoords[0] += glutBitmapWidth(font, textString[c]);
glWindowPos2i(rasterWinCoords[0], rasterWinCoords[1]);

}
l tt ib()glPopAttrib();

}

Drawing Text with GLUTDrawing Text with GLUT
Example call to window coord. text drawing function:
textStringWrite(50, 50, GLUT_BITMAP_HELVETICA_18,

myColor, "Hello World!");

Available GLUT fonts:
GLUT_BITMAP_8_BY_13 (8 by 13 pixel fixed width)
GLUT_BITMAP_9_BY_15 (9 by 15 pixel fixed width)
GLUT_BITMAP_TIMES_ROMAN_10 (10-point Times Roman)
GLUT_BITMAP_TIMES_ROMAN_24 (24-point Times Roman)
GLUT_BITMAP_HELVETICA_10 (10-point Helvetica)
GLUT_BITMAP_HELVETICA_12 (12-point Helvetica)
GLUT_BITMAP_HELVETICA_18 (18-point Helvetica)

Times Roman Helvetica

SUMMARY

21

SummarySummary
Aliasing can occur when sampling a high-frequency signal
(e.g. jaggies, disappearing objects, Moiré patterns)
Anti-aliasing can reduce aliasing artifacts
1. Prefiltering: weigh object color by coverage
2. Postfiltering: smooth image by averaging
3. Supersampling: average over subpixels
Drawing text in OpenGL means drawing a sequence of a g e Ope G ea s d a g a seque ce o
character pixmaps

References:
Aliasing & Anti-Aliasing: Hill, Chapter 9.8
OpenGL API Reference:OpenGL API Reference:
http://www.cs.auckland.ac.nz/compsci372s1c/resources/manpagesOpenGL

22

QuizQuiz
1. What is aliasing?a s a as g
2. Describe three typical aliasing artifacts.
3. How does prefiltering work?
4 How does stochastic supersampling work?4. How does stochastic supersampling work?

23

