
Computer Graphics:Computer Graphics:
Rasterization IRasterization I

Part 2 – Lecture 12

1

Today’s OutlineToday s Outline
Rasterization in OpenGLas e a o Ope G
Pixmaps and Blending
OpenGL Display Lists

2

y y

Modeling View
S P i iti

x
z

x
z

Transformation TransformationWorld CoordinatesScene Primitives
Master Coordinates

vy +1

Projection Ill i ti
u

nx

z-1

+1
-1 Projection

Transformation Illumination
View CoordinatesNormalized

Device Coordinates

1

Viewport
TransformationClipping RasterizationDevice Coordinates

RASTERIZATION
IN OPENGLIN OPENGL

3

Rasterization Stage of Rendering PipelineRasterization Stage of Rendering Pipeline

OpenGL “engine” HW part on GPUScene geometry

Modelling View

The “MODELVIEW” transformation

OpenGL engine HW part on GPUg y
components

(polygons, points, lines,
normals, etc.)

pa
rt

de Transformation Transformation

Projection
TransformationClipping Illumination

commands

status

ne
” S

W
 p

dr
iv

er
 c

od

Transformation

Viewport
Transformation DisplayRasterization

G
L

“e
ng

i
O

pe
nG

L
d

Pixmaps
(via glReadPixels, glDrawPixels,

t t t t)

O
pe

nG
in

 O
includes

frame buffer memory

looking at this stage
CPU

texture map set up etc)

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

Rasterization StageRasterization Stage
Input: scene component geometry from viewport transformation,
vertex and normal coordinates (3D, floating point)
Rasterization = converting floating point numbers that define

i iti i t “ t ” i i l i f b ffprimitives into “rasters”, i.e. pixels in frame buffer memory
Output: coordinates and colors of pixels that comprise
primiti es’ shapes in the frame b ffer arraprimitives’ shapes in the frame buffer array

Rasterization OperationsRasterization Operations
Point rasterization: convert (x,y,z) vertex to “disc” (filled circle)
of pixels, dependent upon glPointSize
Line rasterization: convert 2 (x,y,z) vertices to sequence of
i l d d t i i (d th f ti hpixels, dependent upon glLineWidth (and other functions such

as glLineStipple)
Pol gon rasteri ationPolygon rasterization:
convert n (x,y,z) vertices to 2D region
of pixels dependent upon manyof pixels, dependent upon many
functions, e.g. glPolygonMode

Image thanks to Wojciech Muła

Other Rasterization OperationsOther Rasterization Operations
Shading: flat or smooth (Gouraud) Screen

y Scan line
Color interpolation along scanline
→ can be reduced to simple additions,

e.g. redpixel (i+1) = redpixel i + deltared

y

e.g. redpixel (i+1) redpixel i deltared

Depth buffer (z-buffer) calculations:
1. Compute each pixel’s z value (as an integer)

Screen x

p p (g)
→ can be reduced to simple additions,

e.g. zpixel (i+1) = zpixel i + deltaz

If t d i l l t b ff d th l2. If computed pixel z value < current z-buffer depth value
1. Replace z-buffer value at that pixel location with computed z

Replace color buffer values at that pixel location with2. Replace color buffer values at that pixel location with
computed color (from shading algorithm)

Other per-pixel operations: texture map interpolation, anti-aliasingOther per pixel operations: texture map interpolation, anti aliasing
and other blending ops, pixmap ops (text, overlay, compositing, etc.)

PIXMAPS AND BLENDING

8

Pixmaps in OpenGLPixmaps in OpenGL
Arrays of pixels, usually used to store an image, e.g.

Pixels saved from the frame buffer
(rendering window content, “screen dump”)
Imported image, e.g. from a file

Examples of tasks that use pixmaps:
Read all or part of an image rendered by an OpenGL program
and store it in a file
Write images onto a screen object
Write bitmap of text (font defined by 1 bitmap per character)
Write menu items, button labels, icons, etc. onto a GUI
Copy a 2D “sprite” from one region of screen to another
(f)(also for scrolling)

Different Types of PixmapsDifferent Types of Pixmaps
Pixel formats: what components to store per pixel

Color buffer values: GL_RGBA, GL_RGB, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA
C l i d lColor index values: GL_COLOR_INDEX
Intensity values: GL_LUMINANCE, GL_LUMINANCE_ALPHA
Depth buffer (z buffer) values: GL DEPTH COMPONENTDepth buffer (z-buffer) values: GL_DEPTH_COMPONENT
Stencil buffer values: GL_STENCIL_INDEX

Data types: how to store each component
1 bit: GL_BITMAP
1 b t1 byte: GL_UNSIGNED_BYTE, GL_BYTE
integer: GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL INTGL_INT
float: GL_FLOAT

Reading Pixmap & Setting Raster PositionReading Pixmap & Setting Raster Position
Reading pixels into an array:
id glReadPixels(GLi t GLi tvoid glReadPixels(GLint x, GLint y,
GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid *pixels)GLenum format, GLenum type, GLvoid pixels)
x, y, width, height defines the region of pixels
pixels is the pointer to the array (needs to be big enough)pixels is the pointer to the array (needs to be big enough)

Setting the current raster position:
void glRasterPos3f(GLfloat x, GLfloat y, GLfloat z)g y

Sets the current raster position in 4D world space (x, y, z, w)
Note: raster position is transformed by current modelview and p y
projection matrices
Can also set raster position directly in window coordinates:p y
void glWindowPos2i(GLint x, GLint y)

Writing & Copying a PixmapWriting & Copying a Pixmap
Writing pixmap from array to current raster position:g p p y p
void glDrawPixels(GLsizei width, GLsizei height,

GLenum format, GLenum type,
GL id * i l)GLvoid *pixels)

width, height defines size of pixel region
i i th i t t ith i t b dpixels is the pointer to array with pixmap to be drawn

Copying pixmap from frame buffer to current raster position:Copying pixmap from frame buffer to current raster position:
void glCopyPixels(GLint x, GLint y,

GLsizei width, GLsizei height,
GLenum type)

type specifies one of 3 possible buffer types that can be
i d G CO O G G S Ccopied: GL_COLOR, GL_DEPTH or GL_STENCIL

Automatic Operations on PixelsAutomatic Operations on Pixels
Scale and bias pixel values while transferred from/to frame buffer:p

void glPixelTransferf(GLenum pname, GLfloat param)
destination value = source value * scale + bias
pname selects operation: GL_RED_SCALE, GL_ALPHA_SCALE,
GL_DEPTH_SCALE, GL_RED_BIAS, …
param sets scaling or bias value

Zoom pixmaps that are written/copied to frame buffer:Zoom pixmaps that are written/copied to frame buffer:
void glPixelZoom(GLfloat xfactor, GLfloat yfactor)

Magnifies or reduces written/copied pixmap byMagnifies or reduces written/copied pixmap by
replicating/ommitting pixels
Can also be used for mirroring with negative zoom factorg g

Blending Pixel ValuesBlending Pixel Values
Blending in OpenGL uses read-modify-write cycle: A

When new pixel A is written, it is combined with the
pixel B that is already there, resulting in pixel C
Bl di i d ith C A PIXEL OP b BBlending is done with Ci,j = a Ai,j PIXEL_OP b Bi,j

PIXEL_OP may be any arithmetic or logical
f nctionfunction
Multiplication coefficients a and b can be set
with pixel alpha values (opacity)

C
with pixel alpha values (opacity)

Examples:
C = ½ A + ½ B (averaging) BCi,j = ½ Ai,j + ½ Bi,j (averaging)
Ci,j = Ai,j - Bi,j (differencing)
C = t A + (1 t) B (linear interpolationCi,j = t Ai,j + (1 – t) Bi,j (linear interpolation,

“fade” , “dissolve”)

Choosing the Blending CoefficientsChoosing the Blending Coefficients
void glBlendFunc(GLenum sfactor, GLenum dfactor)

Ci,j = sfactor * Ai,j PIXEL_OP dfactor * Bi,j

sfactor may be: GL_ZERO, GL_ONE, GL_DST_COLOR,
GL ONE MINUS DST COLOR GL SRC ALPHAGL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL ONE MINUS DST ALPHA GL SRC ALPHA SATURATE _ _ _ _ _ _ _
Default: GL_ONE
dfactor may be: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL ONE MINUS SRC COLOR GL SRC ALPHAGL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL ONE MINUS DST ALPHA_ _ _ _
Default: GL_ZERO
Enable/disable blending with glEnable/glDisable and GL_BLEND

15

Choosing the Blending FunctionChoosing the Blending Function
void glBlendEquation(GLenum mode)

Use it to choose blending functions other than addition
mode is one of GL_FUNC_ADD, GL_FUNC_SUBSTRACT,
GL_FUNC_REVERSE_SUBSTRACT, GL_MIN, GL_MAX,
GL_LOGIC_OP

void glLogicOp(GLenum opcode)
Use it to select sepcific GL LOGIC OP blending functionp _ _ g

opcode value opcode value
GL_CLEAR 0 GL_AND A & B
GL_SET 1 GL_OR A | B
GL_COPY A GL_XOR A ^ B

glEnable/glDisable using GL_COLOR_LOGIC_OP

OPENGL DISPLAY LISTS

17

Immediate Mode ExecutionImmediate Mode Execution
OpenGL engine (HW and SW driver) processes commands from

scratch every time the display() function is called:
1. Function calls (e.g. glBegin/glEnd, glVertex, glNormal) must be

t l t d i t d i d h d d (“ bltranslated into driver and hardware commands (“assembly
language” for the GPU)

2 Commands and data al es m st be copied from CPU memor2. Commands and data values must be copied from CPU memory
into the GPU’s local memory (on graphics card)

→ Efficient if commands or data change frequently (e.g. vertex
values are recomputed in each call to display())values are recomputed in each call to display())

→ But with constant commands and data this is very inefficient!

Retained Mode ExecutionRetained Mode Execution
If commands and data are constant, prepare them in advance (like a
compilation step):
1. Request OpenGL to construct a display list (with an integer id)
2 U th f ti ll (i l di C++ t t t h2. Use the same function calls (including C++ statements such as

loops, etc.) and data values
→ Commands are translated into GPU code and copied with data→ Commands are translated into GPU code and copied with data

from CPU memory to GPU memory and stored in the GPU
To render the display list, only one command is sent to OpenGL
(copied from CPU to GPU): glCallList(idNumber);

Immediate mode executionImmediate mode execution
is similar to interpreting source code

Compiling a display listp g p y
and retained mode execution is like

compiling and executing source code

OpenGL Display ListsOpenGL Display Lists
1. Get range unused listIds for your display lists (first id is

returned): GLuint glGenLists(GLSsizei range)
2. Start list definition with call to

id l i (i li d d)void glNewList(GLuint listId, GLenum mode)
(mode is either GL_COMPILE or GL_COMPILE_AND_EXECUTE)

3 Follo this ith all code (OpenGL calls and C++) for rendering3. Follow this with all code (OpenGL calls and C++) for rendering
the objects to be included in this list

Not all commands are stored (e g no state queries)Not all commands are stored (e.g. no state queries)
May include execution of other display lists
May not call glNewListMay not call glNewList

4. End list definition with call to void glEndList()
→ Execute the display list with→ Execute the display list with
void glCallList(Gluint listId)

Display Lists: Pros and ConsDisplay Lists: Pros and Cons
Advantages of using a display list (→ retained mode)

Speed up (compared to immediate mode) can be significant
Modular reuse of commands and data

Set state appropriately before calling display list (e.g.
transformations, colors, …)
Call other display lists from within a display list

Disadvantages of using a display list (→ immediate mode)Disadvantages of using a display list (→ immediate mode)
If data or commands change frequently, using a display list may
be slower (list cannot be changed has to be compiled again)be slower (list cannot be changed, has to be compiled again)
Display lists do not allow parameter passing (except setting of
appropriate state before calling the list)appropriate state before calling the list)

SUMMARY

22

SummarySummary
1. Rasterization: converting floating point primitives into pixels

+ shading + depth testing + blending
2. Pixmap operations: read, write, copy
3. Blending with existing pixels when writing new pixels:

weighted sum, difference, min, max, logic operations, …
4. Display lists can be used to compile a list of commands and

data for faster execution

References:
R t i ti Hill Ch t 9 1Rasterization: Hill, Chapter 9.1
Pixmaps and Blending: Hill, Chapter 9.2 – 9.3
OpenGL API Reference:OpenGL API Reference:
http://www.cs.auckland.ac.nz/compsci372s1c/resources/manpagesOpenGL

23

QuizQuiz
1. What is done during the rasterization stage?a s do e du g e as e a o s age
2. What can we do with pixmaps?
3. What is blending and how can we blend pixels

in OpenGL?p
4. What are display lists and why are they useful?

24

