

Seeing Red, Green and Blue

- A cone cell in the retina measures amount of red, green, or blue wavelength energy (3 SRF's). Responds only in bright light.
- SRF of a rod cell covers all wavelengths (measures "gray level" or intensity) Responds in low light, but not in bright light.
- Integral of R, G, or B cone response produces a single value
 Note: SRF's really L, M, S wave responses (long, medium, short), not R, G, B.
 Note: low response of short (blue) is scaled up by vision system (after retina).

COLOR SPACES

CIE image thanks to Sakurambo

Color Coordinate Space

- Defines 3 SRFs (color matching functions) for some sensing system
- One dimension for each SRF (→ tristimulus color space)
 □ Each dimension represents a primary color P
 - \Box Coordinate value = resulting SDF integral normalized to (0, 1)
- Color triple is 3D point defined by chromaticity values (c₀, c₁, c₂)
- Example: RGB color space

Finding Color Matching Functions

- Given: 3 primaries A, B, C
- Wanted: 3 SRFs, one for each primary
- Idea:
 - 1. Show light L with pure color of wavelength λ and brightness 1 to test persons
 - 2. Let them adjust another light P using chromaticities a, b, c until L and P match
 - 3. Do this with the whole range of wavelengths λ and note down the a, b, c values for each λ
- Problem: when using normal, visible colors as primaries, some wavelengths λ need negative chromaticities (because adding colors decreases saturation)

CIE XYZ Colour Space (1931)

- A normalized, standard color space designed by engineers according to requirements:
 - □ Standard primaries ("R", "G", "B")
 - □ Only positive chromaticities
 - □ Equal chromaticities are grays
 - □ Easy conversion to brightness levels
- Three primaries: X, Y, Z
 - □ All are "imaginary" (not real colors)
 - SRFs were designed by engineers to meet above requirements
 - □ Y corresponds to brightness
 - Conversion to RGB is a matrix multiply (linear combination of X,Y,Z = R,G,B and vice versa)

9

CIE XYZ Color Matching Functions

CIE Chromaticity Diagram

2D Chromaticity Space:

- Projection of 3D XYZ space onto 2D plane X + Y + Z = 1
- Looking only at colors with brightness 1
- 2D coordinates (x,y) defined as:

(*x*,*y*) is the chromaticity of the color

CIE Chromaticity Diagram

Using the CIE Chromaticity Diagram

- w is white
- *e* and *f* are
 - complementary colors $(\rightarrow \text{ can be combined}$ to white)
- *h* is dominant wavelength of *g*
- wg / wh is saturation of q
 - $(\rightarrow$ how close in % g is to its pure color)

13

Color Gamut

- Subset of colors that can be represented on a device
- CIE color space can be used to describe color gamut
 - Measure maximum intensity of each device primary in CIE (use filters with SRF's = CIE SRF's)
 - 2. Convert to (x,y) chromaticity
 - 2D triangle defines possible device colors
 (→ color gamut)
- Different devices have different gamuts
 (→ problem of color conversion)

Additive Color Systems

- Colors are mixed by adding up appropriate amounts of primaries (adding SDF spikes to black)
- Widely used in screens with subpixels that emit R,G,B
- Cones in retina respond to light emitted by each subpixel
- Brain adds the individual cone responses to produce perception of hue, luminance, and saturation
- → Demo program: ColorMix.exe http://www.efg2.com/Lab/Graphics/Colors/ColorMix.htm

Subtractive Color Systems

 Colors are mixed by substracting appropriate amounts of colors from white (like using notch SRFs on white)

(r, g, b) = (1, 1, 1) - (c, m, y)

- White light is reflected or transmitted, and some wavelengths are absorbed (subtracted), e.g. colored glass, printed images
- The colors to substract are the complements of the primaries, e.g. cyan, magenta, yellow (CMY)
 - □ Cyan absorbs red
 - Magenta absorbs green
 - □ Yellow absorbs blue
- CMYK (K = black) often used for 4 colour printers

Troubles with RGB

- Difficult to use for color design because selecting a hue sometimes not intuitive, e.g. what combination of RGB do you use to make brown?
 - (128, 80, 50) is a good choice. Could you figure that out?
- Not a good color space for interpolating between colors
 - □ For example,
 - $\frac{1}{2}$ blue + $\frac{1}{2}$ white = $\frac{1}{2}$ magenta - + $\frac{1}{2}$ cyan - = -
 - \Box Linear interpolation between (r,g,b) chromaticities does not linearly interpolate the saturation or the luminance

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

HLS Color Space

Hue, Lightness, Saturation

Based on transformation of RGB cube

 \rightarrow double "hexcone" \rightarrow double cone

Hue, Saturation, Value (similar to Lightness)

Only single cone: at the top all colors are brightest

HSV Color Space

17

Colour interpolation: RGB vs HLS	N ²
 Linear interpolation between 2 RGB colours in RGB space: 	
$\Box_{0} = (r_{0}, g_{0}, b_{0}) = (r_{1}, g_{1}, b_{1})$ $\Box_{1} r(t) = r_{0} + t (r_{1} - r_{0}), g(t) = g_{0} + t (g_{1} - g_{0}), b(t) = b_{0} + t (b_{1} - b_{0})$ O <= t <= 1	
 Problem: saturation and luminance are <u>not</u> linearly interpolated. Interpolation may correctly vary from one hue to another, but S and L may vary in strange ways! 	
■ Linear interpolation between 2 HLS colours in HLS space: $C_0 = (h_0, l_0, s_0) \Rightarrow C_1 = (h_1, l_1, s_1)$	
$ \begin{array}{c} \Pi(t) = \Pi_0 + t (\Pi_1 - \Pi_0), \ \Pi(t) = \Pi_0 + t (\Pi_1 - \Pi_0), \ \Pi(t) = S_0 + t (S_1 - S_0) \\ 0 <= t <= 1 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	JUIMIART
 Solution: Convert C₀, C₁ to HLS; interpolate in HLS, convert results back to RGB 	
© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins 21	

Summary

- 1. Colors can be represented using a 3D color space
- 2. RGB: easy to use for additive color mixing, but limited gamut
- 3. CIE can represent all visible colors
- 4. HSL can linearly interpolate properly between hue, saturation and lightness

References:

- □ Color Description: Hill, Chapter 11.2
- □ CIE Color Model: Hill, Chapter 11.3
- □ Other Color Spaces: Hill, Chapter 11.4

Quiz

- 1. What is a color coordinate space?
- 2. Name an advantage of the CIE color model.
- 3. What is a color gamut?
- 4. What are the disadvantages of RGB?