

Part 2 - Lecture 11

HUMAN PERCEPTION OF COLOR

Today's Outline

- Recap: Human Perception of Color
- Color Spaces
$\square R G B$
\square CIE XYZ
$\square H L S$

The Eye

- Four types of receptors (sensors): R/G/B cones + rods, each has unique SRF

Seeing Red, Green and Blue

- A cone cell in the retina measures amount of red, green, or blue wavelength energy (3 SRF's). Responds only in bright light.
- SRF of a rod cell covers all wavelengths (measures "gray level" or intensity) Responds in low light, but not in bright light.
- Integral of R, G, or B cone response produces a single value

Note: SRF's really L, M, S wave responses (long, medium, short), not R, G, B. Note: low response of short (blue) is scaled up by vision system (after retina).

$=\xrightarrow{\square}=$ $=\uparrow_{\text {(scaled) }}$
 $=\uparrow$

COLOR SPACES

Color Coordinate Space

- Defines 3 SRFs (color matching functions) for some sensing system
- One dimension for each SRF (\rightarrow tristimulus color space)
\square Each dimension represents a primary color \mathbf{P}
\square Coordinate value $=$ resulting SDF integral normalized to $(0,1)$
- Color triple is 3D point defined by chromaticity values $\left(c_{0}, c_{1}, c_{2}\right)$
- Example: RGB color space
\square Primaries:
Red, Green, Blue
with basis vectors
$R=(0,0,1)$
$G=(1,0,0)$
$B=(0,1,0)$
\square Chromaticity values: $(r, g, b)=r(R)+g(G)+b(B)$

Finding Color Matching Functions

- Given: 3 primaries A, B, C
- Wanted: 3 SRFs, one for each primary
- Idea:

1. Show light L with pure color of wavelength λ and brightness 1 to test persons
2. Let them adjust another light P using chromaticities a, b, c until L and P match
3. Do this with the whole range of wavelengths λ and note down the a, b, c values for each λ

- Problem: when using normal, visible colors as primaries, some wavelengths λ need negative chromaticities (because adding colors decreases saturation)

CIE XYZ Colour Space (1931)

- A normalized, standard color space designed by engineers according to requirements:
\square Standard primaries ("R", "G", "B")
CIE 1931- 2° standard observer

All are "imaginary" (not real colors)
\square SRFs were designed by engineers to meet above requirements
$\square \mathrm{Y}$ corresponds to brightness
\square Conversion to RGB is a matrix multiply (linear combination of $X, Y, Z=R, G, B$ and vice versa)

CIE XYZ Color Matching Functions

(X,Y,Z) coordinates of any input SDF are found by multiplying and integrating

This defines the (X,Y,Z) color of the SDF

CIE Chromaticity Diagram

2D Chromaticity Space:

- Projection of 3D XYZ space onto 2D plane $X+Y+Z=1$
- Looking only at colors with brightness 1
- 2D coordinates (x, y) defined as:
$x=\frac{X}{X+Y+Z}$
$y=\frac{Y}{X+Y+Z}$
(x, y) is the chromaticity of the color

CIE Chromaticity Diagram

Using the CIE Chromaticity Diagram

- \boldsymbol{w} is white
- e and \boldsymbol{f} are complementary colors (\rightarrow can be combined to white)
- \boldsymbol{h} is dominant wavelength of \boldsymbol{g}
- wg I wh is saturation of \boldsymbol{g}
$(\rightarrow$ how close in $\% \mathrm{~g}$ is to its pure color)

Color Gamut

- Subset of colors that can be represented on a device
- CIE color space can be used to describe color gamut

1. Measure maximum intensity of each device primary in CIE (use filters with SRF's = CIE SRF's)
2. Convert to (x, y) chromaticity
3. 2D triangle defines possible device colors (\rightarrow color gamut)

- Different devices have different gamuts
(\rightarrow problem of color conversion)

Additive Color Systems

- Colors are mixed by adding up appropriate amounts of primaries (adding SDF spikes to black)
- Widely used in screens with subpixels that emit $\mathrm{R}, \mathrm{G}, \mathrm{B}$
- Cones in retina respond to light emitted by each subpixel
- Brain adds the individual cone responses to produce perception of hue, luminance, and saturation
\rightarrow Demo program: ColorMix.exe http://www.efg2.com/Lab/Graphics/Colors/ColorMix.htm

Subtractive Color Systems

- Colors are mixed by substracting appropriate amounts of colors from white (like using notch SRFs on white)
- White light is reflected or transmitted, and some wavelengths are absorbed (subtracted), e.g. colored glass, printed images
- The colors to substract are the complements of the primaries,
e.g. cyan, magenta, yellow (CMY)
\square Cyan absorbs red
\square Magenta absorbs green $\quad(r, g, b)=(1,1,1)-(c, m, y)$
\square Yellow absorbs blue
- CMYK ($\mathrm{K}=$ black) often used for 4 colour printers

$\frac{14}{14}$

Troubles with RGB

- Difficult to use for color design because selecting a hue sometimes not intuitive, e.g. what combination of RGB do you use to make brown?
$(128,80,50)$ is a good choice. Could you figure that out?
- Not a good color space for interpolating between colors
\square For example,
$1 / 2$ blue $\square+1 / 2$ white $\square=\square$ $1 / 2$ magenta $\square+1 / 2$ cyan $\square=\square$
\square Linear interpolation between ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) chromaticities does not linearly interpolate the saturation or the luminance

17

HLS Color Space

- Hue, Lightness, Saturation
- Based on transformation of RGB cube \rightarrow double "hexcone" \rightarrow double cone

HLS Color Space

\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
	\square	\square	\square	

HSV Color Space

■ Hue, Saturation, Value (similar to Lightness)

- Only single cone:
at the top all colors are brightest

Colour interpolation: RGB vs HLS

- Linear interpolation between 2 RGB colours in RGB space:
$C_{0}=\left(r_{0}, g_{0}, b_{0}\right) \Rightarrow C_{1}=\left(r_{1}, g_{1}, b_{1}\right)$
$\square r(t)=r_{0}+t\left(r_{1}-r_{0}\right), g(t)=g_{0}+t\left(g_{1}-g_{0}\right), b(t)=b_{0}+t\left(b_{1}-b_{0}\right)$ $0<=\mathrm{t}<=1$
\square Problem: saturation and luminance are not linearly interpolated. Interpolation may correctly vary from one hue to another, but S and L may vary in strange ways!
- Linear interpolation between 2 HLS colours in HLS space:
$\mathrm{C}_{0}=\left(\mathrm{h}_{0}, \mathrm{I}_{0}, \mathrm{~s}_{0}\right) \Rightarrow \mathrm{C}_{1}=\left(\mathrm{h}_{1}, \mathrm{I}_{1}, \mathrm{~s}_{1}\right)$
$\square h(t)=h_{0}+t\left(h_{1}-h_{0}\right), l(t)=l_{0}+t\left(l_{1}-\lg _{0}\right), \mathrm{s}(\mathrm{t})=\mathrm{s}_{0}+\mathrm{t}\left(\mathrm{s}_{1}-\mathrm{s}_{0}\right)$ $0<=\mathrm{t}<=1$
\square All 3 components (HLS) linearly interpolated
\square Solution: Convert $\mathrm{C}_{0}, \mathrm{C}_{1}$ to HLS; interpolate in HLS, convert results back to RGB

Summary

1. Colors can be represented using a 3D color space
2. RGB: easy to use for additive color mixing, but limited gamut
3. CIE can represent all visible colors
4. HSL can linearly interpolate properly between hue, saturation and lightness

References:
\square Color Description: Hill, Chapter 11.2
\square CIE Color Model: Hill, Chapter 11.3
\square Other Color Spaces: Hill, Chapter 11.4

