- Computer Graphics: Ray Tracing III

Part 2 - Lecture 9

Today's Outline

- Ray Tracing Reflections
- Ray Tracing Transformed Primitives
- Speeding Up Ray Tracing

Ray Tracing Reflections

Idea: the color of a point is influenced by the color that the ray carries over from the previous reflection

Reflectivity: fraction of incident radiation reflected by a surface (between 0 and 1)
Add the fraction of light reflected from q to the reflection at p :

$$
R_{p}=R_{\text {ambient }, p}+R_{\text {diffuse }, p}+R_{\text {specular }, p}+\text { reflectivity }_{p} R_{q}
$$

Perfect Ray Reflection

- Given: incoming ray direction d
- Wanted: outgoing ray direction d'
- Reflection rule: incoming angle = outgoing angle (both are ϕ)
- In diagram:
\square Horizontal component of \mathbf{d} stays the same
\square Only vertical component is reversed (ray bounces off)
\square Use dot product to get the vertical component

$$
(-\mathbf{n} \cdot \mathbf{d}=\cos (\phi) \cdot|\mathbf{d}| \cdot|\mathbf{n}|,|\mathbf{n}|=1)
$$

$$
d^{\prime}=d-2 n(n \cdot d)
$$

Adding Reflections to shade

Color shade(Hit hit, int reflectionNo) \{
for(int $\mathrm{i}=0$; $\mathrm{i}<$ numLights; $\mathrm{i}++$) $\{$
color $=$ color $+\ldots$; // ambient reflect.
// cast a "shadow feeler"
Hit feeler = intersect(...);
if(...) \{... $\}$
// ray reflection
if("not too many reflections" \&\& "reflectivity high enough") \{
Hit reflection = intersect(? , ?);
color = color +
shade(reflection, reflectionNo+1) * hit.object->reflectivity;
\}
return color;
\}

- Make sure that there is a maximum number of reflections
- Calculate reflection only for fairly reflective surfaces
- Cast reflection ray using intersect
- Add light coming from reflection ray (attenuated by reflectivity) to the color (calling shade recursively)

RAY TRACING
TRANSFORMED PRIMITIVES

Transformed Primitives

Problem: How to intersect with transformed primitives?
(e.g. scaled and translated unit sphere)

Solution: intersection of ray with transformed primitive is the same as intersection with inversely transformed ray and primitive

- Intersect with transformed ray (source' + d' t) i.e. source' $=\mathbf{M}^{-1}$ source and $\mathbf{d}^{\prime}=\mathbf{M}^{-1} \mathbf{d}$
- t for the intersection is the same in world and primitive space

Transforming Rays

- Ray has position vector (point) source and direction vector d
- Scaling: both source and direction d change

- Translation: source changes, but the direction d does not (point source has $w=1$, but direction vector \mathbf{d} has $w=0$)

- If $\mathbf{M}=\mathbf{T} \mathbf{S}$ then inverse ray transformation is:
source' $=\mathbf{S}^{-1} \mathbf{T}^{-1}$ source and $\mathrm{d}^{\prime}=\mathbf{S}^{-1} \mathrm{~d}$

Normals for Transformed Primitives

- Recap: given a normal \mathbf{n}, after a transformation \mathbf{M} the new normal is \mathbf{n}^{\prime} with $\mathbf{n}^{\prime}=$ normalize $\left(\mathbf{M}^{-\boldsymbol{T}} \mathbf{n}\right)$
- Normals are direction vectors (i.e. not affected by translation of the object, $w=0$)
- For normal \mathbf{n} and object transformation $\mathbf{M}=\mathbf{T} \mathbf{S}$ the adjusted normal is $\mathbf{n}^{\prime}=$ normalize($\left.\mathbf{S}^{-1} \mathbf{n}\right)$

Sphere normal in our implementation:

- Calculated from point \mathbf{p} on the transformed sphere
- In order to get the adjusted normal n':

1. Calculate corresponding point \mathbf{p}_{pr} on primitive sphere: $\mathbf{p}_{\mathrm{pr}}=\mathbf{S}^{-1} \mathbf{T}^{-1} \mathbf{p}$
2. Calculate corresponding normal \mathbf{n}_{pr} for the primitive sphere
3. Return adjusted $\mathbf{n}_{\mathbf{p r}}$

Using Transformed Rays

Hit intersect(Vector source, Vector d) \{ Hit hit = Hit(source, d, -1, NULL); for(int i=0; i<numObjects; i++) \{ // inversely transform ray with // object modeling transformation Vector source2 = ? ;
Vector d2 = ? ;
float $t=$ objects[i]->Intersect(source2, d2);
if(t>0 \&\& (hit.object==NULL || t<hit.t)) hit $=$ Hit(source, d, t, objects[i]); \} return hit;
\}

Vector Sphere::Normal(Vector p) \{ // get corresponding point p2 on primitive // sphere by inverting modeling transform Vector $\mathrm{p} 2=$? ;
// adjust primitive normal with $\mathrm{M}^{-\top}$ return? ;
\}
Vector Plane::Normal(Vector p) \{ // adjust primitive normal n with M^{-T} return? ;
\}

- Use transformed ray (source2, d2) to get t
- Then use t with original ray (source, d)

Tracing Rays in Parallel

- Tracing one ray after the other is slow
- Observation: calculations for different primary rays are independent
- Idea: trace primary rays in parallel
- For n pixels and m processors, each processor traces only n / m pixels

Object Extents

- Without optimization: each ray must be tested for intersection with every object
■ Extent: simple shape that encloses one or more objects
- Helps to rule out intersections: if ray does not hit extent, then it also does not hit contained objects
- Typical extents: spheres ("bounding spheres"), boxes aligned with coordinate axes ("bounding boxes")
- Extents can be used hierarchically, i.e. extents nested in extents

Using Spheres as Extents

- We know how to intersect a ray (eye, d) with a (primitive) sphere:

$$
t_{1,2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

$$
\begin{array}{ll}
& A=\mathrm{d} \cdot \mathrm{~d} \\
\text { with } & B=2 \text { eye.d } \\
& C=\text { eye.eye }-1
\end{array}
$$

- Interesting case for use as extent: if $\left(B^{2}-4 A C\right)<0$ then ray misses sphere (fast to compute)
- The more objects are in a bounding sphere, the less intersection tests are necessary if the ray does not hit it
- Research problem: how do we place hierarchical bounding spheres automatically? (also for other extent types)

Space Division

- Idea: subdivide the world into subspaces
- Speedup by excluding some subspaces (and their objects)
- Subdivision can be done recursively
- Examples: division into cubic boxes, binary space division (BSP) trees

Item Buffer

- Idea: for each pixel, store which object is visible (similar to depth buffer)
- Item buffer can be generated quickly by iterating over objects, with techniques from polygon rendering
- For primary rays (those going through the pixels) we know immediately which object they hit

SUMMARY

Summary

- Ray tracing reflections
\square Construct reflection ray and call shade recursively
\square Add reflectivity times color from previous reflection to current color
- Ray tracing transformed primitives
\square Intersect inversely transformed ray with primitive, get t
\square Adjust primitive normal with $\mathrm{M}^{-\mathrm{T}}$
\square Note: direction vectors are not translated
■ Speeding up ray tracing: extents, space division, item buffer

References:

\square Ray Tracing Reflections: Hill, Chapter 12.12
\square Intersection with Transformed Objects: Hill, Chapter 12.4.3
\square Using Extents: Hill, Chapter 12.10

