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Today’s OutlineToday s Outline
Ray Tracing Reflectionsay ac g e ec o s
Ray Tracing Transformed Primitives
Speeding Up Ray Tracing
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RAY TRACING REFLECTIONS

3Diagram thanks to Henrik

Ray Tracing ReflectionsRay Tracing Reflections
Idea: the color of a point is influenced by the color that the ray 

carries over from the previous reflection

Ray is reflected at q (blue sphere)Ray is reflected at q (blue sphere)
before being reflected at p (white box)
→ ray has bluish color when it hits

q

the boxp

Reflectivity: fraction of incident radiation reflected by a surface 
(between 0 and 1)
Add the fraction of light reflected from q to the reflection at p:

RtyreflectiviRRRR +++=
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Perfect Ray ReflectionPerfect Ray Reflection
Given: incoming ray direction d
Wanted: outgoing ray direction d’
Reflection rule: incoming angle = outgoing angle (both are φ) 
In diagram:

Horizontal component of d stays the samey
Only vertical component is reversed
(ray bounces off) n
Use dot product to get the 
vertical component 
( d (φ) |d| | | | | 1)

d d'
-n(n⋅d)-n(n⋅d)

φ φ
(-n ⋅ d = cos(φ) ⋅ |d| ⋅ |n|, |n|=1) p d

-n⋅d -n(n⋅d)
)(2' ddd

φ
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Adding Reflections to shadeAdding Reflections to shade
Color shade(Hit hit, int reflectionNo) {  …

f (i t i 0 i Li ht i ) {
Make sure that there is a 

for(int i=0; i<numLights; i++) {
color = color + … ;     // ambient reflect.

// cast a "shadow feeler“

maximum number of reflections
Calculate reflection only for fairly 
reflective surfaces// cast a shadow feeler

Hit feeler = intersect( … );
if( … ) { … }

reflective surfaces
Cast reflection ray using 
intersect

// ray reflection
if(“not too many reflections”

&& “reflectivity high enough”) {

Add light coming from reflection 
ray (attenuated by reflectivity) to 
th l ( lli h d&& reflectivity high enough ) {

Hit reflection = intersect( ? , ? );
color = color + 

h d ( fl ti fl ti N +1)

the color (calling shade
recursively)

shade(reflection, reflectionNo+1)
* hit.object->reflectivity;

} q

return color;
} 6p

RAY TRACING
TRANSFORMED PRIMITIVES
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Transformed PrimitivesTransformed Primitives
Problem: How to intersect with transformed primitives?

(e.g. scaled and translated unit sphere)

MM
Primitive
Space

World
Space

M-1

Solution: intersection of ray with transformed primitive is the same 
as intersection with inversely transformed ray and primitive
Intersect with transformed ray (source’ + d’ t)
i.e.    source’ = M-1 source   and     d’ = M-1 d

ft for the intersection is the same in world and primitive space
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Transforming RaysTransforming Rays
Ray has position vector (point) source and direction vector d
Scaling: both source and direction d change

S

Translation: source changes, but the direction d does not
(point source has w=1, but direction vector d has w=0)

T

If M=T S then inverse ray transformation is:
source’ = S-1 T-1 source and d’ = S-1 dsource’ = S-1 T-1 source and   d’ = S-1 d
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Normals for Transformed PrimitivesNormals for Transformed Primitives
Recap: given a normal n, after a transformation M the new 

Tnormal is n’ with n’ = normalize(M–T n)
Normals are direction vectors (i.e. not affected by translation of 
th bj t 0)the object, w=0)
For normal n and object transformation M=T S the adjusted 
normal is n’ normali e(S 1 n)normal is n’ = normalize(S-1 n)

Sphere normal in our implementation:p p
Calculated from point p on the transformed sphere
In order to get the adjusted normal n’:g j
1. Calculate corresponding point ppr on primitive sphere: ppr = S-1 T-1 p
2. Calculate corresponding normal npr for the primitive spherep

3. Return adjusted npr
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Using Transformed RaysUsing Transformed Rays
Hit intersect(Vector source, Vector d) {

Hit hit Hit( d 1 NULL)
Vector Sphere::Normal(Vector p) {

// t di i t 2 i itiHit hit = Hit(source, d, -1, NULL);
for(int i=0; i<numObjects; i++) {

// inversely transform ray with

// get corresponding point p2 on primitive 
// sphere by inverting modeling transform
Vector p2 = ? ;y y

// object modeling transformation
Vector source2 = ? ;
Vector d2 = ? ;

// adjust primitive normal with M-T

return ? ;
}Vector d2 = ? ;

float t = objects[i]->Intersect(
source2, d2);

}

Vector Plane::Normal(Vector p) {
// adjust primitive normal n with M-T

if(t>0 && (hit.object==NULL || t<hit.t))
hit = Hit(source, d, t, objects[i]);

}

j p
return ? ;

}
}
return hit;

}

Use transformed ray (source2, d2) 
to get t
Then use t with original ray 
(source, d)
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SPEEDING UP RAY TRACING
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Tracing Rays in ParallelTracing Rays in Parallel
Tracing one ray after the other is slow
Observation: calculations for different primary rays are 
independent
Idea: trace primary rays in parallel
For n pixels and m processors, each processor traces only n/m 
pixels

Example: Cell Processor

PPEPPE
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Object ExtentsObject Extents
Without optimization: each ray must be tested for intersection 
with every object
Extent: simple shape that encloses one or more objects
Helps to rule out intersections: if ray does not hit extent, then it 
also does not hit contained objects
Typical extents: spheres (“bounding spheres”), boxes aligned 
with coordinate axes (“bounding boxes”)
E t t b d hi hi llExtents can be used hierarchically,
i.e. extents nested in extents
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Using Spheres as ExtentsUsing Spheres as Extents
We know how to intersect a ray (eye, d) with a (primitive) 
sphere:

A=d⋅dACBB 42 −±− with B=2 eye⋅d
C= eye⋅eye-1A

ACBBt
2

4
2,1

±
=

Interesting case for use as extent: 
if (B2-4AC)<0 then ray misses sphere (fast to compute)
The more objects are in a bounding sphere, the less 
intersection tests are necessary if the ray does not hit it
Research problem: how do we place hierarchical bounding 
spheres automatically? (also for other extent types)
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Space DivisionSpace Division
Idea: subdivide the world into subspaces
Speedup by excluding some subspaces (and their objects)
Subdivision can be done recursivelySubdivision can be done recursively
Examples: division into cubic boxes, binary space division 
(BSP) trees(BSP) trees
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Item BufferItem Buffer
Idea: for each pixel, store which object is visible (similar to 
depth buffer)
Item buffer can be generated quickly by iterating over g q y y g
objects, with techniques from polygon rendering
For primary rays (those going through the pixels) we know p y y ( g g g p )
immediately which object they hit

Use buffer with
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closest object
for each pixel

SUMMARY
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SummarySummary
Ray tracing reflections

Construct reflection ray and call shade recursively
Add reflectivity times color from previous reflection to current color

R t i t f d i itiRay tracing transformed primitives
Intersect inversely transformed ray with primitive, get t
Adjust primitive normal with M-TAdjust primitive normal with M T

Note: direction vectors are not translated

Speeding up ray tracing: extents space division item bufferSpeeding up ray tracing: extents, space division, item buffer

References:References:
Ray Tracing Reflections: Hill, Chapter 12.12
Intersection with Transformed Objects: Hill, Chapter 12.4.3
Using Extents: Hill, Chapter 12.10
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QuizQuiz
1. How do we consider light reflected from another o do e co s de g e ec ed o a o e

surface?
2 Gi en a modeling transformation M TS ho do2. Given a modeling transformation M=TS, how do 

we transform a ray (source, d) with M-1?
3. What is an extent? Why is it useful?
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