
Computer Graphics:Computer Graphics:
Ray Tracing IIIRay Tracing III

Part 2 – Lecture 9

1

Today’s OutlineToday s Outline
Ray Tracing Reflectionsay ac g e ec o s
Ray Tracing Transformed Primitives
Speeding Up Ray Tracing

2

RAY TRACING REFLECTIONS

3Diagram thanks to Henrik

Ray Tracing ReflectionsRay Tracing Reflections
Idea: the color of a point is influenced by the color that the ray

carries over from the previous reflection

Ray is reflected at q (blue sphere)Ray is reflected at q (blue sphere)
before being reflected at p (white box)
→ ray has bluish color when it hits

q

the boxp

Reflectivity: fraction of incident radiation reflected by a surface
(between 0 and 1)
Add the fraction of light reflected from q to the reflection at p:

RtyreflectiviRRRR +++=
4

qppspecularpdiffusepambientp RtyreflectiviRRRR +++= ,,,

Perfect Ray ReflectionPerfect Ray Reflection
Given: incoming ray direction d
Wanted: outgoing ray direction d’
Reflection rule: incoming angle = outgoing angle (both are φ)
In diagram:

Horizontal component of d stays the samey
Only vertical component is reversed
(ray bounces off) n
Use dot product to get the
vertical component
(d (φ) |d| | | | | 1)

d d'
-n(n⋅d)-n(n⋅d)

φ φ
(-n ⋅ d = cos(φ) ⋅ |d| ⋅ |n|, |n|=1) p d

-n⋅d -n(n⋅d)
)(2' ddd

φ

5
-n)(2' dnndd ⋅−=

Adding Reflections to shadeAdding Reflections to shade
Color shade(Hit hit, int reflectionNo) { …

f (i t i 0 i Li ht i) {
Make sure that there is a

for(int i=0; i<numLights; i++) {
color = color + … ; // ambient reflect.

// cast a "shadow feeler“

maximum number of reflections
Calculate reflection only for fairly
reflective surfaces// cast a shadow feeler

Hit feeler = intersect(…);
if(…) { … }

reflective surfaces
Cast reflection ray using
intersect

// ray reflection
if(“not too many reflections”

&& “reflectivity high enough”) {

Add light coming from reflection
ray (attenuated by reflectivity) to
th l (lli h d&& reflectivity high enough) {

Hit reflection = intersect(? , ?);
color = color +

h d (fl ti fl ti N +1)

the color (calling shade
recursively)

shade(reflection, reflectionNo+1)
* hit.object->reflectivity;

} q

return color;
} 6p

RAY TRACING
TRANSFORMED PRIMITIVES

7

Transformed PrimitivesTransformed Primitives
Problem: How to intersect with transformed primitives?

(e.g. scaled and translated unit sphere)

MM
Primitive
Space

World
Space

M-1

Solution: intersection of ray with transformed primitive is the same
as intersection with inversely transformed ray and primitive
Intersect with transformed ray (source’ + d’ t)
i.e. source’ = M-1 source and d’ = M-1 d

ft for the intersection is the same in world and primitive space
8

Transforming RaysTransforming Rays
Ray has position vector (point) source and direction vector d
Scaling: both source and direction d change

S

Translation: source changes, but the direction d does not
(point source has w=1, but direction vector d has w=0)

T

If M=T S then inverse ray transformation is:
source’ = S-1 T-1 source and d’ = S-1 dsource’ = S-1 T-1 source and d’ = S-1 d

9

Normals for Transformed PrimitivesNormals for Transformed Primitives
Recap: given a normal n, after a transformation M the new

Tnormal is n’ with n’ = normalize(M–T n)
Normals are direction vectors (i.e. not affected by translation of
th bj t 0)the object, w=0)
For normal n and object transformation M=T S the adjusted
normal is n’ normali e(S 1 n)normal is n’ = normalize(S-1 n)

Sphere normal in our implementation:p p
Calculated from point p on the transformed sphere
In order to get the adjusted normal n’:g j
1. Calculate corresponding point ppr on primitive sphere: ppr = S-1 T-1 p
2. Calculate corresponding normal npr for the primitive spherep

3. Return adjusted npr
10

Using Transformed RaysUsing Transformed Rays
Hit intersect(Vector source, Vector d) {

Hit hit Hit(d 1 NULL)
Vector Sphere::Normal(Vector p) {

// t di i t 2 i itiHit hit = Hit(source, d, -1, NULL);
for(int i=0; i<numObjects; i++) {

// inversely transform ray with

// get corresponding point p2 on primitive
// sphere by inverting modeling transform
Vector p2 = ? ;y y

// object modeling transformation
Vector source2 = ? ;
Vector d2 = ? ;

// adjust primitive normal with M-T

return ? ;
}Vector d2 = ? ;

float t = objects[i]->Intersect(
source2, d2);

}

Vector Plane::Normal(Vector p) {
// adjust primitive normal n with M-T

if(t>0 && (hit.object==NULL || t<hit.t))
hit = Hit(source, d, t, objects[i]);

}

j p
return ? ;

}
}
return hit;

}

Use transformed ray (source2, d2)
to get t
Then use t with original ray
(source, d)

11

SPEEDING UP RAY TRACING

12

Tracing Rays in ParallelTracing Rays in Parallel
Tracing one ray after the other is slow
Observation: calculations for different primary rays are
independent
Idea: trace primary rays in parallel
For n pixels and m processors, each processor traces only n/m
pixels

Example: Cell Processor

PPEPPE

SPE SPEE

SPE SPE

SPE SPE

I
B

13
SPE SPE

Object ExtentsObject Extents
Without optimization: each ray must be tested for intersection
with every object
Extent: simple shape that encloses one or more objects
Helps to rule out intersections: if ray does not hit extent, then it
also does not hit contained objects
Typical extents: spheres (“bounding spheres”), boxes aligned
with coordinate axes (“bounding boxes”)
E t t b d hi hi llExtents can be used hierarchically,
i.e. extents nested in extents

14

Using Spheres as ExtentsUsing Spheres as Extents
We know how to intersect a ray (eye, d) with a (primitive)
sphere:

A=d⋅dACBB 42 −±− with B=2 eye⋅d
C= eye⋅eye-1A

ACBBt
2

4
2,1

±
=

Interesting case for use as extent:
if (B2-4AC)<0 then ray misses sphere (fast to compute)
The more objects are in a bounding sphere, the less
intersection tests are necessary if the ray does not hit it
Research problem: how do we place hierarchical bounding
spheres automatically? (also for other extent types)

15

Space DivisionSpace Division
Idea: subdivide the world into subspaces
Speedup by excluding some subspaces (and their objects)
Subdivision can be done recursivelySubdivision can be done recursively
Examples: division into cubic boxes, binary space division
(BSP) trees(BSP) trees

16

Item BufferItem Buffer
Idea: for each pixel, store which object is visible (similar to
depth buffer)
Item buffer can be generated quickly by iterating over g q y y g
objects, with techniques from polygon rendering
For primary rays (those going through the pixels) we know p y y (g g g p)
immediately which object they hit

Use buffer with

17

closest object
for each pixel

SUMMARY

18

SummarySummary
Ray tracing reflections

Construct reflection ray and call shade recursively
Add reflectivity times color from previous reflection to current color

R t i t f d i itiRay tracing transformed primitives
Intersect inversely transformed ray with primitive, get t
Adjust primitive normal with M-TAdjust primitive normal with M T

Note: direction vectors are not translated

Speeding up ray tracing: extents space division item bufferSpeeding up ray tracing: extents, space division, item buffer

References:References:
Ray Tracing Reflections: Hill, Chapter 12.12
Intersection with Transformed Objects: Hill, Chapter 12.4.3
Using Extents: Hill, Chapter 12.10

19

QuizQuiz
1. How do we consider light reflected from another o do e co s de g e ec ed o a o e

surface?
2 Gi en a modeling transformation M TS ho do2. Given a modeling transformation M=TS, how do

we transform a ray (source, d) with M-1?
3. What is an extent? Why is it useful?

20

