Today's Outline

- Introduction to Ray Tracing
- Ray Casting
- Intersecting Rays with Primitives
- Intersecting Rays with Transformed Primitives

INTRODUCTION TO RAY TRACING

Ray Tracing Image Gallery

Introduction to Ray Tracing

Recap: Polygon Rendering

- Visible polygons are projected onto a view plane
- Polygons made more realistic with texture mapping and shading
- Considers only a single light reflection per pixel (no reflections of scene on water, ...)
- No refraction, no proper shadows

Ray Tracing

- Calculate the path of light rays
- Trace a light ray through several reflections, refractions, ...
- Proper shadows where light rays do not hit a surface directly
- Much slower than polygon rendering, but can be photorealistic!

How to Trace Rays?

1. Trace light rays starting from a light source \square Physically accurate
\square Essentially unlimited number of rays
\square Only a small fraction actually reaches the eye
\square Very, very slow for CGI, but possible $(\rightarrow$ Monte-Carlo)
2. Trace only the light rays that hit the eye backwards
\square Not as accurate, but much faster!!!
\square Can follow the ray backwards through as many reflections and refractions as we like
\square For each object-ray intersection, we can calculate reflected light using an illumination model

Looking through the View Plane

What do we see through pixel (c, r) for all c and r ?

- Trace rays from eye into scene
- Describe each point \mathbf{p} on a ray going through \mathbf{a} and \mathbf{b} by: $\mathbf{p}=\mathbf{a}+\mathrm{tb} \quad$ (one point for each t)

Hill textbook,
Fig. 14.1

Setting Up the View Plane

Given:

- Camera position eye
- View coord. system axes ($\mathbf{u}, \boldsymbol{v}, \boldsymbol{n}$)
- View plane width $2 W$
- View plane height $2 H$
- Number of pixel rows nRows and
 pixel columns nCols in view plane

Wanted: ray (startPoint, direction) from eye through every pixel

- startPoint is always eye
- Center of view plane: center $=\boldsymbol{e y e}-N$ n (N is distance from eye, usually choose $\mathrm{N}=1$)

Ray Casting Algorithm

\qquad

```
find cle
find closest intersection of ray with an object (smallest \(t\) )
find intersection point \(P\)
get the surface normal at \(P\)
pixel \((\mathrm{c}, \mathrm{r})=\) the color at P as seen by the eye
\}
```

define scene = ({ objects }, { lights })

```
define scene = ({ objects }, { lights })
define camera (eye, u,v, n)
define camera (eye, u,v, n)
for (int r = 0; r < nRows; r++) {
for (int r = 0; r < nRows; r++) {
    for (int c = 0; c < nCols; c++) {
    for (int c = 0; c < nCols; c++) {
        construct ray going through (c,r)
        construct ray going through (c,r)
        find intersection point P
        find intersection point P
        get the surface normal at P
        get the surface normal at P
        Min(t)
        Min(t)
}
```

}

```

\section*{Constructing Rays}

Wanted: ray (startPoint, direction) from eye through every pixel
- Corners of the view plane in world coords: bottomLeft \(=\) centre \(+(-W \mathbf{u},-\mathrm{Hv})\) bottomRight \(=\) centre \(+(W \mathbf{u},-\mathrm{Hv})\) topLeft \(=\) centre \(+(-W u, H v)\) topRight \(=\) centre \(+(W u, H v)\)

- Go through all pixels, with column 0 and row 0 at bottomLeft
- Ray direction d=pixeIPos - eye
\[
\mathbf{d}=-N \mathbf{n}+W\left(\frac{2 c}{n \operatorname{Cols}}-1\right) \mathbf{u}+H\left(\frac{2 r}{n R o w s}-1\right) \mathbf{v}
\]

\section*{Ray-Object Intersection}
- Define each object as an implicit function \(f\) :
\(\mathrm{f}(\mathbf{p})=0\) for every point \(\mathbf{p}\) on the surface of the object
(if \(\mathbf{p}\) is not on surface, then \(f(p) \neq 0\) )
- Examples for simple objects ("primitives"):
\(\square\) Sphere (center at origin, radius 1)
\(f(\mathbf{p})=x^{2}+y^{2}+z^{2}-1=|\mathbf{p}|^{2}-1\)

\(\square\) Cylinder (around z -axis, radius 1 )
\(f(\mathbf{p})=x^{2}+y^{2}-1\)
- Where a ray \((\) eye \(+\mathbf{d} t)\) meets the object:

\(\mathrm{f}(\) eye \(+\mathbf{d} t)=0\)
\(\rightarrow\) solve for \(t\) and get intersection point eye \(+\mathbf{d} t\)

\section*{Ray-Triangle Intersection}
- Normal \(\mathbf{n}=(\mathrm{B}-\mathrm{A}) \times(\mathrm{C}-\mathrm{A})\)
- Implicit function for corresponding plane: \((\mathbf{p}-\mathrm{A}) \cdot \mathbf{n}=\mathbf{0}\)
- Intersection with plane when (eye \(+t \mathbf{d}-\mathrm{A}) \cdot \mathbf{n}=0\)

i.e. \(t=\frac{-(\mathbf{e y e}-\mathbf{A}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}\)
- Is the ray-plane intersection at \(\mathbf{p}=(\) eye \(+t \mathbf{d})\) inside the triangle?
\(\square\) Calculate scalars for three cross products (normals for the plane): \(((B-A) \times(p-A)) \cdot \mathbf{n}\) and \(((C-B) \times(p-B)) \cdot \mathbf{n}\) and \(((A-C) \times(p-C)) \cdot n\)
\(\square\) If they all have the same sign (e.g. all negative) then \(\mathbf{p}\) is inside the triangle
\(\square\) Each tests if \(\mathbf{p}\) is on the inside or outside of one of the edges
\(\square\) If \(p\) on the inside of an edge, then normal is directed towards us

\section*{Ray-Plane Intersection}
- Implicit function for plane (normal n, distance a from origin):
\[
\mathbf{p} \cdot \mathbf{n}-a=0
\]
- Intersection when (eye \(+t \mathbf{d}) \cdot \mathbf{n}-\mathbf{a}=0\)
i.e.
\[
t=\frac{a-\mathbf{e y e} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\]
- If \(\mathbf{d} \cdot \mathbf{n}=0\) then ray parallel to plane (ignore plane)
- If \(t\) negative then ray directed away from plane (no intersection)

\section*{Ray-Sphere Intersection}
- Implicit function for sphere (center at origin, radius 1): p.p-1 \(=0\)
- Intersection when (eye \(+t \mathbf{d}) \cdot(\) eye \(+t \mathbf{d})-1=0\)

i.e. \(\mathbf{d} \cdot \mathbf{d} t^{2}+2\) eye \(\mathbf{d} t+\) eye \(\cdot\) eye \(-1=0\)
- Solve quadratic equation for \(t\)
\[
t_{1,2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \quad \text { with } \quad \begin{aligned}
& A=\mathbf{d} \cdot \mathrm{d} \\
& B=2 \text { eye.d } \\
& \mathrm{C}=\text { eye.eye- } 1
\end{aligned}
\]
- If \(\left(B^{2}-4 A C\right)<0\) then ray misses sphere
- If \(\left(B^{2}-4 A C\right)=0\) then ray grazes sphere (treat as miss)
- If \(\left(B^{2}-4 A C\right)>0\) then one \(t\) for entry and one \(t\) for exit point (use smaller \(t\) for intersection, \(\rightarrow\) closer to eye)

\section*{Ray-Cylinder Intersection}
- Implicit function for sphere (one end at origin, radius 1 , length 1 ): \(x^{2}+y^{2}-1=0\) and \(0 \leq z \leq 1\)
- Intersection when \(0 \leq \mathbf{e y e}_{\mathrm{z}}+t \mathbf{d}_{\mathrm{z}} \leq 1\) and
\(\left(\right.\) eye \(\left._{\mathrm{x}}+t \mathbf{d}_{\mathrm{x}}\right) \cdot\left(\right.\) eye \(\left._{\mathrm{x}}+t \mathbf{d}_{\mathrm{x}}\right)+\left(\right.\) eye \(\left._{\mathrm{y}}+t \mathbf{d}_{\mathrm{y}}\right) \cdot\left(\right.\) eye \(\left._{\mathrm{y}}+t \mathbf{d}_{\mathrm{y}}\right)-1=0\)
i.e. \(\left(\mathbf{d}_{\mathbf{x}}^{2}+\mathbf{d}_{\mathbf{y}}^{2}\right) t^{2}+2\left(\right.\) eye \(_{\mathbf{x}} \mathbf{d}_{\mathbf{x}}+\) exe \(\left._{\mathbf{y}} \mathbf{d}_{\mathbf{y}}\right) t+\) eye \(_{\mathbf{x}}^{2}+\) eye \(_{\mathbf{y}}^{2}-1=0\)
- Solve quadratic equation for \(t\) (same as for sphere)
- Check if \(0 \leq\) eye \(_{\mathbf{z}}+t \mathbf{d}_{\mathbf{z}} \leq 1\) (otherwise miss)
- Note: cylinder is open at the ends and hollow on the inside

\section*{INTERSECTING RAYS WITH TRANSFORMED PRIMITIVES}

\section*{Transformed Primitives}

Problem: How to intersect with transformed primitives?
(e.g. scaled and translated unit sphere)


Solution: intersection of ray with transformed primitive is the same as intersection with inversely transformed ray and primitive
- Intersect with transformed ray \(\left(\mathbf{e y e}_{\mathbf{t}}+\mathbf{d}_{\mathbf{t}} t\right)\)
i.e. \(\quad \operatorname{eye}_{t}=M^{-1}\) eye and \(d_{t}=M^{-1} d\)
- \(t\) for the intersection is the same in world and primitive space

\section*{Transformed Primitives}

\[
\tilde{r}(t)=\mathbf{M}^{-1}\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z} \\
1
\end{array}\right)+\mathbf{M}^{-1}\left(\begin{array}{c}
c_{x} \\
c_{y} \\
c_{z} \\
0
\end{array}\right) t=\tilde{S}^{\prime}+\tilde{\mathbf{c}}^{\prime} t
\]


\section*{Normals for Transformed Primitives}
- We need the intersection point and the surface normal
- Recap: given a normal \(\mathbf{n}\), after a transformation \(\mathbf{M}\) the new normal is \(\mathbf{n}^{\prime}\) with \(\mathbf{n}^{\prime}=\mathbf{M}^{-\boldsymbol{T}} \mathbf{n} \quad\) (but \(\mathbf{n}^{\prime}\) is not always normalized)

Example (in 2D):


\footnotetext{
© 2004 Lewis Hitchner, Richard Lobb \& Kevin Novins
}

\section*{SUMMARY}

\section*{Summary}
1. Ray tracing is slow, but can give us photorealistic images
\(\square\) Tracing the light rays that hit the eye backwards
\(\square\) Trace each light ray through several reflections, refractions, ...
2. Ray casting: simple form of ray tracing
\(\square\) Trace one ray per screen pixel on the frame buffer
\(\square\) Trace only until it hits an object (i.e. only one reflection)
3. Calculate ray-object intersections by putting ray equation into implicit object function and solving for \(t\)

References:
\(\square\) Introduction to Ray Tracing: Hill, Chapters 12.1-12.3
\(\square\) Ray-Object Intersection: Hill, Chapter 12.4

\section*{Quiz}
1. What is ray tracing? Give a brief general description.
2. Give pseudo-code for the ray casting algorithm.
3. What is the general approach when looking for a ray-object intersection?
4. What is the common approach when looking for intersections with transformed primitives?```

