
Computer Graphics:Computer Graphics:
Illumination IIIIllumination III

Part 2 – Lecture 6

1

Today’s OutlineToday s Outline
Shading AlgorithmsS ad g go s

Flat Shading
Gouraud ShadingGouraud Shading
Phong Shading

Shadows
Ground-Plane ProjectionGround Plane Projection
Shadow Buffer

2

SHADING ALGORITHMS

3

Shading AlgorithmsShading Algorithms
Phong illumination equation:
how to calculate color on every point of surface
(given lights, materials, etc.)
P bl l l ti Ph ti t i l i tProblem: calculating Phong equations at every single point
(pixel) would be extremely slow!
Sol tion se a shading algorithmSolution: use a shading algorithm

Uses Phong equation only at some points (usually vertices)
Th i t l ti t t l f i b t i t (iThen uses interpolation to get colors for in-between points (in-
between pixels)

Three popular shading algorithms:Three popular shading algorithms:
Flat shading (fastest but worst quality)
Gouraud shading (balance of speed and quality)Gouraud shading (balance of speed and quality)
Phong shading (slowest but best quality)

Flat Shading (Constant Shading)Flat Shading (Constant Shading)
Apply Phong equation once per face
(using face normal)
Shade whole face that color

Advantage: simple and fast
Disadvantage: very poor display ofDisadvantage: very poor display of
polygon-mesh approximations to
curved surfaces

Human eye very sensitive to
discontinuities
E h M h B dExaggerates them
into Mach Bands Actual

variation
P i d i ti

Mach Bands

Perceived variation

Position

Gouraud ShadingGouraud Shading
Apply Phong equation at each vertex
(using “true” surface normal)
Linearly interpolate colors
between verticesbetween vertices
Advantages:

Still fastStill fast
Avoids 0th-order color discontinuities
over polygon mesh (color continuous
between faces)

Disadvantages:
S ill 1 d l di i iStill 1st order color discontinuity
(→ slight Mach bands)
Invariance problem with quadrilaterals

Position
Invariance problem with quadrilaterals
Problems with highlights

6

Gouraud Shading ContdGouraud Shading Contd.
Triangles Screen

Scan line
1. Get color for each vertex (Phong equation)
2. Interpolate pixel colors between vertices

y Scan line

3. Interpolate pixel colors along all horizontal
scan lines Screen x

Quadrilaterals
Problem: not rotationally invarianty

Rotate 90°
When rotating the quad,

Rotate 90° the color of the middle pixel
changes (first purple, then gray)

Solution: cut each quadrilateral into two triangles
7

Gouraud Shading: HighlightsGouraud Shading: Highlights
Problem: highlights can only be rendered on a vertex

Highlight may not be sharp, i.e. gets smeared over adjacent faces
Highlight may not be visible if not near a vertex

Solution: use more vertices in your mesh

8

Low number of vertices High number of vertices

Images thanks to Zom-B

Phong ShadingPhong Shading
To get crisp specular highlights with Gouraud shading,
we need many vertices
Bui Tuong-Phong suggested Phong shading to solve this
1. Linearly interpolate the normal over the polygon

(instead of color as in Gouraud shading)
2. Then evaluate Phong equation at each pixel

Advantage: crisp highlights with few vertices
Disadvantage: slower because Phong calculation for every Pixel

Cost of Shading and OpenGLCost of Shading and OpenGL
Flat shading: glShadeModel(GL_FLAT);

Pixel colors constant for entire triangle
1 normal calculation per triangle
1 color calculation per triangle (Phong equation)

Gouraud shading: glShadeModel(GL_SMOOTH);
1 l l l ti t1 normal calculation per vertex
1 color calculation per vertex (Phong equation)
1 color interpolation calculation per pixel1 color interpolation calculation per pixel

Phong shading: not available in OpenGL
1 normal calculation per vertex1 normal calculation per vertex
1 normal interpolation between vertex normals per pixel
1 color calculation per pixel (Phong equation)1 color calculation per pixel (Phong equation)

SHADOWS

11

How to Render Shadows?How to Render Shadows?
Where?
Points that can be seen but are not
illuminated by a particular light source
H ? S l ibiliti pHow? Several possibilities…
1. Ground-plane projection:

Dra shado s of objects as separate

p

p'
Draw shadows of objects as separate
(flat and dark) objects onto a plane
(fast but limited possibilities) Shadow(fast but limited possibilities)

2. Shadow buffer: Efficient way to
determine if a visible point is Screen

Shadow
buffer

p
illuminated by a particular light source

3. Ray tracing: trace the path of light
rays (slow but high quality)

12

Ground-Plane ProjectionGround-Plane Projection
Project objects onto plane (e.g. ground, wall) so that

they appear as flat shadows when drawn (0,0,0)they appear as flat shadows when drawn
1. Draw the projection plane
2. Turn off depth testing (so pixels rendered will

()

2. Turn off depth testing (so pixels rendered will
“paint” over those already in frame buffer)

3. Turn off lighting, set shadow color
O

p
4. Push MODELVIEW matrix
5. Shift origin to light source position
6 Set plane projection transformation

p'
6. Set plane projection transformation
7. Draw all shadow-casting objects
8. Pop MODELVIEW matrixp
9. Turn on lighting and depth testing
10. Draw all other scene objects Disadvantage:

projects shadows only onto plane,p ojects s ado s o y o to p a e,
not onto other objects

Plane Projection TransformationPlane Projection Transformation
1 Assume light source is at origin (0,0,0)1. Assume light source is at origin
2. Line from light source through p is

q(t) = t p

()

q(t) t p
3. Let plane be ax+by+cz+d = 0
4. Then at p' have pp

a t px + b t py + c t pz + d = 0
5. Solve for t, calculate q(t)=p’ and hence get p'

p' = −d (px, py, pz) / (a px + b py + c pz)
= −d p / (a px + b py + c pz)

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

Plane Projection Transformation ContdPlane Projection Transformation Contd.
(0,0,0)

p' = −d p / (a px + b py + c pz)
can be written as: OO

MshadowO0 0 0
0 0 0
d

d
−⎛ ⎞

⎜ ⎟−⎜ ⎟′
0 0 0

0
d

a b c

⎜ ⎟′ =
⎜ ⎟−
⎜ ⎟
⎝ ⎠

p p

shadow

⎝ ⎠
= M p

Applying Mshadow to an object yields its
planar projection onto the given plane
(with center of projection at origin)(with center of projection at origin)

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

Ground-Plane Projection ExampleGround-Plane Projection Example
Demo program, LightAndShadows, available in 372 Lecture Notes web page,
http://www cs auckland ac nz/compsci372s2c/christofLectures/LightAndShadowsNET ziphttp://www.cs.auckland.ac.nz/compsci372s2c/christofLectures/LightAndShadowsNET.zip

No shadows Shadows
(can’t see “floating” objects)

© 2004 Lewis Hitchner, Richard Lobb & Kevin Novins

Shadow BufferShadow Buffer
Idea: points that are hidden from

the light source are in shadow
Calculate depth buffer from light
source position (shadow buffer)

Shadow
buffer

source position (shadow buffer),
i.e. values for distance between
light and closest object ScreenB

For each screen pixel pointing
to a point P:

G t d d th d f
P

Q

1. Get pseudodepth dP from
light source to P

2 Find element d[i j] in shadow2. Find element d[i,j] in shadow
buffer that points towards P

3. If d[i,j]< dP then draw only
Advantage:
shadows can be cast from[j] P y

ambient light (shadow),
otherwise full illumination 17

all objects onto all other objects

SUMMARY

18

SummarySummary
Flat shading: one color calculation per face
Gouraud shading:
one color calculation per vertex, interpolate over faces
Phong shading:
interpolate vertex normals and calculate color for every pixel

Project objects from light sources onto planes to get simple
shadow effect
Use shadow buffer to detect covered points for better shadows

References:
Shading Algorithms: Hill, Chapter 8.3
Shadows: Hill, Chapter 8.6

19

QuizQuiz
1. Describe one disadvantage of Flat shading.esc be o e d sad a age o a s ad g
2. Why can Gouraud shading render a highlight

onl on a erte ?only on a vertex?
3. What is a shadow buffer?
4. How can we use a shadow buffer to render

shadows?shadows?

20

