
Computer Graphics:Computer Graphics:
Illumination IIIllumination II

Part 2 – Lecture 5

1

Today’s OutlineToday s Outline
� Recap: Phong Illumination Modelecap o g u a o ode
� Lights in OpenGL
� Materials in OpenGL

2

PHONG ILLUMINATION MODEL

3Image thanks to Brad Smith

Types of Light ReflectionTypes of Light Reflection
� In the real world:

� Light reflected unlimited number of times� Light reflected unlimited number of times
� Reflections change the appearance of the light

� In CG we need to keep computation time short:� In CG we need to keep computation time short:
� Can often calculate only one reflection per vertex
� Consider different light appearances as different� Consider different light appearances as different

types of reflection
� Ambient reflection: light reflected so many times, it

is everywhere (like uniform background illumination)
� Diffuse reflection: light scattered from one point

equally (more or less) into all directionsequally (more or less) into all directions
� Specular reflection: light rays bounce off in pretty

much only one direction (like from a mirror)y ()
� Type of reflection can depend on light source

characteristics and the material of the object 4

Ambient Reflection V i bl Infl ence on RAmbient Reflection
We construct an equation for Ra:

Variable Influence on Ra

Ia Proportional
ρa Proportional

How to deal with colors (RGB)?

ρa Proportional
d No influence
v No influence

aρaa IR =

How to deal with colors (RGB)?
� Instead of just Ia, use Iar, Iag, Iab

→ colored light

Ra

g
� Instead of just ρa, use ρar, ρag, ρab

→ colored materials
ρ

� Compute reflected light for each color: Ia

ρa

arρarra IR =

ag

ρ
ρagag

r

IR
IR

=

=

5

No ambient light A lot of ambient lightabρabab IR =

Diffuse Reflection V i bl Infl ence on RDiffuse Reflection
We construct an equation for Rd:

Variable Influence on Rd

Ia Proportional
ρd Proportionalρd Proportional
s Lambert’s law
d Divide by

(2)
)(/ 2dkdkk

ms
ms

qlcd ++
⋅

= ρdd IR

� Add color by calculating R R R

(kc + kld + kqd2)
v No influence

ms

� Add color by calculating Rdr, Rdg, Rdb

using Idr, Idg, Idb and ρdr, ρdg, ρdb
instead of just Rd, Id and ρd

Rd Rd

Lambertian spheresAngle between

d

d

6

Lambertian spheres
(diffuse reflectors)

Angle between
s and m

d

Specular Reflection V i bl Infl ence on RSpecular Reflection
We construct an equation for Rd:

Variable Influence on Rs

Is Proportional
ρs Proportional

(assuming we have calculated r from s and m)
ρs Proportional
r and v Highlight intensity
α Highlight size

rv ⎟
⎞

⎜
⎛

α

d Divide by
(kc + kld + kqd2)

)(/ 2dkdkk
rv
rv

qlcs ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
= ρss IR

m
� Add color by calculating Rsr, Rsg, Rsb

using I , I , I b and ρ ρ ρ b r

m

v
using Isr, Isg, Isb and ρsr, ρsg, ρsb
instead of just Rs, Is and ρs

r
s

l
Rd

I

specular
peak diffuse

reflection

d

A l b t

7

Angle φ between
v and r

y y

Modeling View
S P i iti

x
z

x
z

Transformation TransformationWorld CoordinatesScene Primitives
Master Coordinates

vy +1

Projection Ill i ti
u

nx

z-1

+1
-1 Projection

Transformation Illumination
View CoordinatesNormalized

Device Coordinates

1

Viewport
TransformationClipping RasterizationDevice Coordinates

LIGHTS IN OPENGL

8

Setting Up LightsSetting Up Lights
float lightPos0[] = {-1.0, 2.0, 3.0, 1.0}; // point source
glLightfv(GL LIGHT0, GL POSITION, lightPos0);glLightfv(GL_LIGHT0, GL_POSITION, lightPos0);

float lightPos1[] = {0.0, 1.0, 2.0, 0.0}; // directional
glLightfv(GL_LIGHT1, GL_POSITION, lightPos1);

glEnable(GL_LIGHTING); // enable lighting in general
glEnable(GL_LIGHT0); // enable light number 0
glEnable(GL LIGHT1); // enable light number 1

For setting the properties of lights, use one of
glLightfv(GLenum light, GLenum pname, float* params)

g (_); // g

glLightfv(GLenum light, GLenum pname, float params)
glLightf(GLenum light, GLenum pname, float param)

� light selects a light GL_LIGHTi with 0 < i < GL_MAX_LIGHTS (8)_ _ _
� pname selects a property to set (e.g. GL_POSITION)

� For point sources: set position to (x, y, z, 1)
� For directional light sources: set position to (x, y, z, 0)

(x,y,z) points towards the light source 9

Intensities and AttenuationIntensities and Attenuation
float l0_ambient[] = {0.2, 0.2, 0.2, 1.0};
float l0 diffuse[] = {0.8, 0.7, 0.7, 1.0};_ [] { , , , };
float l0_specular[] = {1.0, 1.0, 1.0, 1.0};
glLightfv(GL_LIGHT0, GL_AMBIENT, l0_ambient);
glLightfv(GL LIGHT0, GL DIFFUSE, l0 diffuse);_ _ _
glLightfv(GL_LIGHT0, GL_SPECULAR, l0_specular);

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL LIGHT0 GL LINEAR ATTENUATION 1 0);

� Set light intensities as RGBA: A (alpha) for color blending, is usually 1

glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

g (p) g, y
� Attenuation: how intensity decreases with distance from light source

� Default: kc=1, kl=0, kq=0 (does not decrease with distance)c l q

� Change for more realism (but slower rendering)

)(/)(2dkdkkmhms ⎟
⎞

⎜
⎛ ⋅⋅

α

IIIR
10

)(/)(2dkdkk
mhms qlcsda ++⎟
⎟
⎠

⎜
⎜
⎝

++= ρρρ sda IIIR

SpotlightsSpotlights
float d[] = {0.0, 0.0, -1.0}; // spotlight direction
glLightfv(GL LIGHT0, GL SPOT DIRECTION, d);glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, d);

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0); // α=45°
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, 4.0); // ε=4.0

� Position of spotlight set up just as for point sources
� Spotlight points in direction dSpotlight points in direction d
� Cutoff angle α determines size of spotlight
� Exponent ε determines attenuation towards the borders,p ,

i.e. if light is cut off abruptly (small ε) or fades out softly (large ε)

Attenuation of

d
α

εβ))(cos(
Attenuation of

β = angle between

11

β = angle between
light ray and d

Lighting Model ParametersLighting Model Parameters
� Global ambient light:

float global_amb [] = {0.1, 0.1, 0.1, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_amb);

� Force view direction vector v to be (0 0 1) (in view coords) for all� Force view direction vector v to be (0, 0, 1) (in view coords.) for all
vertices:
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

Why? → less calculations for directional light
With s and v constant, h=normalized(s+v) is constant as well

� Switch on lighting of back-facing polygons using reversed surface
normal (make inside of objects visible):

i iglLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

Closed object:
l t id

Open object:
i id d t b

12

only outside
needs to be visible

inside needs to be
visible as well

More About Setting Up LightsMore About Setting Up Lights
� In init(): set up all light properties that do not change,

e.g. intensities, spotlight α and ε
� In display(): set up properties that change during rendering,

e g light position directione.g. light position, direction
� Treat lights like objects: use MODELVIEW matrix, push and pop to

set up light positionp g p
� A light illuminates only the primitives drawn after the light is enabled

� Example:
enable light 0, draw object A, enable light 1, draw object B
Result:
A illuminated only with light 0 but B illuminated with lights 0 and 1A illuminated only with light 0, but B illuminated with lights 0 and 1

� Can also disable lights with glDisable()
� Don’t forget: need to enable each light as well as lighting in generalDon t forget: need to enable each light as well as lighting in general

13

Positioning LightsPositioning Lights
Light position independent of viewer
1. Set up view matrix (e.g. gluLookAt(…))
2. Position light
3. Draw scene
→ stationary lights (e.g. lamppost) or lights moving with scene objects

(e g car driving by)(e.g. car driving by)

Light position relative to viewerLight position relative to viewer
1. Set MODELVIEW matrix to identity
2. Position light relative to viewer (at origin)os t o g t e at e to e e (at o g)
3. Set view matrix (e.g. gluLookAt(…))
4. Draw scene
→ lights attached to viewer (e.g. miner’s headlamp)

14

y y

Modeling View
S P i iti

x
z

x
z

Transformation TransformationWorld CoordinatesScene Primitives
Master Coordinates

vy +1

Projection Ill i ti
u

nx

z-1

+1
-1 Projection

Transformation Illumination
View CoordinatesNormalized

Device Coordinates

1

Viewport
TransformationClipping RasterizationDevice Coordinates

MATERIALS IN OPENGL

15

Using MaterialsUsing Materials
float ambient[] = {0.1, 0.1, 0.1, 1.0}; // ρar,ρag,ρab,1
glMaterialfv(GL FRONT, GL AMBIENT, ambient);g (_ , _ ,);

float diffuse[] = {0.4, 0.4, 0.6, 1.0}; // ρdr,ρdg,ρdb ,1
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);

float specular[] = {0.8, 0.8, 1.0, 1.0}; // ρsr,ρsg,ρsb,1
glMaterialfv(GL_FRONT, GL_SPECULAR, specular);

glMaterialf(GL FRONT, GL SHININESS, 40.0); // α=40

Set the current material, then draw primitives (they will use the material)
glMaterialfv(GLenum face, GLenum pname, float* params)

glMaterialf(GL_FRONT, GL_SHININESS, 40.0); // α 40

glMaterialfv(GLenum face, GLenum pname, float params)
glMaterialf(GLenum face, GLenum pname, float param)

� face selects side to use material on (GL_FRONT, GL_BACK or _ _
GL_FRONT_AND_BACK)

� pname selects a property to set (e.g. GL_AMBIENT, GL_EMISSION,
GL AMBIENT AND DIFFUSE GL SHININESS)GL_AMBIENT_AND_DIFFUSE, GL_SHININESS, …)

� Set coefficients as RGBA: A (alpha) for color blending, is usually 1 16

Example: Shaded Cylinder 1Example: Shaded Cylinder 1
const float LIGHT_POS[] = {50, 100, 30,1};
const float LIGHT AMB[] = {0 0 0 1};

glLightfv(GL_LIGHT0, GL_POSITION, LIGHT_POS);
const float LIGHT_AMB[] = {0,0,0,1};
const float LIGHT_COL[] = {1,1,1,1};
const float GLOBAL_AMB[] = {0.4, 0.4, 0.4, 1};

glLightfv(GL_LIGHT0, GL_AMBIENT, LIGHT_AMB);
glLightfv(GL_LIGHT0, GL_DIFFUSE, LIGHT_COL);
glLightfv(GL_LIGHT0, GL_SPECULAR, LIGHT_COL);

CTrackball trackball;

void init(void) {

glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);

}void init(void) {
glClearColor (0.7f, 0.7f, 0.7f, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();g y();
gluPerspective(30, 1.0, 1.0, 20.0);
trackball.tbInit(GLUT_LEFT_BUTTON);
glEnable(GL_DEPTH_TEST);g ()
glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, 1);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,

GLOBAL AMB);GLOBAL_AMB);

17

Example: Shaded Cylinder 2Example: Shaded Cylinder 2
const float CYLINDER_COL[] = {0.8, 0.3, 0.2, 1};
const float CYLINDER SPEC[] = {1 1 1 1};const float CYLINDER_SPEC[] = {1,1,1,1};
const float CYLINDER_SHININESS = 10;

void display(void) {void display(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);

lL dId tit ()glLoadIdentity();
gluLookAt(0,0,10, 0,0,0, 0,1,0);
trackball.tbMatrix();
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, CYLINDER_COL);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, CYLINDER_SPEC);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, CYLINDER_SHININESS);

drawCylinder();
}

18

Example: Shaded Cylinder 3Example: Shaded Cylinder 3
const int NUM_STRIPS = 10;
const float PI = 3 1415926;

glBegin(GL_POLYGON);
glNormal3f(x 0 z);const float PI = 3.1415926;

const float DELTA_THETA =
(float) (2 * PI / NUM_STRIPS);

glNormal3f(x, 0, z);
glVertex3f(x, 1, z);
glVertex3f(x, -1, z);
glNormal3f(xNext 0 zNext);

void drawCylinder() {
for (int strip = 0; strip < NUM_STRIPS; strip++) {

float theta = strip * DELTA THETA;

glNormal3f(xNext, 0, zNext);
glVertex3f(xNext, -1, zNext);
glVertex3f(xNext, 1, zNext);
glEnd();float theta strip DELTA_THETA;

float thetaNext = theta + DELTA_THETA;
float x = (float) cos(theta);
float z = -(float) sin(theta);

glEnd();
}
glFlush();
glutSwapBuffers();() ();

float xNext = (float) cos(thetaNext);
float zNext = -(float) sin(thetaNext);

g p ();
} y

N=(x,0,z)

δθ

xz
1 unit

19

x

Surface NormalsSurface Normals
� Before each call to glVertex3f(x,y,z) the normalized surface

l h t b t ithnormal has to be set with glNormal3f(x,y,z)
� Problem: when transforming vertices with the MODELVIEW matrix, the

surface normal needs to be adjusted e gsurface normal needs to be adjusted, e.g.

T

Direction ok
Length=1

Direction ok
Length=1

T R

S

Direction ok
Length≠1

H

Direction wrong
Length≠1

� OpenGL adjusts normal direction for you ☺
� But OpenGL does not renormalise the transformed normal

unless you call glEnable(GL_NORMALIZE) (→ slower)

Transformation of Surface NormalsTransformation of Surface Normals
How to adjust surface normal n after arbitrary transformation M ?

Answer: adjust by transforming with Q = (M-1)T = (MT)-1 = M-T

P f l t d b t i t l ith lProof: let p1 and p2 be two points on a polygon with normal n
1. n⋅(p2 - p1) = 0 ⇔ nT(p2-p1) = 0 (n perpendicular to polygon)
2. This has also to be true after transforming p1 and p2 by M

and n by Q, i.e. (Qn)T(M(p2-p1)) = 0
A l l f t i l b (Q)T TQT3. Apply rule from matrix algebra: (Qn)T=nTQT:
nTQTM(p2-p1) = 0 whenever nT(p2-p1) = 0

S l ti i QTM I QT M 1 Q (M 1)T M T4. Solution is QTM=I ⇒ QT = M-1 ⇒ Q = (M-1)T = M-T

N t th dj t d l i t l li dNote: the adjusted normal is not always normalized
21

SUMMARY

22

SummarySummary
1. Set up properties of OpenGL lights with glLightf[v](…)

� Directional lights, point lights and spotlights (cutoff angle α and ε)
� Ambient, diffuse and specular light intensity (RGBA)

2. Set the current material with glMaterialf[v](…)
� All subsequently drawn primitives will use the material
� Ambient, diffuse and specular reflection coefficients (RGBA)

3. Make sure to set up and maintain surface normals correctly

References:
� O GL Li ht Hill Ch t 8 2 8� OpenGL Lights: Hill, Chapter 8.2.8
� OpenGL Materials: Hill, Chapter 8.2.9
� OpenGL API Reference:� OpenGL API Reference:

http://www.cs.auckland.ac.nz/compsci372s1c/resources/manpagesOpenGL
23

QuizQuiz
1. How would you change the ShadedCylinder program to…

1. Make the highlight band broader?
2. Make the highlight band brighter?

Ch th l f th hi hli ht b d?3. Change the colour of the highlight band?
4. Remove the highlight altogether?

2. In ShadedCylinder, does the mouse rotate the scene and the
light together or just the scene? Whichever it does make it dolight together, or just the scene? Whichever it does, make it do
the other.

3. Describe two transformations after which the surface normals
need adjustment.

24

