Part 2 - Lecture 4

Today's Outline

- Illumination and Shading
- The Phong Illumination Model
\square Ambient Reflection
\square Diffuse Reflection
\square Specular Reflection

ILLUMINATION AND SHADING

Illumination vs. Shading

Illumination Model

- What color is the surface? \rightarrow surface reflection model
- Use equations from physics (realistic but time consuming)
- Or use good approximations (much faster to compute!)

NB: Hill doesn't make this distinction

Shading Model

- How do we calculate the color at each pixel? \rightarrow pixel shading algorithm
- Using exact illumination model for every pixel usually too slow (and often unnecessary)
- Apply the illumination model only sometimes and interpolate

CG is about a trade-off between visual realism vs. computing time

Introduction to Illumination Models

- Where does the light come from? \rightarrow Light sources
\square Point sources
e.g. lamp, headlight, spotlight

\square Directional sources
(like a far away point source, rays are parallel) e.g. sun
- What happens to the light?
\square Reflection: ray bounces off a surface (most important for CG)
\square Absorbtion: ray energy taken up by an object, e.g. as heat (not important for CG)
e.g. water, glass (often not considered in CG)

\longrightarrow

Types of Light Reflection

- In the real world:
\square Light reflected unlimited number of times
\square Reflections change the appearance of the light
- In CG we need to keep computation time short:

\square Can often calculate only one reflection per vertex
\square Consider different light appearances as different types of reflection
- Ambient reflection: light reflected so many times, it is everywhere (like uniform background illumination)

- Diffuse reflection: light scattered from one point equally (more or less) into all directions
- Specular reflection: light rays bounce off in pretty much only one direction (like from a mirror)
- Type of reflection can depend on light source characteristics and the material of the object

PHONG ILLUMINATION MODEL

Phong Illumination Model

- Invented by Bui Tuong-Phong, PhD at Univ. of Utah 1973
- Idea: calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
- Variables taken into account:
\square Intensities (and colors) for incident light:
$\mathbf{I}_{\mathbf{a}}, \mathbf{I}_{\mathrm{d}}, \mathbf{I}_{\mathbf{s}}$ for ambient, diffuse and specular intensity
\square Surface normal vector \mathbf{m}

\square Vector \mathbf{s} describing the direction to the light source
\square Distance d to light source
\square Vector \mathbf{v} describing the direction to the viewer
\square Reflection coefficients of the surface material $\boldsymbol{\rho}_{\mathrm{a}}, \boldsymbol{\rho}_{\mathrm{d}}, \boldsymbol{\rho}_{\mathrm{s}}$ for ambient, diffuse and specular reflection (actually separate coefficients for RGB colors)

Ambient Reflection

- Source: no single point or directional source All the scattered "background" light, e.g. sunlight, lamps, moonlight, star light, ..
- Direction of reflection: all directions (it is scattered everywhere)
- Experiment: turn out room lights
\square No direct light sources
\square Just some indirect light, e.g. from gap under a door
\square Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light \mathbf{R}_{a}

$\mathbf{R}_{\mathbf{a} \uparrow} \xrightarrow[\begin{array}{l}\text { Angle between } \\ \mathbf{v} \text { and } \mathbf{m} \boldsymbol{r}\end{array}]{\mathbf{R}_{\mathbf{a}} \uparrow}$

Ambient Reflection

We construct an equation for $\mathbf{R}_{\mathbf{a}}$:

$$
\mathbf{R}_{\mathrm{a}}=\mathbf{I}_{\mathrm{a}} \rho_{a}
$$

How to deal with colors (RGB)?

- Instead of just \mathbf{I}_{a}, use $\mathbf{I}_{a r}, \mathbf{I}_{a g}, \mathbf{I}_{a b}$ \rightarrow colored light

Diffuse Reflection

- Instead of just $\boldsymbol{\rho}_{\mathrm{a}}$, use $\boldsymbol{\rho}_{\mathrm{ar}}, \boldsymbol{\rho}_{\mathrm{ag}}, \boldsymbol{\rho}_{\mathrm{ab}}$ \rightarrow colored materials
- Compute reflected light for each color:

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{ar}}=\mathbf{I}_{\mathrm{ar}} \quad \rho_{a r} \\
& \mathbf{R}_{\mathrm{ag}}=\mathbf{I}_{\mathrm{ag}} \\
& \mathbf{R}_{a b}=\mathbf{I}_{\mathrm{ab}} \\
& \rho_{a b}
\end{aligned}
$$

Proportional

 Proportional No influence No influence

No ambient light A lot of ambient light

Diffuse Reflection

- Source: one or more point or directional sources
- Direction of reflection: all directions (it is scattered everywhere)
- Experiment: turn out room lights
\square Use only "soft" light sources where light is already scattered a little (but not everywhere), e.g. light bulb
\square Shine on rough surface, e.g. rough wood, stone or cloth

Lambert's Law

Why does $\mathbf{R}_{\mathbf{d}}$ depend on the angle between \mathbf{s} and \mathbf{m} ?

- $\mathbf{R}_{\mathbf{d}}$ proportional to incoming $\mathbf{I}_{\mathbf{d}}$ per unit area

- Rays spread over larger area means less reflection per unit area

At angle 0 between \mathbf{s} and \mathbf{m}, rays hit area of the same size, i.e. $\mathrm{a}=1$ and $\mathbf{R}_{\mathrm{d}} \sim \mathbf{I}_{\mathrm{d}}$

At angle θ between \mathbf{s} and \mathbf{m}, rays hit area a of the size $1 / \cos (\theta)$

$$
R_{d} \sim \frac{I_{d}}{1 / \cos (\theta)}=I_{d} \cos (\theta)=I_{d} \frac{s \cdot m}{|s||m|}
$$

Distance from Light Source

In the real world:

- Intensity of light from a point source decreases quadratically with d , i.e. divide intensity by \mathbf{d}^{2}

- Area through which the rays pass grows quadratically with \mathbf{d}

In CG:

- Dividing intensity by d^{2} would make intensities too small
- CG "hack" is to divide by $\left(k_{c}+k_{1} d+k_{q} d^{2}\right)$
- $\mathrm{k}_{\mathrm{c}}, \mathrm{k}_{\mathrm{l}}, \mathrm{k}_{\mathrm{q}}$ are programmer-chosen constants (no real world meaning)
- Typically, $\mathrm{k}_{\mathrm{c}}=1.0,0<\mathrm{k}_{1}<1$ and $\mathrm{k}_{\mathrm{q}}=0$, but usually they have to be tuned so that it looks good

Diffuse Reflection

We construct an equation for \mathbf{R}_{d} :
$\mathbf{R}_{\mathbf{d}}=\mathbf{I}_{\mathbf{d}} \rho_{d} \frac{s \cdot m}{|s||m|} /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$

Variable	Influence on R_{d}
I_{a}	Proportional
$\mathrm{P}_{\text {d }}$	Proportional
s	Lambert's law
d	Divide by $\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$
	No influence

- Add color by calculating $\mathbf{R}_{\mathrm{dr}}, \mathbf{R}_{\mathrm{d}}, \mathbf{R}_{\mathrm{db}}$ using $\mathbf{I}_{\mathrm{dr}}, \mathbf{I}_{\mathrm{dg}}, \mathbf{I}_{\mathrm{db}}$ and $\boldsymbol{\rho}_{\mathrm{dr}}, \boldsymbol{\rho}_{\mathrm{dg}}, \boldsymbol{\rho}_{\mathrm{db}}$ instead of just $\mathbf{R}_{d}, \mathbf{I}_{\mathrm{d}}$ and $\boldsymbol{\rho}_{\mathrm{d}}$

Lambertian spheres (diffuse reflectors)

Specular Reflection

- Source: one or more point or directional sources
- Direction of reflection r :
mostly only one (very little scattering)
$\rightarrow \mathbf{r}$ is calculated from \mathbf{s} and \mathbf{m}
- Experiment: turn out room lights
\square Use only hard light sources where light is not scattered, e.g. a spotlight
\square Shine on glossy surface, e.g. polished metal
\square Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light \mathbf{R}_{a}

Specular Highlight

Angle $\boldsymbol{\varphi}$ between \mathbf{v} and \mathbf{r} :

- Looking directly into the reflected ray $\left(0^{\circ}\right)=$ very bright
- The farther the reflected ray away from the eye, the darker
- Result: a bright sport where the light is reflected directly into the eye (\rightarrow highlight)

- Model as cosine function: $\mathbf{R}_{\mathbf{d}}$ grows with $\cos (\varphi)=\frac{v \cdot r}{|v \| r|}$
- But \mathbf{R}_{d} is always positive, so if $\cos (\boldsymbol{\varphi})$ negative set $\mathbf{R}_{\mathbf{d}}$ to 0

Shininess α

Different behaviors of specular surfaces:

- Some glossy materials reflect perfectly (e.g. a mirror),
 i.e. one ray is pretty much reflected as
\rightarrow small highlight (bigger shininess α)
- Other materials scatter incoming rays a little bit, i.e. several outgoing rays close together

Specular Reflection

We construct an equation for \mathbf{R}_{d} :
(assuming we have calculated \mathbf{r} from \mathbf{s} and \mathbf{m})
$\mathbf{R}_{\mathrm{s}}=\mathbf{I}_{\mathrm{s}} \rho_{s}\left(\frac{v \cdot r}{|v||r|}\right)^{\alpha} /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$

- Add color by calculating $\mathbf{R}_{\text {sr }}, \mathbf{R}_{\mathrm{sg}}, \mathbf{R}_{\mathrm{sb}}$ using $\mathbf{I}_{\mathrm{sr}}, \mathbf{I}_{\mathrm{sg}}, \mathbf{I}_{\mathrm{sb}}$ and $\mathbf{\rho}_{\mathrm{sr}}, \mathbf{\rho}_{\mathrm{sg}}, \boldsymbol{\rho}_{\mathrm{sb}}$ instead of just $\mathbf{R}_{s}, \mathbf{I}_{\mathrm{s}}$ and $\boldsymbol{\rho}_{\mathrm{s}}$

Shininess $\boldsymbol{\alpha}$ of object surface:

- "Focus" of specular reflection
- Use as exponent of our cosine specular reflection formula:

$$
\cos (\varphi)^{\alpha}=\left(\frac{v \cdot r}{|v \| r|}\right)^{\alpha}
$$

Specular Reflection Optimized

Instead of calculating \mathbf{r}, use simpler halfway-vector \mathbf{h} for highlight:

$$
\left(\frac{h \cdot m}{|h \| m|}\right)^{\alpha} \quad \begin{aligned}
& \text { with } \mathbf{h}=\text { normalized }(\mathbf{s}+\mathbf{v}) \\
& (\rightarrow \mathbf{h} \text { is half way between } \mathbf{s} \text { and } \mathbf{v})
\end{aligned}
$$

- Consider angle between \mathbf{h} and \mathbf{m} instead of angle between \mathbf{r} and \mathbf{v} \square If \mathbf{h} is exactly on $\mathbf{m}\left(0^{\circ}\right)$ then reflection directly into the eye (\mathbf{r} on \mathbf{v}) \square Greater angle between \mathbf{h} and $\mathbf{m} \rightarrow$ greater angle between \mathbf{r} and \mathbf{v}
- Not mathematically identical, but same general properties
- Larger highlight for any given α because angle grows slower
- Used by OpenGL

Final Phong Equation

- Achromatic version: $\mathbf{R}=\mathbf{I}_{\mathbf{a}} \rho_{a}+\left(\mathbf{I}_{\mathbf{d}} \rho_{d} \frac{s \cdot m}{|s||m|}+\mathbf{I}_{\mathrm{s}} \rho_{s}\left(\frac{h \cdot m}{|h||m|}\right)^{\alpha}\right) /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$
- Chromatic version (RGB):

Chromatic version (RGB):
$\mathbf{R}_{\mathbf{r}}=\mathbf{I}_{\mathrm{ar}} \rho_{a r}+\left(\mathbf{I}_{\mathrm{dr}} \rho_{d r} \frac{s \cdot m}{|s| m \mid}+\mathbf{I}_{\mathrm{sr}} \rho_{s r}\left(\frac{h \cdot m}{|h||m|}\right)^{\alpha}\right) /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$
$\mathbf{R}_{\mathrm{g}}=\mathbf{I}_{\mathrm{ag}} \rho_{a g}+\left(\mathbf{I}_{\mathrm{dg}} \rho_{d g} \frac{s \cdot m}{|s||m|}+\mathbf{I}_{\mathrm{sg}} \rho_{s g}\left(\frac{h \cdot m}{|h| m \mid}\right)^{\alpha}\right) /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$
$\mathbf{R}_{\mathrm{b}}=\mathbf{I}_{\mathrm{ab}} \rho_{a b}+\left(\mathbf{I}_{\mathrm{db}} \rho_{d b} \frac{s \cdot m}{|s| m \mid}+\mathbf{I}_{\mathrm{sb}} \rho_{s b}\left(\frac{h \cdot m}{|h| m \mid}\right)^{\alpha}\right) /\left(k_{c}+k_{l} d+k_{q} d^{2}\right)$

- For multiple light sources: add up the reflected light

Phong Shading Examples

Black Plastic

Chrome

Brass

Pewter

Bronze

Gold

Hill, Fig. 8.17

SUMMARY

Summary

■ Illumination models: what color does a surface have?

- Shading models: how to calculate the color of each pixel?
- Phong illumination model:
calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
\square Ambient reflection: light scattered everywhere (background illumination)
\square Diffuse reflection: light reflected into all directions on rough surface
\square Specular reflection: light reflected directly into the eye

References:

\square Phong Illumination Model: Hill, Chapter 8.2, pp. 381-391

