

Today's Outline

- Illumination and Shading
- The Phong Illumination Model
 - □ Ambient Reflection
 - □ Diffuse Reflection
 - □ Specular Reflection

2

NB: Hill

doesn't make this distinction

Illumination vs. Shading

Illumination Model

- What color is the surface?
 → surface reflection model
- Use equations from physics (realistic but time consuming)
- Or use good approximations (much faster to compute!)

Shading Model

- How do we calculate the color at each pixel?
 - → pixel shading algorithm
- Using exact illumination model for every pixel usually too slow (and often unnecessary)
- Apply the illumination model only sometimes and interpolate

CG is about a trade-off between visual realism vs. computing time

3

Introduction to Illumination Models

Where does the light come from? → Light sources

□ Point sources e.g. lamp, headlight, spotlight

e.g. sun

□ **Reflection**: ray bounces off a surface (most important for CG)

□ **Absorbtion**: ray energy taken up by an object. e.g. as heat (not important for CG)

☐ **Transmission**: ray passes through an object, e.g. water, glass (often not considered in CG)

- In the real world:
 - ☐ Light reflected unlimited number of times
 - ☐ Reflections change the appearance of the light Diffuse
- In CG we need to keep computation time short:
 - ☐ Can often calculate only one reflection per vertex
 - ☐ Consider different light appearances as different types of reflection
- Ambient reflection: light reflected so many times, it is everywhere (like uniform background illumination)
- **Diffuse reflection**: light scattered from one point equally (more or less) into all directions
- Specular reflection: light rays bounce off in pretty much only one direction (like from a mirror)
- Type of reflection can depend on light source characteristics and the material of the object

PHONG ILLUMINATION MODEL

Phong Illumination Model

- Invented by Bui Tuong-Phong, PhD at Univ. of Utah 1973
- Idea: calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
- Variables taken into account:
 - □ Intensities (and colors) for incident light:

I_a, I_d, I_s for ambient, diffuse and specular intensity

- □ Surface normal vector **m**
- □ Vector **s** describing the direction to the light source
- □ Distance **d** to light source
- □ Vector **v** describing the direction to the viewer
- □ Reflection coefficients of the surface material ρ_a , ρ_d , ρ_s for ambient, diffuse and specular reflection (actually separate coefficients for RGB colors)

Ambient Reflection

- **Source:** no single point or directional source All the scattered "background" light, e.g. sunlight, lamps, moonlight, star light, ...
- Direction of reflection: all directions (it is scattered everywhere)
- Experiment: turn out room lights
 - □ No direct light sources
 - ☐ Just some indirect light, e.g. from gap under a door
 - □ Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R_a

Ambient Reflection

We construct an equation for \mathbf{R}_{\circ} :

$$\mathbf{R}_{\mathbf{a}} = \mathbf{I}_{\mathbf{a}} \ \boldsymbol{\rho}_{a}$$

How to deal with colors (RGB)?

■ Instead of just I_a , use I_{ar} , I_{ag} , I_{ab} → colored light

→ colored materials

- Diffuse Reflection
 Instead of just ρ_a , use ρ_{ar} , ρ_{ag} , ρ_{ab}
- Compute reflected light for each color:

$$\mathbf{R_{ar}} = \mathbf{I_{ar}} \ \rho_{ar}$$

$$\mathbf{R}_{\mathbf{ag}} = \mathbf{I}_{\mathbf{ag}} \rho_{ag}$$

$$\mathbf{R}_{\mathbf{ab}} = \mathbf{I}_{\mathbf{ab}} \rho_{ab}$$

Variable	Influence on R _a
I_a	Proportional
$\rho_{\rm a}$	Proportional
d	No influence
V	No influence

No ambient light A lot of ambient light

10

Diffuse Reflection

- Source: one or more point or directional sources
- Direction of reflection: all directions (it is scattered everywhere)
- **Experiment**: turn out room lights
 - □ Use only "soft" light sources where light is already scattered a little (but not everywhere), e.g. light bulb
 - □ Shine on rough surface,e.g. rough wood, stone or cloth
 - □ Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R_a

Irregular surface

Lambert's Law

Why does $\mathbf{R}_{\mathbf{d}}$ depend on the angle between \mathbf{s} and \mathbf{m} ?

Angle between s and m

- R_d proportional to incoming I_d per unit area
- Rays spread over larger area means less reflection per unit area

At angle 0 between **s** and **m**, rays hit area of the same size, i.e. a=1 and $R_d \sim I_d$

At angle θ between \boldsymbol{s} and \boldsymbol{m} , rays hit area a of the size $1/cos(\theta)$

$$R_d \sim \frac{I_d}{1/\cos(\theta)} = I_d \cos(\theta) = I_d \frac{s \cdot m}{|s||m|}$$

In the real world:

■ Intensity of light from a point source decreases quadratically with d, i.e. divide intensity by **d**²

Area through which the rays pass grows quadratically with d

In CG:

- Dividing intensity by d² would make intensities too small
- CG "hack" is to divide by (k_c + k_ld + k_qd²)
- k_c, k_l, k_a are programmer-chosen constants (no real world meaning)
- Typically, $k_c = 1.0$, $0 < k_l < 1$ and $k_q = 0$, but usually they have to be tuned so that it looks good

Diffuse Reflection

We construct an equation for \mathbf{R}_{d} :

$$\mathbf{R_d} = \mathbf{I_d} \, \rho_d \, \frac{s \cdot m}{|s||m|} / \left(k_c + k_l d + k_q d^2 \right)$$

 $\label{eq:local_decomposition} \begin{array}{l} \blacksquare & \text{Add color by calculating } R_{dr}, \, R_{dg}, \, R_{db} \\ & \text{using } I_{dr}, \, I_{dg}, \, I_{db} \, \, \text{and } \rho_{dr}, \rho_{dg}, \rho_{db} \\ & \text{instead of just } R_{d}, \, I_{d} \, \, \text{and } \rho_{d} \end{array}$

Variable	Influence on R _d
I_a	Proportional
$ ho_{ m d}$	Proportional
s	Lambert's law
d	Divide by $(k_c + k_l d + k_q d^2)$
V	No influence

Lambertian spheres (diffuse reflectors)

14

Angle ϕ between

v and r

Specular Reflection

- Source: one or more point or directional sources
- Direction of reflection r: mostly only one (very little scattering)
 → r is calculated from s and m
- **Experiment**: turn out room lights
 - ☐ Use only hard light sources where light is not scattered, e.g. a spotlight
 - □ Shine on glossy surface, e.g. polished metal
 - □ Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R₂

Specular Highlight

Angle ϕ between \mathbf{v} and \mathbf{r} :

- Looking directly into the reflected ray (0°) = very bright
- The farther the reflected ray away from the eye, the darker
- Result: a bright sport where the light is reflected directly into the eye (→ highlight)

$$\mathbf{R_d}$$
 grows with $\cos(\varphi) = \frac{v \cdot r}{|v||r|}$

 But R_d is always positive, so if cos(φ) negative set R_d to 0

Shininess a

Different behaviors of specular surfaces:

- Some glossy materials reflect perfectly (e.g. a mirror), i.e. one ray is pretty much reflected as one ray
 - \rightarrow small highlight (bigger shininess α)
- Other materials scatter incoming rays a little bit. i.e. several outgoing rays close together
 - \rightarrow bigger highlight (smaller shininess α)

Shininess α of object surface:

- "Focus" of specular reflection
- Use as exponent of our cosine specular reflection formula:

$$\cos(\varphi)^{\alpha} = \left(\frac{v \cdot r}{|v||r|}\right)^{\alpha}$$

Specular Reflection

We construct an equation for \mathbf{R}_{d} : (assuming we have calculated r from s and m)

$$\mathbf{R_s} = \mathbf{I_s} \, \rho_s \left(\frac{v \cdot r}{|v||r|} \right)^{\alpha} / (k_c + k_l d + k_q d^2)$$

variable	influence on R_s
I_s	Proportional
$\rho_{\rm s}$	Proportional
r and v	Highlight intensity
α	Highlight size
d	Divide by $(k_c + k_l d + k_a d^2)$
	(N _C + N _Q + N _Q)

■ Add color by calculating R_{sr}, R_{sg}, R_{sh} using I_{sr} , I_{so} , I_{sh} and ρ_{sr} , ρ_{so} , ρ_{sh} instead of just R_s, I_s and p_s

Specular Reflection Optimized

Instead of calculating **r**, use simpler **halfway-vector h** for highlight:

$$\left(\frac{h \cdot m}{|h||m|}\right)^{\alpha} \quad \text{with } \mathbf{h} = \text{normalized } (\mathbf{s} + \mathbf{v}) \\ (\rightarrow \mathbf{h} \text{ is half way between } \mathbf{s} \text{ and } \mathbf{v})$$

- Consider angle between **h** and **m** instead of angle between **r** and **v**
 - \square If **h** is exactly on **m** (0°) then reflection directly into the eye (**r** on **v**)
 - \square Greater angle between **h** and **m** \rightarrow greater angle between **r** and **v**
- Not mathematically identical, but same general properties
- Larger highlight for any given α because angle grows slower
- Used by OpenGL

Final Phong Equation

Achromatic version: $\mathbf{R} = \mathbf{I_a} \, \rho_a + (\mathbf{I_d} \, \rho_d \, \frac{s \cdot m}{|s||m|} + \mathbf{I_s} \, \rho_s \left(\frac{h \cdot m}{|h||m|} \right)^{\alpha}) / (k_c + k_l d + k_q d^2)$

• Chromatic version (RGB):
$$\mathbf{R_r} = \mathbf{I_{ar}} \, \rho_{ar} + (\mathbf{I_{dr}} \, \rho_{dr} \, \frac{s \cdot m}{|s||m|} + \mathbf{I_{sr}} \, \rho_{sr} \left(\frac{h \cdot m}{|h||m|} \right)^{\alpha}) / \left(k_c + k_l d + k_q d^2 \right)$$

$$\mathbf{R}_{\mathbf{g}} = \mathbf{I}_{\mathbf{ag}} \, \rho_{ag} + (\mathbf{I}_{\mathbf{dg}} \, \rho_{dg} \, \frac{s \cdot m}{|s||m|} + \mathbf{I}_{\mathbf{sg}} \, \rho_{sg} \left(\frac{h \cdot m}{|h||m|} \right)^{a}) / (k_{c} + k_{l}d + k_{q}d^{2})$$

$$\mathbf{R_b} = \mathbf{I_{ab}} \, \rho_{ab} + (\mathbf{I_{db}} \, \rho_{ab} \, \frac{s \cdot m}{|s||m|} + \mathbf{I_{sb}} \, \rho_{sb} \left(\frac{h \cdot m}{|h||m|} \right)^{\alpha}) / (k_c + k_l d + k_q d^2)$$

For multiple light sources: add up the reflected light

Phong Shading Examples

Hill, Fig. 8.17

SUMMARY

22

- Illumination models: what color does a surface have?
- **Shading models**: how to calculate the color of each pixel?
- Phong illumination model: calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
 - ☐ Ambient reflection: light scattered everywhere (background illumination)
 - □ Diffuse reflection: light reflected into all directions on rough surface
 - $\hfill \square$ Specular reflection: light reflected directly into the eye

References:

 $\hfill\square$ Phong Illumination Model: Hill, Chapter 8.2, pp. 381-391

Quiz

- 1. Why does the view direction not matter for diffusely reflected light?
- 2. What does Lambert's law say? Where do we use it?
- 3. What does the shininess parameter α do?