

Computer Graphics: Illumination I

Part 2 – Lecture 4

Today's Outline

Illumination and Shading

The Phong Illumination Model

- □ Ambient Reflection
- Diffuse Reflection
- Specular Reflection

ILLUMINATION AND SHADING

Illumination vs. Shading

Illumination Model

- What color is the surface?
 → surface reflection model
- Use equations from physics (realistic but time consuming)
- Or use good approximations (much faster to compute!)

Shading Model

- How do we calculate the color at each pixel?
 - \rightarrow pixel shading algorithm
- Using exact illumination model for every pixel usually too slow (and often unnecessary)
- Apply the illumination model only sometimes and interpolate

CG is about a trade-off between

visual realism vs. computing time

NB: Hill doesn't make this distinction

Introduction to Illumination Models

- Where does the light come from? \rightarrow Light sources
 - **Point sources**

e.g. lamp, headlight, spotlight

- **Directional sources** (like a far away point source, rays are parallel) e.g. sun
- What happens to the light?
 - **Reflection**: ray bounces off a surface (most important for CG)
 - **Absorbtion**: ray energy taken up by an object, e.g. as heat (not important for CG)
 - **Transmission:** ray passes through an object, e.g. water, glass (often not considered in CG)

Types of Light Reflection

- In the real world:
 - Light reflected unlimited number of times
 - Reflections change the appearance of the light
- In CG we need to keep computation time short:
 - Can often calculate only one reflection per vertex
 - Consider different light appearances as different types of reflection
- Ambient reflection: light reflected so many times, it is everywhere (like uniform background illumination)
- Diffuse reflection: light scattered from one point equally (more or less) into all directions
- Specular reflection: light rays bounce off in pretty much only one direction (like from a mirror)
- Type of reflection can depend on light source characteristics and the material of the object

PHONG ILLUMINATION MODEL

Phong Illumination Model

- Invented by Bui Tuong-Phong, PhD at Univ. of Utah 1973
- Idea: calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection
- Variables taken into account:
 - □ Intensities (and colors) for incident light:
 - $\mathbf{I}_a,\,\mathbf{I}_d,\,\mathbf{I}_s$ for ambient, diffuse and specular intensity
 - Surface normal vector m
 - □ Vector **s** describing the direction to the light source
 - Distance d to light source
 - $\hfill\square$ Vector ${\bf v}$ describing the direction to the viewer
 - Reflection coefficients of the surface material

 ρ_a, **ρ**_d, **ρ**_s for ambient, diffuse and specular reflection (actually separate coefficients for RGB colors)

Ambient Reflection

- Source: no single point or directional source All the scattered "background" light, e.g. sunlight, lamps, moonlight, star light, ...
- Direction of reflection: all directions (it is scattered everywhere)
- **Experiment**: turn out room lights
 - No direct light sources
 - Just some indirect light,
 e.g. from gap under a door
 - Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R_a

Ambient Reflection

We construct an equation for \mathbf{R}_{a} :

$$\mathbf{R}_{\mathbf{a}} = \mathbf{I}_{\mathbf{a}} \ \boldsymbol{\rho}_{a}$$

How to deal with colors (RGB)?

- Instead of just I_a , use I_{ar} , I_{ag} , I_{ab} \rightarrow colored light Diffuse Reflection
- Compute reflected light for each color:

$$\mathbf{R}_{ar} = \mathbf{I}_{ar} \ \rho_{ar}$$
$$\mathbf{R}_{ag} = \mathbf{I}_{ag} \ \rho_{ag}$$
$$\mathbf{R}_{ab} = \mathbf{I}_{ab} \ \rho_{ab}$$

Variable	Influence on R _a
Ia	Proportional
ρ _a	Proportional
d	No influence
V	No influence

No ambient light A lot of ambient light

Diffuse Reflection

- Source: one or more point or directional sources
- Direction of reflection: all directions (it is scattered everywhere)
- **Experiment**: turn out room lights
 - Use only "soft" light sources where light is already scattered a little (but not everywhere), e.g. light bulb
 - Shine on rough surface,
 e.g. rough wood, stone or cloth
 - Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R_a

Lambert's Law

Why does \mathbf{R}_{d} depend on the angle between \mathbf{s} and \mathbf{m} ?

R_d proportional to incoming I_d per unit area

Rays spread over larger area means less reflection per unit area

 $m = s_{a}$ $\frac{1}{a} = \cos(\theta)$

At angle 0 between **s** and **m**, rays hit area of the same size, i.e. a=1 and $\mathbf{R}_{d} \sim \mathbf{I}_{d}$

At angle θ between **s** and **m**, rays hit area a of the size $1/\cos(\theta)$

$$R_d \sim \frac{I_d}{1/\cos(\theta)} = I_d \cos(\theta) = I_d \frac{s \cdot m}{|s||m|}$$

Distance from Light Source

In the real world:

- Intensity of light from a point source decreases quadratically with d, i.e. divide intensity by d²
- Area through which the rays pass grows quadratically with d

In CG:

- Dividing intensity by d² would make intensities too small
- CG "hack" is to divide by $(k_c + k_l d + k_q d^2)$
- k_c, k_l, k_q are programmer-chosen constants (no real world meaning)
- Typically, k_c = 1.0, 0 < k_l < 1 and k_q = 0, but usually they have to be tuned so that it looks good

d

 \mathbf{R}_{d}

Diffuse Reflection

We construct an equation for \mathbf{R}_{d} :

$$\mathbf{R}_{\mathbf{d}} = \mathbf{I}_{\mathbf{d}} \,\rho_d \, \frac{s \cdot m}{|s||m|} \,/ \, (k_c + k_l d + k_q d^2)$$

• Add color by calculating R_{dr} , R_{dg} , R_{db} using I_{dr} , I_{dg} , I_{db} and ρ_{dr} , ρ_{dg} , ρ_{db} instead of just R_d , I_d and ρ_d

Variable	Influence on R _d
I _a	Proportional
$\mathbf{\rho}_{\mathrm{d}}$	Proportional
S	Lambert's law
d	Divide by $(k_c + k_l d + k_q d^2)$
v	No influence

Lambertian spheres (diffuse reflectors)

Specular Reflection

- Source: one or more point or directional sources
- Direction of reflection r: mostly only one (very little scattering)
 → r is calculated from s and m
- **Experiment**: turn out room lights
 - Use only hard light sources where light is not scattered, e.g. a spotlight
 - Shine on glossy surface, e.g. polished metal
 - Keeping all other variables constant, we change intensity, view direction, material, etc. and see what happens to the reflected ambient light R_a

Specular Highlight

Angle $\boldsymbol{\phi}$ between \boldsymbol{v} and \boldsymbol{r} :

- Looking directly into the reflected ray (0°) = very bright
- The farther the reflected ray away from the eye, the darker
- Result: a bright sport where the light is reflected directly into the eye (\rightarrow highlight)
- Model as cosine function:

 $\mathbf{R}_{\mathbf{d}}$ grows with $\cos(\varphi) = \frac{v \cdot r}{|v||r|}$

 But R_d is always positive, so if cos(φ) negative set R_d to 0 ε

Shininess α

Different behaviors of specular surfaces:

- Some glossy materials reflect perfectly (e.g. a mirror), i.e. one ray is pretty much reflected as one ray

 → small highlight (bigger shininess α)
- Other materials scatter incoming rays a little bit,
 i.e. several outgoing rays close together
 → bigger highlight (smaller shininess α)

Shininess α of object surface:

- "Focus" of specular reflection
- Use as exponent of our cosine specular reflection formula:

$$\cos(\varphi)^{\alpha} = \left(\frac{v \cdot r}{|v||r|}\right)^{\alpha}$$

Specular Reflection

We construct an equation for \mathbf{R}_d : (assuming we have calculated **r** from **s** and **m**)

$$\mathbf{R}_{s} = \mathbf{I}_{s} \,\rho_{s} \left(\frac{v \cdot r}{|v||r|} \right)^{\alpha} / \left(k_{c} + k_{l}d + k_{q}d^{2}\right)$$

• Add color by calculating R_{sr} , R_{sg} , R_{sb} using I_{sr} , I_{sg} , I_{sb} and ρ_{sr} , ρ_{sg} , ρ_{sb} instead of just R_s , I_s and ρ_s

Variable	Influence on R _s
I _s	Proportional
ρ _s	Proportional
r and v	Highlight intensity
α	Highlight size
d	Divide by
	$(k_{c} + k_{l}d + k_{q}d^{2})$

Specular Reflection Optimized

Instead of calculating **r**, use simpler **halfway-vector h** for highlight:

- Consider angle between h and m instead of angle between r and v
 □ If h is exactly on m (0°) then reflection directly into the eye (r on v)
 □ Greater angle between h and m → greater angle between r and v
- Not mathematically identical, but same general properties
- Larger highlight for any given α because angle grows slower
- Used by OpenGL

19

Final Phong Equation

- Achromatic version: $\mathbf{R} = \mathbf{I}_{\mathbf{a}} \,\rho_a + (\mathbf{I}_{\mathbf{d}} \,\rho_d \,\frac{s \cdot m}{|s||m|} + \mathbf{I}_{\mathbf{s}} \,\rho_s \left(\frac{h \cdot m}{|h||m|}\right)^{\alpha} \,) / \,(k_c + k_l d + k_q d^2)$
- Chromatic version (RGB): $\mathbf{R}_{\mathbf{r}} = \mathbf{I}_{\mathbf{ar}} \,\rho_{ar} + (\mathbf{I}_{\mathbf{dr}} \,\rho_{dr} \frac{s \cdot m}{|s||m|} + \mathbf{I}_{\mathbf{sr}} \,\rho_{sr} \left(\frac{h \cdot m}{|h||m|}\right)^{\alpha}) / (k_{c} + k_{l}d + k_{q}d^{2})$ $\mathbf{R}_{\mathbf{g}} = \mathbf{I}_{\mathbf{ag}} \,\rho_{ag} + (\mathbf{I}_{\mathbf{dg}} \,\rho_{dg} \,\frac{s \cdot m}{|s||m|} + \mathbf{I}_{\mathbf{sg}} \,\rho_{sg} \left(\frac{h \cdot m}{|h||m|}\right)^{\alpha}) / (k_{c} + k_{l}d + k_{q}d^{2})$ $\mathbf{R}_{\mathbf{b}} = \mathbf{I}_{\mathbf{ab}} \,\rho_{ab} + (\mathbf{I}_{\mathbf{db}} \,\rho_{db} \,\frac{s \cdot m}{|s||m|} + \mathbf{I}_{\mathbf{sb}} \,\rho_{sb} \left(\frac{h \cdot m}{|h||m|}\right)^{\alpha}) / (k_{c} + k_{l}d + k_{q}d^{2})$
- For multiple light sources: add up the reflected light

Phong Shading Examples

Black Plastic

Bronze

Chrome *Hill, Fig. 8.17*

Pewter

Gold

SUMMARY

Summary

- Illumination models: what color does a surface have?
- **Shading models**: how to calculate the color of each pixel?
- Phong illumination model:

calculate intensity I (and color) of visible light at a point as the sum of ambient, diffuse and specular reflection

- □ Ambient reflection: light scattered everywhere (background illumination)
- Diffuse reflection: light reflected into all directions on rough surface
- Specular reflection: light reflected directly into the eye

References:

□ Phong Illumination Model: Hill, Chapter 8.2, pp. 381-391

Quiz

- 1. Why does the view direction not matter for diffusely reflected light?
- 2. What does Lambert's law say? Where do we use it?
- 3. What does the shininess parameter α do?