
Computer Graphics:
Clipping and Viewport
TransformationTransformation
Part 2 – Lecture 3

1

Today’s Outline
� Pseudodepth
� Clipping
� Viewport Transformations

2

znear zfar

= z*

PSEUDODEPTH

3

� Requirements:
1. x and y values must be scaled by same factor as derived in

perspective projection equations
2. z values must maintain depth ordering (monotonic increasing)
3. z values must map: -znear � -1 and -zfar � +1, view volume �

NDC cube

Perspective Transformation

NDC cube
� So we need a transformation that given a point P results in a

transformed point P’ such that
P’x and P’y meet requirement 1 and
f(pz) meets requirements 2 and 3:

� We have already found such a transformation:
� Multiply P with Mproj

� Convert result to ordinary coordinates (perspective division)








 −−=)(,,' zy
z

x
z

pfp
p

near
p

p

near
P

© 2004 Lewis Hitchner & Richard Lobb

Perspective Transformation (cont’d)
� Perspective division:

Phomog = (x, y, z, w) � Pord = (x/w, y/w, z/w)

� Thus, for these transformed points,















−
+

==

z

bza

ynear

xnear

PP P*















+−
==

near

bneara

ynear

xnear

PP znearnear P*















+−
==

far

bfara

ynear

xnear

PP zfarfar P*

� Using

Ordinary form of the Ordinary form of the z components:
x and y components: (a z + b) / (-z)
znear x / z = (-znear/z) x (-a znear+ b) / znear = -1.0
znear y / z = (-znear/z) y (-a zfar + b) / zfar = +1.0







 − z 






 near 






 far

Check this out!

© 2004 Lewis Hitchner & Richard Lobb

nearfar

nearfar
b

nearfar

nearfar
a

−
−

=
−
+−=

2
,

Pseudodepth
� Transformed z* not linear function of z

This is OK (sort of) because

z

nearfar

nearfar
z

nearfar

nearfar

z

baz
z

−
−

−+








−
+−

=
−

+=

∗2

*

()
()znearfar

nearfarznearfar
z

−
++= ∗2

*

= z*

� This is OK (sort of) because
z* meets our 2 requirements:
1. monotonic increasing, and
2. z* = -1 for z = znear = -near

and z* = +1 for z = zfar = -far

� But: can cause z-buffer precision problems!
(z-buffer values are usually 32 bit integers)

znear zfar

© 2004 Lewis Hitchner & Richard Lobb

Problems of Pseudodepth
� Points closer to near plane have

highest pseudodepth resolution
� Points closer to far plane have

lowest pseudodepth resolution

Never use near= 0

near=1
far=2

near=0.5 near=1

x: depth
y: pseudodepth

� Never use near= 0
→ division by zero

� Avoid very small near
and very large far
→ resolution too low for points

that are further away

7

near=0.5
far=2

near=0.1
far=2

near=0.01
far=2

near=1
far=10

near=1
far=50

near=1
far=100

Modeling
Transformation

View
Transformation

Projection
Illumination

World CoordinatesScene Primitives
Master Coordinates

x

y

z
x

y

z

u

v

nx

y

z-1

+1
-1

+1

CLIPPING

8

Projection
Transformation

Viewport
Transformation

Clipping

Illumination

Rasterization

View CoordinatesNormalized
Device Coordinates

Device Coordinates

-1

Clipping
� Determine which lines are in the

canonical view volume (using NDC)
� Outside of the view volume is given by:

px < -1 , px > +1 , py < -1 , py > +1 ,
pz < -1 , pz > +1
(→ clip planes)

y

z

-1
-1

+1

+1

A

B
C

D

E

F
G

� Each line is either…
1. completely inside

→ trivial accept
2. completely outside

→ trivial reject
3. Partially in the view volume

→ need to find out which part
is inside

-1 +1
E

Trivial accept for:
CB and GF

Trivial reject for:
DA

Partially visible:
AB, CD, EF and EG

Trivial Accept and Reject Tests
� For each point, check if it is outside

of left (L), right (R), bottom (B), top
(T), near (N) and far (F) clip plane

� Create table with outcodes:
1 if point is outside, 0 if inside

� Trivial reject of a line PQ:
= P and Q outside of the same

y

z

-1
-1

+1

+1

A

B
C

D

E

F
G

= P and Q outside of the same
clip plane

= outcodes for same plane both 1
= (outcode P & outcode Q)!=0

� Trivial accept of a line PQ:
= both endpoints inside of all

clip planes
= all outcodes 0
= (outcode C | outcode D)==0

10

-1 +1E

L R B T N F

A 0 0 0 1 0 1

B 0 0 0 0 0 0

C 0 0 0 0 0 0

D 0 0 0 1 0 0

E 0 0 1 0 0 0

F 0 0 0 0 0 0

G 0 0 0 0 0 0

Nontrivial Clipping
� Idea: find intersection point of line with

each clipping plane
� Each line can only enter and leave the

view volume once
� For each intersection X of line PQ with

a clipping plane:a clipping plane:
� If P outside, then clip off PX
� If P inside, the clip off XQ

� We use parametric line equation
p(t) = p0 + t(p1 – p0) with 0 <= t <= 1

� Clipping by finding tin and tout parameter
values for line segment in view volume

11

p(tin=0)

p(tout)

p(tout=1)
p(tin)

p(tin)

p(tout)

Liang-Barsky Clipping Algorithm
Clip a line from point p0 to p1, represented as p(t) = p0 + t(p1 – p0)

1. Perform trivial reject and accept tests, stop if trivial

2. Initialize tin=0 and tout=1

3. For each halfspace {x>– 1, x<+1, y>–1, y<+1, z>–1, z<+1} do

Compute t where (extended) line crosses halfspace1. Compute tcross where (extended) line crosses halfspace

2. If entering half-space then tin = max(tin, tcross)
else tout = min(tout, tcross)

3. Stop if tin > tout

4. if tin > tout then line is outside viewing volume
else p0 = p(tin) and p1 = p(tout)

12

p(tout)
p(tin)

p(tin)
p(tout)

p(0)

p(0)

Clipping with Homogeneous Coordinates
� OpenGL actually performs clipping before perspective division,

i.e. using homogeneous coordinates
� One reason: perspective division only necessary for vertices that

are in view volume
� Differences in clipping algorithm:

Point p is outside of view volume if� Point p is outside of view volume if

Other planes:
px–pw > 1, py+ pw < 0, py–pw > 0 , pz+pw < 0 , pz–pw > 0

� Compute px(t), py(t), pz(t), and pw(t)

13

01/ <+⇔−<⇔−< wxwxwx pppppp

Viewport
Transformation

Clipping
Perspective

Division
… …

Modeling
Transformation

View
Transformation

Projection
Illumination

World CoordinatesScene Primitives
Master Coordinates

x

y

z
x

y

z

u

v

nx

y

z-1

+1
-1

+1

VIEWPORT
TRANSFORMATIONS

14

Projection
Transformation

Viewport
Transformation

Clipping

Illumination

Rasterization

View CoordinatesNormalized
Device Coordinates

Device Coordinates

-1

Viewport Transformation
� Mapping from Normalized Device Coordinates (NDC)

to device coordinates (DC) aka viewport coordinates

� For NDC: x,y,z ∈ (-1, +1)

� For DC: x ∈ (vleft, vright), y ∈ (vbottom, vtop), z ∈ (0, maxz)

� x and y are 2D window coordinates

� vleft, vright, vbottom, vtop are the
My Window x

� vleft, vright, vbottom, vtop are the
boundaries of the viewport in the window

� maxz depends on type used for
depth buffer values (e.g. uint32)

� In OpenGL: set viewport position and size with
glViewport(x, y, width, height);

� NDCs are multiplied with viewport matrix Mviewport

which maps NDC boundaries onto viewport boundaries

vleft vright

vbottom

vtop

(0,0)

Viewport Matrix Mviewport

y

x

-1 +1

+1

-1

y

x

y

x

vleftvright −vleftvright −

S T

vtop

vbottom

16

-1 +1

2

vleftvright −+
2

vleftvright −− vleft vright

























−

−

























+

+

==

1000

0
2

00

00
2

0

000
2

1000
2

100

2
010

2
001

maxz

vbottomvtop

vleftvright

maxz

vbottomvtop

vleftvright

STMviewport

Multiple Viewports
� Problem: How to write a GL program that displays multiple views of a

scene, each one in a different viewport?

� Solution: Multiple viewports
Multiple views of a scene, e.g., architectural drawing front, side, and top views
Loop: repeat for each viewport

1. Set this viewport:
glViewport (x, y, width, height);glViewport (x, y, width, height);

2. Set view projection for this viewport (might be the same for all viewports,
if so do this before loop):
glOrtho(left, right, bottom, top, zNear, zFar);

or other such as gluPerspective(…);

3. Set camera view position and orientation for this viewport
gluLookAt(left, right, bottom, top, zNear, zFar);

or other such as glTranslatef(…); glRotatef(…);

4. Draw scene
© 2004 Lewis Hitchner & Richard Lobb

Multiple Viewports Code Example
// left: perspective

glViewport(0, 0, 100, 100);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(yfov, aspect,
zNear, zFar);

glMatrixMode(GL_MODELVIEW);

// right: orthographic

glViewport(100, 0, 100, 100);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(left, right, bottom,
top, near, far);

glMatrixMode(GL_MODELVIEW);glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// do view transformations…

drawScene();

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// do view transformations…

drawScene();

18

My Window x

Aspect Ratio of View Volume and Viewport
� Final pipeline transformation step is viewport transformation

glViewport(GLint x, GLint y,
GLsizei width, GLsizei height);

Default viewport is entire drawing window, (0, 0, winWidth, winHeight).

� Aspect ratio of view volume and viewport should be same

� Problem: How to write a GLUT program that automatically resets
the view volume aspect ratio when window (viewport) is resized?

View volume
with 2:1 aspect ratio

in World Coords

Viewport
with 2:1 aspect ratio

Viewport
with 1:2 aspect ratio

Normalised view volume
1:1 aspect ratio

in NDC

© 2004 Lewis Hitchner & Richard Lobb

Aspect Ratio: reshape callback function
Solution: in GLUT, use reshape callback to adjust viewport and view

volume aspect ratio after a window resize event
� Register reshape callback function (in main at prog. init.)

void reshape(GLsizei width, GLsizei height); // prototype
glutReshapeFunc(reshape); // callback registration

� Define reshape callback function (in main prog. module)
// left, right, bottom, top = class member or global variables
void reshape(GLsizei width, GLsizei height) {

glViewport(0, 0, width, height); // set viewport size
GLfloat aspect = (GLfloat)width /(GLfloat)height; //NOT int!
GLdouble center = (left + right) / 2.0;
GLdouble newHalfWidth = aspect * (top - bottom) / 2.0;
left = center - newHalfWidth; right = center + newHalfWidth;
glMatrixMode(GL_PROJECTION); // reset proj matrix
glLoadIdentity();
glOrtho(left, right, bottom, top, near, far);
drawSceneObjects(); // redraw all objects

}

SUMMARY

21

Summary
� Pseudodepth

� Used to normalize z with matrix
� For small nearand large far resolution problems

� Clipping removes lines outside of view volume
� Trivial accept and reject tests using outcodesTrivial accept and reject tests using outcodes
� Check tin and tout values of parametric line equation

� Viewport Transformation: maps NDCs to DCs using Mviewport

References:
� Pseudeodepth: Hill, Chapter 7.4.3, pp. 349-351
� Clipping: Hill, Chapter 7.4.3, pp. 356-361
� Viewport Transformation: Hill, Chapter 7.4.3, p. 361

22

Quiz
1. Why isn’t it a good idea to use a very small

number for nearor a very large number for far?
2. How is an outcode table constructed? How is it

used for trivial reject/accept?
3. How do we find tin and tout during clipping? How

does it help us to clip lines?

23

