Computer Graphics: Clipping and Viewport Transformation

Part 2 - Lecture 3

Today's Outline

- Pseudodepth
- Clipping
- Viewport Transformations

PSEUDODEPTH

Perspective Transformation

- Requirements:

1. x and y values must be scaled by same factor as derived in perspective projection equations
2. z values must maintain depth ordering (monotonic increasing)
3. \mathbf{z} values must map: $-\mathbf{z}_{\text {near }} \rightarrow-1$ and $-\mathbf{z}_{\text {far }} \rightarrow+1$, view volume \rightarrow NDC cube

- So we need a transformation that given a point P results in a transformed point P ' such that
P_{x}^{\prime} and P_{y}^{\prime} meet requirement 1 and $\quad P^{\prime}=\left(\begin{array}{ll}\frac{- \text { near }}{p_{z}} p_{x}, & \frac{- \text { near }}{p_{z}} p_{y},\end{array} \quad f\left(p_{z}\right)\right.$
$\mathrm{f}\left(\mathrm{p}_{z}\right)$ meets requirements 2 and 3:
- We have already found such a transformation:
$\square \quad$ Multiply P with $\mathbf{M}_{\text {proj }}$
$\square \quad$ Convert result to ordinary coordinates (perspective division)
© 2004 Lewis Hitchner \& Richard Lobb

Perspective Transformation (cont'd)

- Perspective division:

$$
P_{\text {homog }}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}) \rightarrow P_{\text {ord }}=(\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w})
$$

- Thus, for these transformed points,

$$
P^{*}=\mathbf{P} P=\left(\begin{array}{c}
\text { near } x \\
\text { near } y \\
a z+b \\
-z
\end{array}\right) \quad P^{*} *_{\text {near }}=\mathbf{P} P_{\text {zrear }}=\left(\begin{array}{c}
\text { near } x \\
\text { near } y \\
- \text { anear }+b \\
\text { near }
\end{array}\right) \quad P^{*}{ }_{\text {far }}=\mathbf{P} P_{\text {far }}=\left(\begin{array}{c}
\text { near } x \\
\text { near } y \\
-a \text { far }+b \\
\text { far }
\end{array}\right)
$$

- Using $\quad a=-\frac{f a r+\text { near }}{\text { far }- \text { near }}, \quad b=\frac{-2 \text { far near }}{\text { far }- \text { near }}$

Ordinary form of the x and y components:

$$
\begin{aligned}
& z_{\text {near }} x / z=\left(-z_{\text {near }} / z\right) x \\
& z_{\text {near }} y / z=\left(-z_{\text {near }} / z\right) y
\end{aligned}
$$

Ordinary form of the z components:
$(\mathrm{az}+\mathrm{b}) /(-\mathrm{z})$
$\left.\begin{array}{l}\left(-\mathrm{a} \mathrm{z}_{\text {near }}+\mathrm{b}\right) / \mathrm{z}_{\text {near }}=-1.0 \\ \left(-\mathrm{a} \mathrm{z}_{\mathrm{far}}+\mathrm{b}\right) / \mathrm{z}_{\text {far }}=+1.0\end{array}\right\}$ Check this out!
© 2004 Lewis Hitchner \& Richard Lobb

Pseudodepth

- Transformed z^{*} not linear function of z
$z^{*}=\frac{a z+b}{-z}=\frac{\left(-\frac{\text { far }+ \text { near }}{\text { far }- \text { near }}\right) z+\frac{-2 \text { far } * \text { near }}{\text { far }- \text { near }}}{-z}$
$z^{*}=\frac{(\text { far }+ \text { near }) z+2 \text { far } * \text { near }}{(\text { far }- \text { near }) z}$
- This is OK (sort of) because z^{*} meets our 2 requirements:

1. monotonic increasing, and
2. $z^{*}=-1$ for $z=z_{\text {near }}=-$ near
 and $z^{*}=+1$ for $z=z_{\text {far }}=-\operatorname{far}$
■ But: can cause z-buffer precision problems! (z-buffer values are usually 32 bit integers)

Problems of Pseudodepth

- Points closer to near plane have highest pseudodepth resolution
- Points closer to far plane have lowest pseudodepth resolution
- Never use near $=0$
\rightarrow division by zero
- Avoid very small near and very large far
\rightarrow resolution too low for points that are further away

Clipping

- Determine which lines are in the canonical view volume (using NDC)
- Outside of the view volume is given by: $\mathrm{p}_{\mathrm{x}}<-1, \mathrm{p}_{\mathrm{x}}>+1, \mathrm{p}_{\mathrm{y}}<-1, \mathrm{p}_{\mathrm{y}}>+1$,
$\mathrm{p}_{\mathrm{z}}<-1, \mathrm{p}_{\mathrm{z}}>+1$
(\rightarrow clip planes)
- Each line is either...

1. completely inside
\rightarrow trivial accept
2. completely outside
\rightarrow trivial reject
3. Partially in the view volume
\rightarrow need to find out which part is inside

Trivial accept for: CB and GF

Trivial reject for:
DA
Partially visible:
$A B, C D, E F$ and $E G$

Trivial Accept and Reject Tests

- For each point, check if it is outside of left (L), right (R), bottom (B), top (T), near (N) and far (F) clip plane
- Create table with outcodes: 1 if point is outside, 0 if inside
- Trivial reject of a line PQ:
$=P$ and Q outside of the same clip plane
= outcodes for same plane both 1
= (outcode P \& outcode Q)! $=0$
- Trivial accept of a line PQ:
= both endpoints inside of all clip planes
= all outcodes 0
$=($ outcode $C \mid$ outcode $D)==0$

Nontrivial Clipping

- Idea: find intersection point of line with each clipping plane
- Each line can only enter and leave the view volume once
- For each intersection X of line PQ with a clipping plane:

\square If P outside, then clip off PX
\square If P inside, the clip off XQ
- We use parametric line equation $\mathrm{p}(\mathrm{t})=\mathrm{p}_{0}+\mathrm{t}\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right)$ with $0<=\mathrm{t}<=1$
- Clipping by finding $t_{\text {in }}$ and $t_{\text {out }}$ parameter values for line segment in view volume

Liang-Barsky Clipping Algorithm

Clip a line from point p_{0} to p_{1}, represented as $p(t)=p_{0}+t\left(p_{1}-p_{0}\right)$

1. Perform trivial reject and accept tests, stop if trivial
2. Initialize $t_{\text {in }}=0$ and $t_{\text {out }}=1$
3. For each halfspace $\{x>-1, x<+1, y>-1, y<+1, z>-1, z<+1\}$ do
4. Compute $t_{\text {cross }}$ where (extended) line crosses halfspace
5. If entering half-space then $\mathrm{t}_{\mathrm{in}}=\max \left(\mathrm{t}_{\mathrm{in}}, \mathrm{t}_{\text {cross }}\right)$ else $\mathrm{t}_{\text {out }}=\min \left(\mathrm{t}_{\text {out }}, \mathrm{t}_{\text {cross }}\right)$
6. Stop if $t_{\text {in }}>t_{\text {out }}$
7. if $t_{\text {in }}>t_{\text {out }}$ then line is outside viewing volume else $p_{0}=p\left(t_{\text {in }}\right)$ and $p_{1}=p\left(t_{\text {out }}\right)$

Clipping with Homogeneous Coordinates

- OpenGL actually performs clipping before perspective division, i.e. using homogeneous coordinates
- One reason: perspective division only necessary for vertices that are in view volume
- Differences in clipping algorithm:
\square Point p is outside of view volume if

$$
p_{x} / p_{w}<-1 \Leftrightarrow p_{x}<-p_{w} \Leftrightarrow p_{x}+p_{w}<0
$$

Other planes:

$$
\mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{w}}>1, \mathrm{p}_{\mathrm{y}}+\mathrm{p}_{\mathrm{w}}<0, \mathrm{p}_{\mathrm{y}}-\mathrm{p}_{\mathrm{w}}>0, \mathrm{p}_{\mathrm{z}}+\mathrm{p}_{\mathrm{w}}<0, \mathrm{p}_{\mathrm{z}}-\mathrm{p}_{\mathrm{w}}>0
$$

\square Compute $\mathrm{p}_{\mathrm{x}}(\mathrm{t}), \mathrm{p}_{\mathrm{y}}(\mathrm{t}), \mathrm{p}_{\mathrm{z}}(\mathrm{t})$, and $\mathrm{p}_{\mathrm{w}}(\mathrm{t})$

Viewport Transformation

- Mapping from Normalized Device Coordinates (NDC) to device coordinates (DC) aka viewport coordinates
- For NDC: $x, y, z \in(-1,+1)$
- For DC: $x \in$ (vleft, vright), $y \in(v b o t t o m, ~ v t o p), ~ z \in(0, m a x z)$
$\square x$ and y are 2D window coordinates
\square vleft, vright, vbottom, vtop are the boundaries of the viewport in the window
\square maxz depends on type used for depth buffer values (e.g. uint32)
$\square \ln$ OpenGL: set viewport position and size with
 glViewport(x, y, width, height);
- NDCs are multiplied with viewport matrix $\mathbf{M}_{\text {viewport }}$ which maps NDC boundaries onto viewport boundaries

Viewport Matrix $\mathbf{M}_{\text {viewport }}$

$\mathbf{M}_{\text {viewport }}=\mathbf{T ~ S}=\left(\begin{array}{cccc}1 & 0 & 0 & \frac{\text { vright }+ \text { vleft }}{2} \\ 0 & 1 & 0 & \frac{\text { vtop }+ \text { vbottom }}{2} \\ 0 & 0 & 1 & \frac{\text { maxz }}{2} \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}\frac{\text { vright }- \text { vleft }}{2} & 0 & 0 & 0 \\ 0 & \frac{\text { vtop }-v \text { bottom }}{2} & 0 & 0 \\ 0 & 0 & \frac{\text { maxz }}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Multiple Viewports

- Problem: How to write a GL program that displays multiple views of a scene, each one in a different viewport?
- Solution: Multiple viewports

Multiple views of a scene, e.g., architectural drawing front, side, and top views Loop: repeat for each viewport

1. Set this viewport:
```
glViewport( x, y, width, height );
```

2. Set view projection for this viewport (might be the same for all viewports, if so do this before loop):
```
glOrtho(left, right, bottom, top, zNear, zFar );
```

or other such as gluPerspective (...);
3. Set camera view position and orientation for this viewport gluLookAt(left, right, bottom, top, zNear, zFar); or other such as glTranslatef(...); glRotatef(...);
4. Draw scene
© 2004 Lewis Hitchner \& Richard Lobb

Multiple Viewports Code Example

```
// right: orthographic
glViewport(100, 0, 100, 100);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom,
        top, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// do view transformations...
drawScene();
```

My Window

Aspect Ratio of View Volume and Viewport

- Final pipeline transformation step is viewport transformation

$$
\begin{aligned}
& \text { glViewport(GLint } x, \text { GLint } y \text {, } \\
& \text { GLsizei width, GLsizei height); }
\end{aligned}
$$

Default viewport is entire drawing window, (0,0 , winWidth, winHeight).

- Aspect ratio of view volume and viewport should be same

- Problem: How to write a GLUT program that automatically resets the view volume aspect ratio when window (viewport) is resized?
© 2004 Lewis Hitchner \& Richard Lobb

Aspect Ratio: reshape callback function

Solution: in GLUT, use reshape callback to adjust viewport and view volume aspect ratio after a window resize event

- Register reshape callback function (in main at prog. init.) void reshape(GLsizei width, GLsizei height); // prototype glutReshapeFunc (reshape); // callback registration
- Define reshape callback function (in main prog. module)

```
// left, right, bottom, top = class member or global variables
```

void reshape(GLsizei width, GLsizei height) \{
glViewport (0, 0, width, height); // set viewport size
GLfloat aspect $=$ (GLfloat)width /(GLfloat)height; //NOT int!
GLdouble center $=$ (left + right) / 2.0;
GLdouble newHalfWidth $=$ aspect * (top - bottom) / 2.0;
left = center - newHalfWidth; right = center + newHalfWidth;
glMatrixMode(GL_PROJECTION); // reset proj matrix
glLoadIdentity();
glOrtho(left, right, bottom, top, near, far);
drawSceneObjects(); // redraw all objects
\}

SUMMARY

Summary

- Pseudodepth
\square Used to normalize z with matrix
\square For small near and large far resolution problems
- Clipping removes lines outside of view volume
\square Trivial accept and reject tests using outcodes
\square Check $\mathrm{t}_{\text {in }}$ and $\mathrm{t}_{\text {out }}$ values of parametric line equation
- Viewport Transformation: maps NDCs to DCs using $\mathbf{M}_{\text {viewport }}$

References:
\square Pseudeodepth: Hill, Chapter 7.4.3, pp. 349-351
\square Clipping: Hill, Chapter 7.4.3, pp. 356-361
\square Viewport Transformation: Hill, Chapter 7.4.3, p. 361

Quiz

1. Why isn't it a good idea to use a very small number for near or a very large number for far?
2. How is an outcode table constructed? How is it used for trivial reject/accept?
3. How do we find $t_{\text {in }}$ and $t_{\text {out }}$ during clipping? How does it help us to clip lines?
