Computer Graphics: Projection Transformations

Part 2 - Lecture 2

Principles of Geometric Projections

- Projection: a mapping of coordinate values from a higher dimension to lower dimension, usually $N \Rightarrow N-1$, e.g. 3D $\Rightarrow 2 D$
- Requirements:
\square Projection surface: plane (linear projection) or surface such as a sphere or conic section (non-linear projection)
\square Projection rays, or projectors: lines from object projected towards projection surface
\square Direction of projection: orientation of each projector

- Orthographic (parallel) projection: all projectors parallel to a common direction of projection.
- Perspective projection: all projectors pass through a center of projection (3D point), but have different directions
- How to project:

Intersect projection ray through object vertex with the projection surface

Orthographic vs. Perspective Projection

\square Orthographic projection: ray through object vertex in the projection direction (same direction for all rays, orthogonal to projection plane)
\square Perspective projection: ray through object vertex and center of projection (different direction for each ray)

center of projection
Perspective
© 2004 Lewis Hitchner \& Richard Lobb

Orthographic vs. Perspective Projection

Orthographic Projection

Perspective Projection

Ortho / Perspective Cameras in OpenGL

- Orthographic
\square void glortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar)
\square View volume boundaries in World Coord units, relative to eyepoint in the look direction. Z is positive distance from eye (along negative Z axis)
\square View volume may be symmetric about look direction vector (typical)
- Perspective
\square void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar)
\square Vertical field of view angle fovy specified in degrees.
\square Horizontal fov determined by aspect ratio $=$ width/height
fovx = aspect * fovy;
\square View volume (frustum, or truncated pyramid) always symmetric about eyepoint towards the look direction.
© 2004 Lewis Hitchner \& Richard Lobb

ORTHOGRAPHIC PROJECTION

Projection Transformation Matrix $\mathbf{M}_{\text {proj }}$

- Maps View Coords. to Normalized Device Coords. (NDC)

■ View volume boundaries are mapped to ($-1,+1$) cube in X, Y, Z

- View Coordinates are RHS and NDC are LHS, so $\mathbf{M}_{\text {proj }}$ inverts Z values
- For orthographic projection:

To get a 2D image: take only x and y components

$\mathbf{M}_{\text {proj }}$ for Orthographic Projections

$M_{\text {proj }}=S$ T
$=\left(\begin{array}{cc}\frac{2}{\text { right-left }} & 0 \\ 0 & \frac{2}{\text { top }- \text { bottom }} \\ 0 & 0 \\ 0 & 0\end{array}\right.$
$\left.\begin{array}{cc}0 & 0 \\ 0 & 0 \\ -\frac{2}{\text { far-near }} & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & -(\text { left }+ \text { right }) / 2 \\ 0 & 1 & 0 & -(\text { top }+ \text { bottom }) / 2 \\ 0 & 0 & 1 & +(\text { near }+ \text { far }) / 2 \\ 0 & 0 & 0 & 1\end{array}\right)$

PERSPECTIVE PROJECTION

Perspective Projection of a Vertex

- What are the coordinates of P^{\prime} ?
- Camera-A-P' and Camera-B-P are similar triangles
- Ratios of similar sides are equal:

$$
\frac{P_{y}{ }^{\prime}}{\text { near }}=\frac{P_{y}}{-P_{z}} \Leftrightarrow P_{y^{\prime}}=\frac{n e a r}{-P_{z}} P_{y}
$$

- When looking from the bottom, we get analogous calculations for the x-coordinate of P^{\prime} :
- Perspective scaling factor $^{\text {spersp }}=\frac{\text { near }}{-P_{z}}$

$$
\frac{P_{x}^{\prime}}{\text { near }}=\frac{P_{x}}{-P_{z}} \Leftrightarrow P_{x}^{\prime}=\frac{n e a r}{-P_{z}} P_{x}
$$

Perspective Foreshortening

$$
\mathrm{d}_{\mathrm{y}}=\left(\mathrm{p}_{1 \mathrm{y}}-\mathrm{p}_{2 \mathrm{y}}\right)=3 \quad \mathrm{~d}_{\mathrm{y}}^{\prime}=\left(\mathrm{p}_{1 \mathrm{y}}^{\prime}-\mathrm{p}_{2 \mathrm{y}}^{\prime}\right)=\mathrm{s}_{\text {persp }} \mathrm{d}_{\mathrm{y}}=(0.1) 3=0.3
$$

Perspective Transformation

- Perspective projection CANNOT be used in 3D graphics pipeline!
\square Why not? Because it sets all projected z coordinates to same value, $z_{\text {near }}$ But, visible surface algorithm (Z buffer alg.) needs z depth values during rasterization stage of pipeline.

The "MODELVIEW" transformation
Scene primitives (polygons, points, lines, etc. Includes GLUT "primitives".)

\square Therefore, pipeline uses perspective transformation, not perspective projection
\square Scales x, y, and z coordinates by a scale factor dependent upon $1 / z$
\square Projection is performed during rasterization stage after hidden surface removal
© 2004 Lewis Hitchner \& Richard Lobb

Perspective Transformation and Projection

- Perspective transformation converts 3D coordinates to perspective corrected 3D coordinates

\rightarrow Deforms the scene

\square We want perspective projection to look like this
\square But, we actually perform it in a 2 step process:

- Perspective transformation: 3D \rightarrow 3D
- Orthographic projection: 3D \rightarrow 2D

Perspective Transformation (cont'd)

- Perspective transformation requirements:

1. x and y values must be scaled by same factor as derived in perspective projection equations.
2. z values must maintain depth ordering (monotonic increasing)
3. z values must map: $-\mathrm{z}_{\text {near }} \rightarrow-1$ and $-\mathrm{z}_{\mathrm{far}} \rightarrow+1$, view volume \rightarrow NDC cube.

- In other words, we need a transformation that given a point P results in a transformed point P 'such that P_{x}^{\prime} and P_{y}^{\prime} meet requirement 1 and ${ }^{x}$

$$
P^{\prime}=\left(\frac{-n e a r}{p_{z}} p_{x}, \frac{-n e a r}{p_{z}} p_{y}, \quad f\left(p_{z}\right)\right)
$$

- Question: Is there any matrix, \mathbf{P}, such that $\mathbf{P} P=P^{\prime}$?
- Answer: Not possible because no linear combination of p_{x}, p_{y}, p_{z}, can result in a term with p_{z} in the denominator!

$$
\left(\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23} \\
p_{30} & p_{31} & p_{32} & p_{33}
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{- \text { near } p_{x}}{\sqrt{p_{z}}} \\
\frac{- \text { near } p_{y}}{\sqrt{p_{z}}} \\
f\left(p_{z}\right) \\
1
\end{array}\right)
$$

Perspective Transformation (cont'd)

- But, there is a matrix \mathbf{P} that $\quad\left(\begin{array}{llll}p_{00} & p_{01} & p_{02} & p_{03} \\ p_{10} & p_{11} & p_{12} & p_{13} \\ p_{20} & p_{21} & p_{22} & p_{23} \\ p_{30} & p_{31} & p_{32} & p_{33}\end{array}\right)\left(\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right)=\left(\begin{array}{c}\text { near } p_{x} \\ \text { near } p_{y} \\ -f\left(p_{z}\right) p_{z} \\ -p_{z}\end{array}\right)$
- After conversion to ordinary coordinates: $P^{\prime}=\left(\frac{\text { near } p_{x}}{-p_{z}}, \frac{\text { near } p_{y}}{-p_{z}}, f\left(p_{z}\right)\right)$

$$
\begin{aligned}
\mathbf{P}=\left(\begin{array}{cccc}
\text { near } & 0 & 0 & 0 \\
0 & \text { near } & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right) & \text { with } a=-\frac{\text { far }+ \text { near }}{\text { far }- \text { near }}, \quad b=\frac{-2 \text { far near }}{\text { far }- \text { near }} \\
& \text { so that } P^{\prime}=\left(\frac{\left.{\text { near } p_{x}}_{-p_{z}}, \frac{\text { near } p_{y}}{-p_{z}}, \frac{a p_{z}+b}{-p_{z}}\right)}{}\right.
\end{aligned}
$$

- Result: perspective transformation can be done with matrix multiplication in the rendering pipeline (using hardware!)
© 2004 Lewis Hitchner \& Richard Lobb

$\mathbf{M}_{\text {proj }}$ for Perspective Projections 1

Shear everything (\mathbf{H}) so that z -axis is in the middle of the frustum

$$
\mathbf{H}=\left(\begin{array}{cccc}
1 & 0 & \frac{-(\text { left }+ \text { right }) / 2}{- \text { near }} & 0 \\
0 & 1 & \frac{-(\text { top }+ \text { bottom }) / 2}{- \text { near }} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \frac{\text { left }+ \text { right }}{2 \text { near }} & 0 \\
0 & 1 & \frac{\text { top }+ \text { bottom }}{2 \text { near }} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\mathbf{M}_{\text {proj }}$ for Perspective Projections 2

Scale everything (S) so that view plane has height and width 2*near

$$
\mathbf{S}=\left(\begin{array}{cccc}
\frac{\text { near }}{(\text { right }- \text { left }) / 2} & 0 & 0 & 0 \\
0 & \frac{\text { near }}{(\text { top }- \text { bottom }) / 2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2 \text { near }}{\text { right-left }} & 0 & 0 & 0 \\
0 & \frac{2 \text { near }}{\text { top }- \text { bottom }} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\mathbf{M}_{\text {proj }}$ for Perspective Projections 3

Set w so that everything is divided by $-z$ and normalize z to $(-1,+1)$

$$
\mathbf{N}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right) \quad \begin{gathered}
a=-\frac{\text { far }+ \text { near }}{\text { far }- \text { near }}, \quad b=\frac{-2 \text { far near }}{\text { far }- \text { near }} \\
\text { The final result is: } \mathbf{M}_{\mathrm{proj}}=\mathbf{N} \mathbf{S} \mathbf{H}
\end{gathered}
$$

Perspective Transformation in OpenGL

- View volume given by frustum (truncated pyramid): glFrustum(left, right, bottom, top, znear, zfar)
- gluPerspective computes these terms from its parameters:

```
top = zNear * tan((п/180)viewAngle/2);
```

bottom $=$-top;
right $=$ top $*$ aspect; left $=$-right;

- Note: with gluPerspective the view volume is symmetric about the view direction vector. With glfrustum you can specify a non-symmetric view volume (useful for some stereo viewers)

© 2004 Lewis Hitchner \& Richard Lobb

Principles Geometric Projections (cont'd)

\square Observation about perspective projection: as center of projection moves farther and farther away, lines of projection become more nearly parallel. In the limit, when center of projection is at an infinite distance, perspective projection \equiv parallel projection.

\square Rays of light from a point source shining on an opaque object forming a shadow on a projection plane are similar to perspective projection rays.
\square Rays of light from a point source at "infinite distance" (e.g., the Sun 93×10^{6} miles from the Earth) forming a shadow are similar to parallel projection.

SUMMARY

Summary

- Projection transformation matrix $\mathbf{M}_{\text {proj }}$: maps World Coordinate values in view volume to Normalized Device Coordinates (NDC) in the range ($-1,+1$)
- Orthographic projection:
\square Objects keep their original size, no matter how far away
$\square \mathbf{M}_{\text {proj }}=\mathbf{S ~ T} \quad$ (translate and scale)
- Perspective projection:
\square The further away an object, the smaller it appears
$\square \mathbf{M}_{\text {proj }}=\mathbf{N} \mathbf{S H}$ (shear, scale, normalize z \& set w for division by z)

References:
Perspective Projections: Hill, Chapter 7.4

Quiz

1. What are normalized device coordinates (NDCs)?
2. What is the difference between orthographic and perspective projection?
3. For given left, right, top, bottom, near and far, derive the S and T in the transformation matrix $\mathbf{M}_{\text {proj }}=S T$ for orthographic projections.
4. In the diagram below, how do you calculate P^{\prime} for a given P and near?

