

The Camera Analogy 🚗

- 1. Model Transformations Arranging objects in a scene
- 2. View Transformation Positioning the camera

- 3. **Projection** Choosing a lens & taking a photo
- 4. Viewport Transformation Printing a photo
- taking a photo

YP.

OpenGL Rendering Pipeline

- State machine: set up state of rendering pipeline
 - □ Choose which part of the pipeline should be modified, e.g. glMatrixMode(MODEL_VIEW)
 - □ Set how it should be modified, e.g. glTranslatef(...), glRotatef(...), ...
- Now send scene primitives down the pipeline, e.g. glBegin(GL_TRIANGLES) ... glEnd()
- All primitives are automatically transformed by the pipeline

Modeling Transformations Recap

Translation, rotation, scaling: each corresponds to a matrix
glMatrixMode(MODEL_VIEW);

glLoadIdentity();	//	matrix	Ι
glTranslatef(tx, ty, tz);	//	matrix	Т
glRotatef(angle, ux, uy, uz);	//	matrix	R
glScalef(sx, sy, sz);	//	matrix	S

□ Now all vertices P are transformed into P' with

 $P' = \mathbf{M}_{\mathbf{ModelView}} P = (\mathbf{I} \mathbf{T} \mathbf{R} \mathbf{S}) P = \mathbf{I} \mathbf{T} \mathbf{R} P^{(1)} = \mathbf{I} \mathbf{T} P^{(2)} = \mathbf{I} P^{(3)} = P^{(3)}$

- □ The order of transformation matters! Rightmost matrix applied first.
- □ Matrix Stack helps to apply different transforms to different objects
 - Topmost matrix is currently used for transforms
 - glPushMatrix() puts a copy of topmost matrix onto stack
 - glPopMatrix() removes topmost matrix

Specifying View Position & Orientation

How to write an OpenGL program that sets the view for a camera...

- 1. Given an camera (eye) position and a point to look at?
- 2. Given an eye translation and a rotation?
- 3. For an <u>airplane flight simulator</u> (simulating the view out the front window) where the simulator position and orientation are controlled via pilot commands that set the plane's <u>pitch</u>, <u>yaw</u>, and <u>roll</u>?
- 4. Mounted on a <u>pilot's helmet</u> (simulating the pilot's eye view such as in a virtual reality head mounted display) where the pilot can move (translate) and rotate his head <u>within the airplane's cockpit</u>?
- 5. Mounted on the end of a <u>multi-jointed robot arm</u>, such as the NASA Space Shuttle Canadian arm?
- You already know the answer to #1, use gluLookAt().
 But, there is no single gl, glu, or glut function for #2-#5 !

© 2004 Lewis Hitchner & Richard Lobb

Specifying View Position & Orientation

- <u>Solution</u>: OpenGL program that sets view position & orientation given eye position and a point to look at. Use gluLookAt()
- Need:
 - Eyepoint
 - □ <u>View direction</u>
 - Something that specifies
 camera rotation around its axis roughUp may be any vector
 not parallel to (eye-look)
 vector. Along with the (eye-look) vector it defines
 the plane in which the true up vector must lie.
 Question: why is roughUp necessary?

© 2004 Lewis Hitchner & Richard Lobb

The View Transformation Matrix \mathbf{V}

1. From Part 1: we can rotate an object to be aligned with new basis vectors **u v n** by multiplying with:

$$\mathbf{R} = \begin{pmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 2. Rotation matrixes such as R are orthogonal, i.e. $\operatorname{col}_i \bullet \operatorname{col}_j = 0$ for $i \neq j$, and $\operatorname{col}_i \bullet \operatorname{col}_i = 1$
- 3. For an orthogonal matrix R: $\mathbf{R}^{-1} = \mathbf{R}^{T}$

$\mathbf{V} = \mathbf{R}^{-1}\mathbf{T}^{-1} = \begin{pmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -eye_x \\ 0 & 1 & 0 & -eye_y \\ 0 & 0 & 1 & -eye_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} u_x & u_y & u_z & -eye \cdot u \\ v_x & v_y & v_z & -eye \cdot v \\ n_x & n_y & n_z & -eye \cdot n \\ 0 & 0 & 0 & 1 \end{pmatrix}$

98

The World as Seen from an Aeroplane a) pitch View specified as pitch, yaw, roll □ Euler angle specification, normally applied: R_{roll} R_{vaw} R_{pitch} \Box pitch = angle **n** axis makes with plane **Y** = 0 (horizontal) c) yaw same as rotation about u axis \Box *vaw* = angle **u** axis makes with plane **Z** = 0 same as rotation about v axis (also known as *heading* or *bearing*) \Box roll = angle **u** axis makes with plane **X** = 0 same as rotation about n axis b) roll □ Graphics applications often use a "no-roll" camera - pitch and yaw only $\begin{array}{ll} \Box & \mathbf{M} = \mathbf{T} \; \mathbf{R}_{roll} \; \mathbf{R}_{yaw} \; \mathbf{R}_{pitch} \; , \; \mathbf{V} = \mathbf{M}^{-1} \\ & \mathbf{V} = (\mathbf{T} \; \mathbf{R}_{roll} \; \mathbf{R}_{yaw} \; \mathbf{R}_{pitch})^{-1} \; = \mathbf{R}^{-1}_{pitch} \; \mathbf{R}^{-1}_{yaw} \; \mathbf{R}^{-1}_{roll} \; \mathbf{T}^{-1} \end{array}$ © 2004 Lewis Hitchner & Richard Lobb

5,6

The World as Seen from an Aeroplane 2

- View specified as <u>azimuth, elevation</u>
 - (tilt, optional but uncommon)
 - Euler angle specification, normally applied:

$\mathbf{R}_{\mathrm{elevation}} \ \mathbf{R}_{\mathrm{azimuth}}$

- □ azimuth = angle **u** axis makes with the plane **Z** = 0 same as rotation about **v** axis, same as yaw
- $\Box \ \underline{elevation} = \text{angle } \mathbf{n} \text{ axis makes}$ with the plane $\mathbf{Y} = 0$ (horizontal) same as pitch

$$= \mathbf{R}^{-1}_{\text{azimuth}} \mathbf{R}^{-1}_{\text{elevation}} \mathbf{T}^{-1}_{\text{elevation}} \mathbf{T}^{-1}_{\text{elevat$$

© 2004 Lewis Hitchner & Richard Lobb

Moving our Camera

Problem:

How to move our camera relative to view direction? (Which direction is "forward" for the camera?)

 \rightarrow need to convert movements relative to view orientation into movements relative to world coords.

Solution: Slide function

- Translates movement along u, v, n axes to movement along x, y, z
- Given: movement vector $\mathbf{d_2} = (\mathbf{d_u}, \mathbf{d_v}, \mathbf{d_n})$ in view coords.
- Wanted: movement vector $\mathbf{d}_1 = (\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_z)$ in world coords.
- Solution: rotate the movement vector so that it is aligned with u, v, n

$$d_1 = \begin{pmatrix} u_x & v_x & n_x \\ u_y & v_y & n_y \\ u_z & v_z & n_z \end{pmatrix} d_2$$

For rotation matrix explanation see Burkhard's notes, 5.8 slide #40

23

Summary

- 1. Vertices are automatically transformed by ModelView matrix: $P' = \mathbf{M}_{ModelView} P = (\mathbf{V} \mathbf{M}) P$
- 2. But instead of rotating and moving camera, transform our scene so that the camera sees what we want it to see
- 3. V is the inverse of the transformation we would use to set up the camera position and orientation

This Friday no lecture!!! Come and visit the SE part 4 exhibition ©

References:

- □ Model transformations: Hill, Chapter 5
- □ View Transformation: Hill, Chapter 7.22
- □ More View Transformations & Sliding: Hill, Chapter 7.3

Quiz

- Given the camera setup transformations R₁, T₁, R₂ (applied in the given order), how do you determine the view transformation matrix V?
- 2. Create example matrixes R_1 , T_1 , R_2 and calculate V.
- 3. How do you translate movements in view coords. into world coords.?

SUMMARY

24