Christof Lutteroth

Computer Graphics: Model and View Transformations

Part 2 - Lecture 1

Second Half

Viewing and Projection

The Camera Analogy

1. Model Transformations Arranging objects in a scene
2. View Transformation Positioning the camera
3. Projection

Choosing a lens \& taking a photo

4. Viewport Transformation Printing a photo

OpenGL Rendering Pipeline

- State machine: set up state of rendering pipeline
\square Choose which part of the pipeline should be modified, e.g. glMatrixMode (MODEL_VIEW)
\square Set how it should be modified, e.g. glTranslatef (...), glRotatef (...), ...
- Now send scene primitives down the pipeline, e.g. glBegin(GL_TRIANGLES) ... glEnd()
- All primitives are automatically transformed by the pipeline

Modeling Transformations Recap

\square Translation, rotation, scaling: each corresponds to a matrix glMatrixMode (MODEL_VIEW);
glLoadIdentity(); // matrix I
glTranslatef(tx, ty, tz); // matrix T
glRotatef(angle, ux, uy, uz); // matrix R
glScalef(sx, sy, sz); // matrix S
\square Now all vertices P are transformed into P^{\prime} with $P^{\prime}=\mathbf{M}_{\text {ModelView }} P=(\mathbf{I} T R S) P=\mathbf{I} T R P^{(1)}=\mathbf{I} \mathbf{T} P^{(2)}=\mathbf{I} P^{(3)}=P^{(3)}$
\square The order of transformation matters! Rightmost matrix applied first.
\square Matrix Stack helps to apply different transforms to different objects

- Topmost matrix is currently used for transforms
- glPushMatrix() puts a copy of topmost matrix onto stack
- glPopMatrix() removes topmost matrix

Modeling Transformations Example

(egs of a chair, each with
separate Translate and Scale
modeling transformations:
$\mathrm{leg}_{0}=\mathrm{T}_{0} \mathrm{~S}_{0} \cdot$ cube,
$\log _{0}=\mathrm{T}_{1} \mathrm{~T}_{1} \mathrm{~S}_{1} \cdot$ cube, etc.

© 2004 Lewis Hitchner \& Richard Lobb

Scene Graph and Matrix Stack

- Composing complex objects from simple parts (parent - children)
- Create a method for every object: cube, chair
- Push matrix before drawing child object, pop after returning to parent object

View Transformation

- Camera is at the origin looking down negative Z axis
- Could change camera position with translation \mathbf{T} and rotation \mathbf{R}
- But instead of rotating and moving camera, transform our scene inversely so that the camera sees what we want it to see:

- In other words: we translate and rotate view coordinate system so that it is aligned with world coordinate system
- Viewing transform can be done as the last transform in $\mathbf{M}_{\text {ModelView }}$ (i.e. must be set first in program)

Specifying View Position \& Orientation

How to write an OpenGL program that sets the view for a camera...

1. Given an camera (eye) position and a point to look at?
2. Given an eye translation and a rotation?
3. For an airplane flight simulator (simulating the view out the front window) where the simulator position and orientation are controlled via pilot commands that set the plane's pitch, yaw, and roll?
4. Mounted on a pilot's helmet (simulating the pilot's eye view such as in a virtual reality head mounted display) where the pilot can move (translate) and rotate his head within the airplane's cockpit?
5. Mounted on the end of a multi-jointed robot arm, such as the NASA Space Shuttle Canadian arm?

- You already know the answer to \#1, use gluLookAt(). But, there is no single gl, glu, or glut function for \#2-\#5!
© 2004 Lewis Hitchner \& Richard Lobb

Specifying View Position \& Orientation

- Solution: OpenGL program that sets view position \& orientation given eye position and a point to look at. Use gluLookAt ()
- Need:
\square Eyepoint
\square View direction
\square Something that specifies camera rotation around its axis roughUp may be any vector not parallel to (eye-look) vector. Along with the (eye-look) vector it defines the plane in which the true up vector must lie.
Question: why is roughUp necessary?

© 2004 Lewis Hitchner \& Richard Lobb

The View Coordinate System (UVN)

a.k.a. Eye Coordinate System or Camera Coordinate System

- From the Eye and LookAt points plus the approximate Up vector, can derive UVN Coordinate system (Eye Coords.) basis vectors:
$\square \mathbf{n}=$ Normalised(Eye - LookAt)
$\square \mathbf{u}=\operatorname{Normalised}($ Cross(Up, n))
$\square \mathbf{v}=\operatorname{Cross}(\mathbf{n}, \mathbf{u})$

Alternate definition: Burkhard's notes, 5.1 slide \#14

The View Transformation Matrix \mathbf{V}

- To set up camera, we could rotate it (\mathbf{R}) then translate it (\mathbf{T})
- V must do the inverse: $\mathrm{V}=(\mathbf{T} \mathbf{R})^{-1}=\mathbf{R}^{-1} \mathbf{T}^{-1}$

$$
\mathbf{T}^{-\mathbf{1}}=\left(\begin{array}{cccc}
1 & 0 & 0 & - \text { eve }_{x} \\
0 & 1 & 0 & - \text { eve }_{y} \\
0 & 0 & 1 & - \text { eye }_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- What matrix \mathbf{R} aligns an object with new basis vectors $\mathbf{u} \mathbf{v} \mathbf{n}$? We are looking for the inverse \mathbf{R}^{-1} of that matrix.

The View Transformation Matrix \mathbf{V}

1. From Part 1: we can rotate an object to be aligned with new basis vectors $\mathbf{u} \mathbf{v} \mathbf{n}$ by multiplying with:

$$
\mathbf{R}=\left(\begin{array}{cccc}
u_{x} & v_{x} & n_{x} & 0 \\
u_{y} & v_{y} & n_{y} & 0 \\
u_{z} & v_{z} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. Rotation matrixes such as R are orthogonal, i.e. $\operatorname{col}_{\mathrm{i}} \cdot \operatorname{col}_{\mathrm{j}}=0$ for $\mathrm{i} \neq \mathrm{j}$, and $\operatorname{col}_{\mathrm{i}} \cdot \operatorname{col}_{\mathrm{i}}=1$
3. For an orthogonal matrix $R: \mathbf{R}^{-1}=\mathbf{R}^{\mathrm{T}}$
$\mathbf{V}=\mathbf{R}^{-1} \mathbf{T}^{-1}=\left(\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & - \text { eye } \\ 0 & 1 & 0 & - \text { eye } e_{y} \\ 0 & 0 & 1 & - \text { eye } e_{z} \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}u_{x} & u_{y} & u_{z} & - \text { eye } \cdot \boldsymbol{u} \\ v_{x} & v_{y} & v_{z} & - \text { eye } \cdot \boldsymbol{v} \\ n_{x} & n_{y} & n_{z} & - \text { eye } \cdot \boldsymbol{n} \\ 0 & 0 & 0 & 1\end{array}\right)$

The World as Seen from a Robotic Arm

- View specified as a general instance transformation
\square Calls to glRotatef () for Euler angle rotations and to glTranslatef () for a translation to orient and position the camera (but, no scale).
\square Transformation matrix M that transforms System 1's coordinate frame (World Coord.) to System 2's frame (Eye Coord.) is:

$$
M=T R_{x} \mathbf{R}_{y} \mathbf{R}_{\mathrm{z}}
$$

Matrix \mathbf{V}, that transforms points from World to Eye Coordinates is

$$
\mathbf{V}=\mathbf{M}^{-1}=\left(\mathbf{T} \mathbf{R}_{\mathrm{x}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{z}}\right)^{-1}=\mathbf{R}_{\mathrm{z}}^{-1} \mathbf{R}_{\mathrm{y}}^{-1} \mathbf{R}_{\mathrm{x}}^{-1} \mathbf{T}^{-1}
$$

\square Note: $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$ are in World Coords., NOT relative to camera orientation.

- Specified as a hierarchy of instance transformations Example: camera on the gripper of a robot arm
\square Arm hierarchy, joints: base, lower arm, upper arm, gripper
\square Instance transformation of gripper
$\mathbf{M}=\mathbf{T}_{\mathrm{B}} \mathbf{R}_{\text {By }} \mathbf{T}_{\text {LA }} \mathbf{R}_{\text {LAx }} \mathbf{R}_{\text {LAy }} \mathbf{T}_{\text {UA }} \mathbf{R}_{\text {UAx }} \mathbf{R}_{\text {UAy }} \mathbf{T}_{G} \mathbf{R}_{\text {Gx }} \mathbf{R}_{\text {Gy }} \mathbf{R}_{\text {Gz }}$
\square View transformation for camera attached to gripper, $\mathbf{V}=\mathbf{M}^{-1}$

The World as Seen from an Aeroplane

- View specified as pitch, yaw, roll
\square Euler angle specification, normally applied: $\mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}$
\square pitch $=$ angle \mathbf{n} axis makes with plane $\mathbf{Y}=0$ (horizontal)
same as rotation about \mathbf{u} axis
\square yaw $=$ angle \mathbf{u} axis makes with plane $\mathbf{Z}=0$ same as rotation about \mathbf{v} axis
(also known as heading or bearing)
$\square \underline{\text { roll }}=$ angle \mathbf{u} axis makes with plane $\mathbf{X}=0$ same as rotation about \mathbf{n} axis
\square Graphics applications often use a "no-roll" camera - pitch and yaw only
$\square \mathbf{M}=\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}, \mathbf{V}=\mathbf{M}^{-1}$ $\mathbf{V}=\left(\mathbf{T} \mathbf{R}_{\text {roll }} \mathbf{R}_{\text {yaw }} \mathbf{R}_{\text {pitch }}\right)^{-1}=\mathbf{R}_{\text {pitch }}^{-1} \mathbf{R}_{\text {yaw }}^{-1} \mathbf{R}^{-1}{ }_{\text {roll }} \mathbf{T}^{-1}$

The World as Seen from an Aeroplane 2

- View specified as azimuth, elevation
(tilt, optional but uncommon)
\square Euler angle specification, normally applied:
$\mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }}$
$\square \underline{\text { azimuth }}=$ angle \mathbf{u} axis makes with the plane $\mathbf{Z}=0$
same as rotation about \mathbf{v} axis, same as yaw
\square elevation $=$ angle \mathbf{n} axis makes with the plane $\mathbf{Y}=0$ (horizontal) same as pitch
$\begin{aligned} \square \mathbf{M} & =\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {azimuth }} \\ \mathbf{V} & =\mathbf{M}^{-1}\end{aligned}$
$\mathbf{V}=\mathbf{M}^{-1}$
$=\left(\mathbf{T} \mathbf{R}_{\text {elevation }} \mathbf{R}_{\text {aximuth }}\right)^{-1}$
$=\mathbf{R}^{-1} \mathbf{R}^{-1}$
© 2004 Lewis Hitchner \& Richard Lobb

Moving our Camera

Problem:

How to move our camera relative to view direction?

(Which direction is "forward" for the camera?)
\rightarrow need to convert movements relative to view orientation into movements relative to world coords.

Solution: Slide function

- Translates movement along $\mathbf{u}, \mathbf{v}, \mathbf{n}$ axes to movement along $\mathbf{x}, \mathbf{y}, \mathbf{z}$
- Given: movement vector $d_{2}=\left(d_{u}, d_{v}, d_{n}\right)$ in view coords.
- Wanted: movement vector $d_{1}=\left(d_{x}, d_{y}, d_{z}\right)$ in world coords.
- Solution: rotate the movement vector so that it is aligned with $\mathbf{u}, \mathbf{v}, \mathbf{n}$

$$
d_{1}=\left(\begin{array}{lll}
u_{x} & v_{x} & n_{x} \\
u_{y} & v_{y} & n_{y} \\
u_{z} & v_{z} & n_{z}
\end{array}\right) d_{2} \quad \begin{aligned}
& \text { For rotation matrix explanation } \\
& \text { see Burkhard's notes, 5.8 slide \#40 }
\end{aligned}
$$

SUMMARY

Summary

1. Vertices are automatically transformed by ModelView matrix: $P^{\prime}=\mathbf{M}_{\text {ModelView }} P=(\mathbf{V} \mathbf{~ M}) P$
2. But instead of rotating and moving camera, transform our scene so that the camera sees what we want it to see
3. $\quad \mathbf{V}$ is the inverse of the transformation we would use to set up the camera position and orientation

> This Friday no lecture!!!
> Come and visit the SE part 4 exhibition ©

References:

\square Model transformations: Hill, Chapter 5
\square View Transformation: Hill, Chapter 7.22
\square More View Transformations \& Sliding: Hill, Chapter 7.3

