
Computer Graphics:
Model and View
TransformationsTransformations
Part 2 – Lecture 1

1

Christof Lutteroth
� Just became a permanent lecturer
� From Berlin, Germany
� My research interests:

model-based SE, HCI, DBMS, CG, …
Contact details:

2

� Contact details:
lutteroth@cs.auckland.ac.nz
Phone 373-7599 84478
Office: 303 - 494 (4th level CompSci building)

� If you have questions, come to my office at any
time ☺

Second Half
Viewing and Projection

Illumination and Shading

Ray Tracing

Color Theory & Rasterization

Curve and Surface Design
3

Raytracing image thanks to Tim Babb

Assignment 3

Modeling
Transformation

View
Transformation

Projection
Illumination

World CoordinatesScene Primitives
Master Coordinates

x

y

z
x

y

z

u

v

nx

y

z-1

+1
-1

+1

THE OPENGL RENDERING
PIPELINE

4

Projection
Transformation

Viewport
Transformation

Clipping

Illumination

Rasterization

View CoordinatesNormalized
Device Coordinates

Device Coordinates

-1

The Camera Analogy
1. Model Transformations

Arranging objects in a scene

2. View Transformation
Positioning the cameraPositioning the camera

3. Projection
Choosing a lens & taking a photo

4. Viewport Transformation
Printing a photo

5

Lens

OpenGL Rendering Pipeline
� State machine: set up state of rendering pipeline

�Choose which part of the pipeline should be
modified, e.g. glMatrixMode(MODEL_VIEW)

�Set how it should be modified, e.g.
glTranslatef (…) , glRotatef (…) , …glTranslatef (…) , glRotatef (…) , …

� Now send scene primitives down the pipeline,
e.g. glBegin(GL_TRIANGLES) … glEnd()

� All primitives are automatically transformed by
the pipeline

6

Modeling
Transformation

View
Transformation

Projection
Illumination

World CoordinatesScene Primitives
Master Coordinates

x

y

z
x

y

z

u

v

nx

y

z-1

+1
-1

+1

MODELING
TRANSFORMATIONS

7

Projection
Transformation

Viewport
Transformation

Clipping

Illumination

Rasterization

View CoordinatesNormalized
Device Coordinates

Device Coordinates

-1

Modeling Transformations Recap
� Translation, rotation, scaling: each corresponds to a matrix

glMatrixMode(MODEL_VIEW);

glLoadIdentity(); // matrix I
glTranslatef(tx, ty, tz); // matrix T
glRotatef(angle, ux, uy, uz); // matrix R
glScalef(sx, sy, sz); // matrix SglScalef(sx, sy, sz); // matrix S

� Now all vertices P are transformed into P’ with
P’ = M ModelView P = (I T R S) P = I T R P(1) = I T P(2) = I P(3) = P(3)

� The order of transformation matters! Rightmost matrix applied first.

� Matrix Stack helps to apply different transforms to different objects
� Topmost matrix is currently used for transforms
� glPushMatrix() puts a copy of topmost matrix onto stack
� glPopMatrix() removes topmost matrix

8

Modeling Transformations Example

4 legs of a chair, each with
separate Translate and Scale 6 instances of cube:

Cube in Master Coord. Space
(RHS)

Z

Y

X

separate Translate and Scale
modeling transformations:

leg0 = T0S0 • cube,
leg1 = T1S1 • cube, etc.

6 instances of cube:
chair in Master Coord. Space

Instance of chair
translated in
World Coordinates.
All model parts
transformed by same
instance transformation(s).

3 chair instances
translated and
rotated in World
Coordinates

(RHS)

© 2004 Lewis Hitchner & Richard Lobb

Scene Graph and Matrix Stack
T1 S1

T2 S2

T6 S6

...

T7 R1

T8 R2

T9 R3World Coordinates

� Composing complex objects from simple parts (parent - children)
� Create a method for every object: cube, chair
� Push matrix before drawing child object, pop after returning to

parent object
10

Master Coordinates

Modeling
Transformation

View
Transformation

Projection
Illumination

World CoordinatesScene Primitives
Master Coordinates

x

y

z
x

y

z

u

v

nx

y

z-1

+1
-1

+1

VIEW
TRANSFORMATION

11

Projection
Transformation

Viewport
Transformation

Clipping

Illumination

Rasterization

View CoordinatesNormalized
Device Coordinates

Device Coordinates

-1

View Transformation
� Camera is at the origin looking down negative Z axis
� Could change camera position with translation T and rotation R

� But instead of rotating and moving camera, transform our scene
inversely so that the camera sees what we want it to see:

� In other words: we translate and rotate view coordinate system
so that it is aligned with world coordinate system

� Viewing transform can be done as the last transform in MModelView

(i.e. must be set first in program)
12

z
x

z
x

z
x

T-1 R-1

Specifying View Position & Orientation

How to write an OpenGL program that sets the view for a camera…

1. Given an camera (eye) position and a point to look at ?
2. Given an eye translation and a rotation ?
3. For an airplane flight simulator (simulating the view out the front

window) where the simulator position and orientation are controlled via
pilot commands that set the plane’s pitch , yaw , and roll ?pilot commands that set the plane’s pitch , yaw , and roll ?

4. Mounted on a pilot’s helmet (simulating the pilot’s eye view such as
in a virtual reality head mounted display) where the pilot can move
(translate) and rotate his head within the airplane’s cockpit ?

5. Mounted on the end of a multi-jointed robot arm , such as the NASA
Space Shuttle Canadian arm?

� You already know the answer to #1, use gluLookAt().
But, there is no single gl, glu, or glut function for #2-#5 !

© 2004 Lewis Hitchner & Richard Lobb

Specifying View Position & Orientation

� Solution: OpenGL program that sets view position & orientation
given eye position and a point to look at. Use gluLookAt()

� Need:
� Eyepoint
� View direction

gluLookAt(

eyeX, eyeY, eyeZ,

lookAtX, lookAtY, lookAtZ,

roughUpX, roughUpY, roughUpZ
� Something that specifies

camera rotation around its axis
roughUp may be any vector
not parallel to (eye-look)
vector. Along with the
(eye-look) vector it defines
the plane in which the true
up vector must lie.
Question: why is roughUp necessary?

roughUpX, roughUpY, roughUpZ

)

y

xz

(eyeX, eyeY, eyeZ)

(roughUpX, roughUpY, roughUpZ) = (0,1,0)

(lookAtX, lookAtY, lookAtZ)

© 2004 Lewis Hitchner & Richard Lobb

The View Coordinate System (UVN)
a.k.a. Eye Coordinate System or Camera Coordinate System

� From the Eye and LookAt points
plus the approximate Up vector,
can derive UVN Coordinate system
(Eye Coords.) basis vectors:

n
v

� n = Normalised(Eye – LookAt)
� u = Normalised(Cross(Up, n))

� v = Cross(n, u)

Alternate definition: Burkhard’s notes, 5.1 slide #14

y

xz

u

© 2004 Lewis Hitchner & Richard Lobb

The View Transformation Matrix V

� To set up camera, we could rotate it (R) then translate it (T)

z
x

z
x

z
x

T-1 R-1

RT

� To set up camera, we could rotate it (R) then translate it (T)
� V must do the inverse: V = (T R)-1 = R-1 T-1

� What matrix R aligns an object with new basis vectors u v n ?
We are looking for the inverse R-1 of that matrix.





















−
−
−

=

1000

100

010

001

z

y

x

eye

eye

eye

-1T

The View Transformation Matrix V
1. From Part 1: we can rotate an object to be aligned with new

basis vectors u v n by multiplying with:





















=

1000

0

0

0

zzz

yyy

xxx

nvu

nvu

nvu

R

2. Rotation matrixes such as R are orthogonal,
i.e. coli • colj = 0 for i ≠ j, and coli • coli = 1

3. For an orthogonal matrix R: R-1 = RT





 1000





















−
−
−

=





















−
−
−





















==
•

•

•

10001000

100

010

001

1000

0

0

0

neye

veye

ueye

zyx

zyx

zyx

z

y

x

zyx

zyx

zyx

nnn

vvv

uuu

eye

eye

eye

nnn

vvv

uuu

-1-1TRV

The World as Seen from a Robotic Arm
� View specified as a general instance transformation

� Calls to glRotatef() for Euler angle rotations and to glTranslatef()
for a translation to orient and position the camera (but, no scale).

� Transformation matrix M that transforms System 1’s coordinate frame
(World Coord.) to System 2’s frame (Eye Coord.) is:

M = T Rx Ry Rz

Matrix V, that transforms points from World to Eye Coordinates isMatrix V, that transforms points from World to Eye Coordinates is
V = M -1 = (T Rx Ry Rz)-1 = Rz

-1 Ry
-1 Rx

-1 T-1

� Note: tx, ty, tz are in World Coords., NOT relative to camera orientation.

� Specified as a hierarchy of instance transformations
Example: camera on the gripper of a robot arm
� Arm hierarchy, joints: base, lower arm, upper arm, gripper
� Instance transformation of gripper

M = T B RBy TLA RLAx RLAy TUA RUAx RUAy TG RGx RGy RGz

� View transformation for camera attached to gripper, V = M -1

camera

© 2004 Lewis Hitchner & Richard Lobb

The World as Seen from an Aeroplane
� View specified as pitch, yaw, roll

� Euler angle specification, normally applied:
Rroll Ryaw Rpitch

� pitch = angle n axis makes with plane Y = 0
(horizontal)
same as rotation about u axis
yaw = angle u axis makes with plane Z = 0� yaw = angle u axis makes with plane Z = 0
same as rotation about v axis
(also known as heading or bearing)

� roll = angle u axis makes with plane X = 0
same as rotation about n axis

� Graphics applications often use a “no-roll”
camera – pitch and yaw only

� M = T R roll Ryaw Rpitch , V = M-1

V = (T Rroll Ryaw Rpitch) -1 = R-1
pitch R-1

yaw R-1
roll T-1

© 2004 Lewis Hitchner & Richard Lobb

The World as Seen from an Aeroplane 2
� View specified as azimuth, elevation

(tilt, optional but uncommon)
� Euler angle specification, normally

applied:
Relevation Razimuth

� azimuth = angle u axis makes
with the plane Z = 0with the plane Z = 0
same as rotation about v axis,
same as yaw

� elevation = angle n axis makes
with the plane Y = 0 (horizontal)
same as pitch

� M = T Relevation Razimuth
V = M -1

= (T Relevation Razimuth) -1

= R-1
azimuth R-1

elevation T-1

© 2004 Lewis Hitchner & Richard Lobb

Moving our Camera
Problem:
How to move our camera relative to view direction?
(Which direction is “forward” for the camera?)

→ need to convert movements relative to view orientation
into movements relative to world coords.

Solution: Slide function

z
x

Solution: Slide function
� Translates movement along u, v, n axes to movement along x, y, z
� Given: movement vector d2 = (du, dv, dn) in view coords.
� Wanted: movement vector d1 = (dx, dy, dz) in world coords.
� Solution: rotate the movement vector so that it is aligned with u, v, n

21 d

nvu

nvu

nvu

d

zzz

yyy

xxx

















= For rotation matrix explanation
see Burkhard’s notes, 5.8 slide #40

SUMMARY

22

Summary
1. Vertices are automatically transformed by ModelView matrix:

P’ = M ModelView P = (V M) P

2. But instead of rotating and moving camera, transform our scene
so that the camera sees what we want it to see

3. V is the inverse of the transformation we would use to set up
the camera position and orientationthe camera position and orientation

References:
� Model transformations: Hill, Chapter 5
� View Transformation: Hill, Chapter 7.22
� More View Transformations & Sliding: Hill, Chapter 7.3

23

This Friday no lecture!!!
Come and visit the SE part 4 exhibition ☺☺☺☺

Quiz
1. Given the camera setup transformations R1, T1, R2

(applied in the given order), how do you determine the
view transformation matrix V?

2. Create example matrixes R1, T1, R2 and calculate V.
3. How do you translate movements in view coords. into 3. How do you translate movements in view coords. into

world coords.?

24

