GGGGGGGGGGGGG

Computer Graphics:

Model and View
Transformations

Part 2 — Lecture 1

e
Christof Lutteroth

m Just became a permanent lecturer
m From Berlin, Germany

m My research interests:
model-based SE, HCI, DBMS, CG, ...

m Contact detalls:

lutteroth@cs.auckland.ac.nz

Phone 373-7599 84478
Office: 303 - 494 (4™ level CompSci building)

m |If you have questions, come to my office at any
time ©

" JEE

Second Half ﬂ
Viewing and Projection

lllumination and Shading Q R

N

Ray Tracing |

LT e [
Color Theory & Rasterization K’\!«kz

Assignment SJ

Curve and Surface Design

Raytracing image thanks to Tim Babb

A ___
. A
P : s
ey ’ @
, el B
4- - _‘_‘X ! Modeling & Ty R View
Scene Primitives | | Transformation World Coordinates Transformation
Master Coordinates _ - e L
1 VA
y A" HPZAN
S7AN L
1~ ’,Jr Z S~ i ’
o3 *’\AX — 2’*:\
« i HE LA < lllumination .
Normalized Transformation View Coordinates
Device Coordinates
Y .
. - Viewport . .
Clipping | Transformation Device Coordinates _ L~asterization

THE OPENGL RENDERING [=77
PIPELINE II

" JdE
The Camera Analogy

P
1. Model Transformations * (\‘) ’
Arranging objects in a scene D

\.’*

. . o
2. View Transformation ()
Positioning the camera >
N X

3. Projection

Choosing a lens & taking a photo Lens

4. Viewport Transformation
Printing a photo

S
OpenGL Rendering Pipeline

m State machine: set up state of rendering pipeline

Choose which part of the pipeline should be
modified, e.g. giIMatrixMode(MODEL_VIEW)

Set how it should be modified, e.g.
glTranslatef (...), glRotatef (...), ...

m Now send scene primitives down the pipeline,
e.g. glBegin(GL_TRIANGLES) ... glEnd()

m All primitives are automatically transformed by
the pipeline

A '""""""""""""""y'[""""""""""""""""
S : i
- ,a’ : |
I DR -
Z,,ﬂ TSA [>: . Z Tl :
4 X ! Modeling & 1 Ay . View
Scene Primitives | | Transformation World Coordinates Transformation

Master Coordinates |

+1 VA

yA VAN
AN 4
1~ /, Z S~. i ’
® ; ﬂ .) - -
‘*4’ Ty — JURY L INY
-1 Projection < lllumination |«

Normalized Transformation View Coordinates
Device Coordinates

y

Clipping

, Viewport
Transformation Device Coordinates

» Rasterization

N
e
MODELING II

TRANSFORMATIONS

"
Modeling Transformations Recap

Translation, rotation, scaling: each corresponds to a matrix
glMatrixMode(MODEL_VIEW);,

glLoadldentity(); [l matrix I

glTranslatef(tx, ty, tz); /[matrix T
glRotatef(angle, ux, uy, uz); /[matrix R
glScalef(sx, sy, sz); [/ matrix S

Now all vertices P are transformed into P’ with
P =Muyogeview P=(TRS)P=ITR PO =T P@ =| PG = pPE)
The order of transformation matters! Rightmost matrix applied first.
Matrix Stack helps to apply different transforms to different objects
m Topmost matrix is currently used for transforms
m glPushMatrix() puts a copy of topmost matrix onto stack
m glPopMatrix() removes topmost matrix

" JE
Modeling Transformations Example

Y
—>
/ X
z / /
Cube in Master Coord. Space 4 legs of a chair, each with
(RHS) separate Translate and_chIe 6 instances of cube:
modeling transformations: chair in Master Coord. Space

legy = TS, * cube,
leg, = T,S; ¢ cube, etc.

Instance of chair

translated in 3 chair instances A
World Coordinates. translated and J
All model parts rotated in World

transformed by same Coordinates Lu

instance transformation(s). J L

© 2004 Lewis Hitchner & Richard Lobb

" JE
Scene Graph and Matrix Stack

&l

i

o

T7 Rl D
8R2)

World Coordinates

ToR;

!
[

v

TS

Y
X
Z

TS

<

Y
X
Z
u

il

v

TS

L}
u
Y
X
Z

Master Coordinates

m Composing complex objects from simple parts (parent - children)
m Create a method for every object: cube, chair
m Push matrix before drawing child object, pop after returning to

parent object

10

|
y

\

z>

Scene Prlmltlves

Modeling

Transformation

Master Coordinates |

£
*

Projection

Normallzed

y

Device Coordinates

Transformation

Viewport

Clipping

VIEW

\ 4

Transformation

Transformation

View

VA
/AN
- AAV‘
. ! ’
n Saga
; A
« u

A

lllumination

View Coordinates

\ 4

Device Coordinates

TRANSFORMATION

Rasterization

v
b

11

" I
View Transformation

m Camera is at the origin looking down negative Z axis
m Could change camera position with translation T and rotation R

m But instead of rotating and moving camera, transform our scene
iInversely so that the camera sees what we want it to see:

T > , R >
-- -o > v
oL
A\

X .%ﬁ\
V4
L

m In other words: we translate and rotate view coordinate system
so that it is aligned with world coordinate system

m Viewing transform can be done as the last transform in M . 4eiview

(i.e. must be set first in program) 12

JE—
Specifying View Position & Orientation

How to write an OpenGL program that sets the view for a camera...

1.
2.
3.

Given an camera (eye) position and a point to look at ?
Given an eye translation and a rotation ?

For an airplane flight simulator __ (simulating the view out the front
window) where the simulator position and orientation are controlled via
pilot commands that set the plane’s pitch , yaw, and roll ?

Mounted on a pilot’s helmet (simulating the pilot’s eye view such as
In a virtual reality head mounted display) where the pilot can move
(translate) and rotate his head within the airplane’s cockpit ?

Mounted on the end of a multi-jointed robot arm |, such as the NASA
Space Shuttle Canadian arm?

You already know the answer to #1, use gluLookAt().
But, there is no single gl, glu, or glut function for #2-#5 !

© 2004 Lewis Hitchner & Richard Lobb

= S
Specifying View Position & Orientation

m Solution: OpenGL program that sets view position & orientation
given eye position and a point to look at. Use gluLookAt()

m Need: gl uLookAt (
Evepoint ___ [eyeX, eyeY, eyeZ, |

— [roughUpX, roughUpY, roughUpZ

Something that specifies
camera rotation around its axis)
roughUp may be any vector
not parallel to (eye-look)
vector. Along with the
(eye-look) vector it defines
the plane in which the true
up vector must lie.

Question: why is roughUp necessary?

(roughUpX, roughUpY, roughUpZ) = (0,1,0)

(eyeX, eyeY, eyeZ)

00kALtY, lookAtZ)

© 2004 Lewis Hitchner & Richard Lobb

"
The View Coordinate System (UVN)

a.k.a. Eye Coordinate System or Camera Coordinate System

m From the Eye and LookAt points
plus the approximate Up vector,
can derive UVN Coordinate system
(Eye Coords.) basis vectors:

n = Normalised(Eye — LOOkAt)
u = Normalised(Cross(Up, n))
v = Cross(n, u)

Alternate definition: Burkhard’s notes, 5.1 slide #14

© 2004 Lewis Hitchner & Richard Lobb

The View Transformation Matrix V

WG| &
*oDut I

i 8 2
m To set up camera, we could rotate it (R) then translate it (T)
m Vmustdotheinverse:V=(TR)1=R1T1

1 0 0 -ey&)
0 1 0 —-eygy
0 0 1 -eye
0 00 1)

m What matrix R aligns an object with new basis vectorsuv n ?
We are looking for the inverse R of that matrix.

T =

" B
The View Transformation Matrix V

1. From Part 1: we can rotate an object to be aligned with new
basis vectors u v n by multiplying with:

/Ux Vx Nx O\
U W hy O
w V: nz O
0 0 0 1,

2. Rotation matrixes such as R are orthogonal,
l.e. col; ¢ col;= 0 for i #J, and col; * col;= 1

3. For an orthogonal matrix R: R1=RT
[Ux Uy Uz 0\/1 0
VW« W V2 010 1
nx ny n- 00 O
L0 0 0 1)0 O

—eye) (W W Uz —eye.u)
— Eyg W W Vz —eye.v
—eye:| |k ny nz —eye.n
1 Jlo oo 1 |,

V =RIT?=

o r O O

" B
The World as Seen from a Robotic Arm

m View specified as a general instance transformation

Calls to glRotatef() for Euler angle rotations and to glTranslatef()
for a translation to orient and position the camera (but, no scale).

Transformation matrix M that transforms System 1's coordinate frame
(World Coord.) to System 2's frame (Eye Coord.) is:

M=TR,R/R,

Matrix V, that transforms points from World to Eye Coordinates is
V=M1T=(TRRR)'=RARTR?ATH

Note: t,, t,, t, are in World Coords., NOT relative to camera orientation.

m Specified as a hierarchy of instance transformations
Example: camera on the gripper of a robot arm \

Arm hierarchy, joints: base, lower arm, upper arm, gripper e

Instance transformation of gripper

M=TgRg Tia Riax Riay Tua Ruax Ruay Te Rex Rey Ra;

View transformation for camera attached to gripper, V = M-1

© 2004 Lewis Hitchner & Richard Lobb

= S
The World as Seen from an Aeroplane

_ o _ a) pitch
m View specified as pitch, yaw, roll
Euler angle specification, normally applied:

Rroll Ryaw Rpitch /
pitch = angle n axis makes with plane Y =0

(horizontal) n
same as rotation about u axis

yaw = angle u axis makes with plane Z =0
same as rotation about v axis
(also known as heading or bearing)

roll = angle u axis makes with plane X =0
same as rotation about n axis b) roll

Graphics applications often use a “no-roll” ’ .
camera — pitch and yaw only

e
M=T Rroll Ryaw I:Qpitch ’ V=M 'Q
V= (T Rroll I:anw Rpitch) 1= I:2-1pitch R-1yaw R-1roII T

C) yaw

u

© 2004 Lewis Hitchner & Richard Lobb

n

u

" S
The World as Seen from an Aeroplane 2

m View specified as azimuth, elevation
(tilt, optional but uncommon)

Euler angle specification, normally Ay
applied: |
ReIevation Razimuth

azimuth = angle u axis makes
with the plane Z =0

same as rotation about v axis,
same as yaw ®

elevation = angle n axis makes

with the plane Y = 0 (horizontal) 0
same as pitch >\Q

M=TR Razimuth <
V =M1

elevation

— -1
- (T ReIevation Razimuth)
— R-1 -1 -1
=R azimuth R eIevationT

© 2004 Lewis Hitchner & Richard Lobb

Moving our Camera

Problem:

How to move our camera relative to view direction?

(Which direction is “forward” for the camera?)

- heed to convert movements relative to view orientation
INnto movements relative to world coords.

Solution: Slide function

Translates movement along u, v, n axes to movement along X, Yy, z

Given: movement vector d, = (d,, d,
Wanted: movement vector d, = (d,, d,

, d

) In view coords.
, d,) in world coords.

Solution: rotate the movement vector so that it is aligned with u, v, n

dl

(Ux
Uy

\Uz

Vx
Vy
Vz

nx\
Ny

n2)

d2

For rotation matrix explanation
see Burkhard’s notes, 5.8 slide #40

SUMMARY

22

" S
Summary

1. Vertices are automatically transformed by ModelView matrix:
P = M yodenview P = (VM) P

2. Butinstead of rotating and moving camera, transform our scene
so that the camera sees what we want it to see

3. Vs the inverse of the transformation we would use to set up
the camera position and orientation

References:
1 Model transformations: Hill, Chapter 5
1 View Transformation: Hill, Chapter 7.22

1 More View Transformations & Sliding: Hill, Chapter 7.3 ”a

"
Quiz
1. Given the camera setup transformations R, T, R,

(applied in the given order), how do you determine the
view transformation matrix V?

2. Create example matrixes R, T,, R, and calculate V.

3. How do you translate movements in view coords. into
world coords.?

24

