N/ Computer COMPSCI 372 S2 C - Exercise Sheet 5 Science

Q1: Let $\mathbf{u}=\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right), \mathbf{v}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right), \mathbf{w}=\left(\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right)$

Compute

1. $\mathbf{u} \cdot \mathbf{v}$
2. $\mathbf{u} \times \mathbf{v}$

Test whether your result is correct by checking whether the resulting vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}.
3. the angle between \mathbf{u} and \mathbf{v}

Q2: Compute the area of the triangle defined by the vertices $P_{1}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right), P_{2}=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right), P_{3}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$

Q3: Find all vectors which are orthogonal to the vector $\mathbf{u}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$

Q4: Let $\mathbf{M}=\left(\begin{array}{lll}3 & -1 & 0 \\ 2 & 4 & 1\end{array}\right), \mathbf{N}=\left(\begin{array}{ll}1 & 0 \\ 0 & 4 \\ -2 & -3\end{array}\right)$
Compute

1. $\mathbf{M}^{\mathrm{T}}+\mathbf{N}$
2. $\mathbf{M} \cdot \mathbf{N}$
3. $\mathbf{N} \cdot \mathbf{M}$

Q5: Determine whether the four points $P_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), P_{2}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right), P_{3}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right), P_{4}=\left(\begin{array}{l}0 \\ 0 \\ 6\end{array}\right)$ lie on the same plane.

Q6: Compute the distance of the point $Q=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ to the plane $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right) \bullet \mathbf{p}=2$

Q7: Let $\mathbf{M}=\left(\begin{array}{lll}0 & 2 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & 2\end{array}\right)$
a) Compute the inverse of \mathbf{M}.
b) Test whether your result is correct by computing $\mathbf{M} \mathbf{M}^{-1}$.

Q8: Compute the intersection point (if any)
a) of the line $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ with the plane $\left(\begin{array}{c}0 \\ -1 \\ 3\end{array}\right) \cdot \mathbf{p}=4$
b) of the line $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$ with the plane $\left(\begin{array}{c}0 \\ -1 \\ 3\end{array}\right) \bullet \mathbf{p}=4$

