Computer Science
 COMPSCI 372 S2 C - Exercise Sheet 4 Sample Solution

Q1: Let $\mathbf{M}=\left(\begin{array}{lll}1 & 5 & 3 \\ 3 & 0 & 2\end{array}\right), \mathbf{v}=\binom{1}{3}, \mathbf{u}=\binom{2}{0}$

Answers:

1. $5 \mathbf{v}-3 \mathbf{u}=5\binom{1}{3}-3\binom{2}{0}=\binom{5-6}{15-0}=\binom{-1}{15}$
2. $\mathbf{v} \bullet \mathbf{u}=\mathbf{v}^{T} \mathbf{u}=\left(\begin{array}{ll}1 & 3\end{array}\right)\binom{2}{0}=1 * 2+3 * 0=2$
3. $\mathbf{u v}^{T}=\binom{2}{0}\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{ll}2 * 1 & 2 * 3 \\ 0 * 1 & 0 * 3\end{array}\right)=\left(\begin{array}{ll}2 & 6 \\ 0 & 0\end{array}\right)$
4. $|\mathbf{v}|=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
5. $\hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{10}}\binom{1}{3} \quad\left(|\hat{\mathbf{v}}|=\sqrt{\left(\frac{1}{\sqrt{10}}\right)^{2}+\left(\frac{3}{\sqrt{10}}\right)^{2}}=\sqrt{\frac{1}{10}+\frac{9}{10}}=1\right)$
6. $\quad \mathbf{M}^{T} \mathbf{M}=\left(\begin{array}{ll}1 & 3 \\ 5 & 0 \\ 3 & 2\end{array}\right)\left(\begin{array}{lll}1 & 5 & 3 \\ 3 & 0 & 2\end{array}\right)=\left(\begin{array}{lll}1 * 1+3 * 3 & 1 * 5+3 * 0 & 1 * 3+3 * 2 \\ 5 * 1+0 * 3 & 5 * 5+0 * 0 & 5 * 3+0 * 2 \\ 3 * 1+2 * 3 & 3 * 5+2 * 0 & 3 * 3+2 * 2\end{array}\right)=\left(\begin{array}{ccc}10 & 5 & 9 \\ 5 & 25 & 15 \\ 9 & 15 & 13\end{array}\right)$
7. $\mathbf{M} \mathbf{M}^{T}=\left(\begin{array}{lll}1 & 5 & 3 \\ 3 & 0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 5 & 0 \\ 3 & 2\end{array}\right)=\left(\begin{array}{ll}1 * 1+5 * 5+3 * 3 & 1 * 3+5 * 0+3 * 2 \\ 3 * 1+0 * 5+2 * 3 & 3 * 3+0 * 0+2 * 2\end{array}\right)=\left(\begin{array}{cc}35 & 9 \\ 9 & 13\end{array}\right)$
8. $\cos \varphi=\frac{\mathbf{u} \bullet \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{2}{2 * \sqrt{10}}=\sqrt{0.1} \Rightarrow \varphi=\cos ^{-1} \sqrt{0.1}=71.57^{\circ}$
9. The x-axis has the direction $w=(1,0)^{\mathrm{T}}$:

$$
\cos \varphi=\frac{\mathbf{w} \bullet \mathbf{v}}{|\mathbf{w}||\mathbf{v}|}=\frac{1}{1^{*} \sqrt{10}}=\sqrt{0.1} \Rightarrow \varphi=\cos ^{-1} \sqrt{0.1}=71.57^{\circ}
$$

Q2: Given a matrix \mathbf{M} the matrix \mathbf{M}^{-1} is called the inverse of \mathbf{M} if and only if
$\mathbf{M}^{-1} \mathbf{M}=\mathbf{M} \mathbf{M}^{-1}=\mathbf{I}$ where \mathbf{I} is the identity matrix (i.e. \mathbf{I} is the matrix where all diagonal elements are 1 and all off-diagonal elements are zero).

For $\mathbf{M}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ the inverse is computed by $\mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|}\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)$
(a) Show that $\mathbf{M}^{-1} \mathbf{M}=\mathbf{M} \mathbf{M}^{-1}=\mathbf{I}$.
$\mathbf{M M}^{-1}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right) \frac{1}{\mathbf{M} \mid}\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)=\frac{1}{m_{11} m_{22}-m_{12} m_{21}}\left(\begin{array}{ll}m_{11} m_{22}-m_{12} m_{21} & -m_{11} m_{12}+m_{12} m_{11} \\ m_{21} m_{22}-m_{22} m_{21} & -m_{12} m_{21}+m_{11} m_{22}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathbf{M}^{-1} \mathbf{M}=\frac{1}{|\mathbf{M}|}\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)=\frac{1}{m_{11} m_{22}-m_{12} m_{21}}\left(\begin{array}{cc}m_{22} m_{11}-m_{12} m_{21} & m_{22} m_{12}-m_{12} m_{22} \\ -m_{21} m_{11}+m_{11} m_{21} & -m_{21} m_{12}+m_{11} m_{22}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(b) Let $\mathbf{S}=\left(\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right), \mathbf{R}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right), \mathbf{H}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$

Compute

1. $\mathbf{S}^{-1}=\frac{1}{2 * 5}\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 5\end{array}\right)$
i.e. the inverse of a scale matrix is a matrix which scales by the reciprocal values.
2. $\mathbf{R}^{-1}=\frac{1}{\cos \theta \cos \theta+\sin \theta \sin \theta}\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)=\left(\begin{array}{cc}\cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta)\end{array}\right)$ since $\cos ^{2} \theta+\sin ^{2} \theta=1, \cos \theta=\cos (-\theta)$ and $\sin \theta=-\sin (-\theta)$.
i.e. the inverse of a rotation matrix is a matrix which performs a rotation by the same angle in the opposite direction.
3. $\quad \mathbf{H}^{-1}=\frac{1}{1^{*} 1}\left(\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right)$
i.e. the inverse of a shear matrix is a matrix which shears by the corresponding negative values.

Q3: Given are two vectors $\mathbf{a}=\binom{5}{2}$ and $\mathbf{b}=\binom{1}{3}$ with a common origin. Find all vectors orthogonal to a. Decompose \mathbf{b} into two components \mathbf{b}_{a} and $\mathbf{b}_{a^{\perp}}$ parallel and perpendicular to a, respectively.

$$
\begin{aligned}
& \mathbf{b}_{a}=\frac{\mathbf{b} \bullet \mathbf{a}}{\mathbf{a} \bullet \mathbf{a}} \mathbf{a}=\frac{5+6}{25+4}\binom{5}{2}=\left(\frac{55 / 29}{22 / 29}\right) \approx\binom{1.897}{0.759} \\
& \mathbf{b}_{a^{\perp}}=\mathbf{b}-\mathbf{b}_{a}=\binom{1}{3}-\left(\frac{55 / 29}{22 / 29}\right)=\left(\frac{-26 / 29}{65 / 29}\right) \approx\binom{-0.897}{2.241}
\end{aligned}
$$

All vectors orthogonal to a are given by: $\mathbf{v}_{\text {orthogonal_to } _\mathbf{a}}=k\binom{-2}{5}$ where $k \neq 0$

Q4: Given is a triangle with the corners $(0,0)^{\mathrm{T}},(3,0)^{\mathrm{T}}$ and $(3,2)^{\mathrm{T}}$ made out of a reflective material. A light ray originates at the point $(-2,1)^{\mathrm{T}}$ and travels in the direction $(1,0)^{\mathrm{T}}$. Compute the direction of the light ray after hitting the triangle.

Drawing a diagram of the scene reveals that the light ray first hits the triangle edge connecting the vertices $(0,0)^{\mathrm{T}}$ and $(3,2)^{\mathrm{T}}$ (alternatively we could test all edges in order to find out which edge is hit first)

The hit edge of the triangle has the direction $\mathbf{d}=\binom{3}{2}-\binom{0}{0}=\binom{3}{2}$
Hence its normal is $\mathbf{n}=\binom{-2}{3}$ and its unit normal is $\hat{\mathbf{n}}=\binom{-2 / \sqrt{13}}{3 / \sqrt{13}}$
The direction of the reflected ray is therefore
$\mathbf{r}=\mathbf{v}-2(\mathbf{v} \bullet \hat{\mathbf{n}}) \hat{\mathbf{n}}=\binom{1}{0}-2\left(1 * \frac{-2}{\sqrt{13}}+0 * \frac{3}{\sqrt{13}}\right)\binom{-2 / \sqrt{13}}{3 / \sqrt{13}}=\binom{1}{0}+\frac{4}{\sqrt{13}}\binom{-2 / \sqrt{13}}{3 / \sqrt{13}}=\binom{5 / 13}{12 / 13}$

Solution to example 3 (slide 36) from chapter 5 of the lecture notes

Given is the 2D scene in part (a) of the image below. Write down the homogeneous 2D transformation matrix \mathbf{M}, which transforms the object shown in (a) into the object in part (b) of the image. You are allowed to write the transformation matrix as a product of simpler matrices (i.e. you are not required to multiply the matrices).
(a)

(b)

Answer: In order to get from (a) to (b) we first have to scale the object by a factor of 2 in y-direction, then rotate it by $(90-\alpha)$ in anticlockwise direction, and then translate it by 5 units in x -direction. Hence the final transformation matrix is:

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos (90-\alpha) & -\sin (90-\alpha) & 0 \\
\sin (90-\alpha) & \cos (90-\alpha) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

