

Q2: Given a matrix **M** the matrix \mathbf{M}^{-1} is called the inverse of **M** if and only if $\mathbf{M}^{-1} \mathbf{M} = \mathbf{M} \mathbf{M}^{-1} = \mathbf{I}$ where **I** is the identity matrix (i.e. **I** is the matrix where all diagonal elements are 1 and all off-diagonal elements are zero).

For
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
 the inverse is computed by $\mathbf{M}^{-1} = \frac{1}{|\mathbf{M}|} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$

(a) Show that $\mathbf{M}^{-1}\mathbf{M} = \mathbf{M}\mathbf{M}^{-1} = \mathbf{I}$.

(b) Let
$$\mathbf{S} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$$
, $\mathbf{R} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, $\mathbf{H} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$

Compute

1. \mathbf{S}^{-1} 2. \mathbf{R}^{-1} (use the fact that $\cos\theta\cos\theta + \sin\theta\sin\theta = 1$) 3. \mathbf{H}^{-1}

Q3: Given are two vectors $\mathbf{a} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ with a common origin. Find all vectors

orthogonal to **a**. Decompose **b** into two components \mathbf{b}_a and $\mathbf{b}_{a^{\perp}}$ parallel and perpendicular to a, respectively.

Q4: Given is a triangle with the corners $(0,0)^{T}$, $(3,0)^{T}$ and $(3,2)^{T}$ made out of a reflective material. A light ray originates at the point $(-2,1)^{T}$ and travels in the direction $(1,0)^{T}$. Compute the direction of the light ray after hitting the triangle.