NaI Computer Science
 COMPSCI 372 S2 C - Exercise Sheet 4 $6{ }^{\text {th }}$ August 2008

Q1: Let $\mathbf{M}=\left(\begin{array}{lll}1 & 5 & 3 \\ 3 & 0 & 2\end{array}\right), \mathbf{v}=\binom{1}{3}, \mathbf{u}=\binom{2}{0}$
Please compute:

1. $5 \mathbf{v}-3 \mathbf{u}$
2. $\mathbf{v} \cdot \mathbf{u}$
3. $\mathbf{u v}^{\mathrm{T}}$
4. $|\mathbf{v}|$
5. $\hat{\mathbf{v}}$
6. $\mathbf{M}^{\mathrm{T}} \mathbf{M}$
7. MM^{T}
8. The angle between \mathbf{u} and \mathbf{v}
9. The angle between \mathbf{v} and the x -axis

Q2: Given a matrix \mathbf{M} the matrix \mathbf{M}^{-1} is called the inverse of \mathbf{M} if and only if $\mathbf{M}^{-1} \mathbf{M}=\mathbf{M} \mathbf{M}^{-1}=\mathbf{I}$ where \mathbf{I} is the identity matrix (i.e. \mathbf{I} is the matrix where all diagonal elements are 1 and all off-diagonal elements are zero).

For $\mathbf{M}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ the inverse is computed by $\mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|}\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)$
(a) Show that $\mathbf{M}^{-1} \mathbf{M}=\mathbf{M} \mathbf{M}^{-1}=\mathbf{I}$.
(b) Let $\mathbf{S}=\left(\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right), \mathbf{R}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right), \mathbf{H}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$

Compute

1. \mathbf{S}^{-1}
2. \mathbf{R}^{-1} (use the fact that $\cos \theta \cos \theta+\sin \theta \sin \theta=1$)
3. \mathbf{H}^{-1}

Q3: Given are two vectors $\mathbf{a}=\binom{5}{2}$ and $\mathbf{b}=\binom{1}{3}$ with a common origin. Find all vectors orthogonal to a. Decompose \mathbf{b} into two components \mathbf{b}_{a} and $\mathbf{b}_{a^{\perp}}$ parallel and perpendicular to a, respectively.

Q4: Given is a triangle with the corners $(0,0)^{\mathrm{T}},(3,0)^{\mathrm{T}}$ and $(3,2)^{\mathrm{T}}$ made out of a reflective material. A light ray originates at the point $(-2,1)^{\mathrm{T}}$ and travels in the direction $(1,0)^{\mathrm{T}}$.
Compute the direction of the light ray after hitting the triangle.

