6. 3D Vectors, Geometry and Transformations

6.1 From 2D to 3D

- 3D points and vectors are 3-tuples \square Coordinate space is defined by three orthogonal unit vectors.
- Convention: use upper-case letters for points, e.g. A, Q, bold lower case letters for vectors, e.g. a, q, and bold upper-case letters for matrices, e.g. M, R.
- Addition, scaling, subtraction, magnitude and normalisation all as for 2D, but with an extra coordinate.
- A convex combination of points defines a convex polyhedron rather than a polygon.
- Products of vectors are very important in 3D
\square Dot Product (Scalar Product), Cross Product (Vector Product)
© 2008 Burkhard Wuensche
http://www.cs.auckland.ac.nz/~burkhard
Slide 2

House3D
A simple OpenGL program displaying a 3D object

- What the program does
- The code
- Aspects of the code
\square Only consider aspects different from the 2D example:
- Representing the 3D wireframe house
- 3D Orthographic Projection
- Resizing the display window
- Drawing the picture
- Exercises
- Changing the View (GluLookAt)
-

What the program does

- Defines a simple house shape in wireframe form (i.e. made up of just straight lines representing the edges) in 3 -space.
- Displays a picture of the house using a 3D orthographic projection along the z axis
\square Any point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) projects to a point (x, y)
\square Much more on this later
- Note that the y-axis is UP

\#include <gl/gl.h>
\#include <gl/glu.h>
\#include <gl/glut.h>
const int windowWidth $=400$; const int windowHeight $=400$;
define vertices and edges of the house
const int numVertices=10; const int numEdges=17;
const float vertices[numVertices][3] = \{\{0,0,0\},\{1,0,0\},\{0,1,0\},\{1,1,0\},\{0,0,2\},10, (0,
$\{0,\{1,0,2\},\{0,1,2\},\{1,1,2\},\{0.5 f, 1.5 f, 0\},\{0.5 f, 1.5 f, 2\}\}$
$\begin{cases}\{1,5\},\{3,7\},\{2,6\},\{2,8\},\{8,3\},\{6,9\},\{9,7\},\{8,9\}\} ;\end{cases}$
void display(void)\{
gIMatrixMode(GL_MODELVIEW);
gILoadldentity();
glClear(GL COL
glColor3f (1_1_
glBegin(GL LINES):
for(int $\mathrm{i}=0$; $\mathrm{i}<$ num Edges; $\mathrm{i}++$)
gIVertex3fv(vertices[edges[i]] 0)
glVertex3fv(vertices[edges[i][1]]);
\}
glEnd();
gIFlush
();
\}
© 2008 Burkhard Wuensche

Representing the Wireframe House

- Have a vertex table and an edge table
const float vertices[numVertices][3] = $\{\{0,0,0\},\{1,0,0\},\{0,1,0\},\{1,1,0\},\{0,0,2\}$,
$\{1,0,2\},\{0,1,2\},\{1,1,2\},\{0.5 f, 1.5 f, 0\},\{0.5 f, 1.5 f, 2\}\} ;$
const int edges[numEdges][2] $=\{\{0,1\},\{1,3\},\{3,2\},\{2,0\},\{4,5\},\{5,7\},\{7,6\},\{6,4\},\{0,4\}$,
$\{1,5\},\{3,7\},\{2,6\},\{2,8\},\{8,3\},\{6,9\},\{9,7\},\{8,9\}\} ;$
- Each vertex table array entry is itself an array of 3 floats, representing a point in R^{3} [3D-space]
- Edge table values are indices into vertex table

$$
\text { e.g. edge }\{3,7\} \text { is the edge from } V_{3}(1,1,0) \text { to } V_{7}(1,1,2)
$$

- Coordinate system is right handed


```
GG
void init(void) \{
// select clearing color (for glClear)
glClearColor (1.0, 1.0, 1.0, 0.0);
/ initialize view (simple 3D orthographic RGB-value for white
IMatrixMode(GL PROJECTION):
glLoadldentity();
glOrtho(-2,2,-2,2,-3,3)
\}
void reshape(int width, int height ) \{ int size \(=\min (\) width, height \()\);
glViewport(0, 0, size, size);
\}
// create a single buffered colour window
int main(int argc, char** argv)
glutlnitDisplayMode
glutlnitWindowSize(wind SINGLE | GLUT RGB):
lutlnitWindowPosition(100Width, windowHeight);
glutCreateWindow("House3D"):
glut ();
init
glutDis
glutDisplayFunc(display); // initialise view
lutReshapeFunc(reshape). // Set function to draw scen
glutReshapeFunc(reshape); // Set function called if window is resized
glutMainLoop();
- \({ }^{\text {© }} 2\)
© 2008 Burkhard Wuensche
http://www.cs.auckland.ac.nz/ burkhard

\section*{3D Orthographic Projection}
- There are typically at least four phases to drawing ("rendering") a scene in OpenGL:
(1) Define required projection
(2) Define required view (allows you to to rotate, scale, translate, etc. the model)
(3) Set up scene lighting
(4) Output scene primitives (i.e. describe/define the scene)

■ In this example we have a simple orthographic projection [i.e. \((x, y, z) \rightarrow(x, y)\) ], a trivial view and no lighting.
(1) Define required projection:
gIMatrixMode(GL_PROJECTION); // Initialise projection matrix
glLoadidentity();
gIOrtho(-2,2,-2,2,-3,3); \(\quad\) // Set orthographic projection volume [more later]
Projection volume
\(\square\)
glOrtho(left, right, bottom, top, near, far) defines the
coordinates of the projection volume, with near and far being measured from the view point in the view direction, i.e. they are depths not z -values.


\section*{Drawing the Picture}

\section*{Resizing the Display Window}
- The argument of glutReshapeFunc (the function reshape) is called at the start and whenever the display window gets resized
\(\square\) Specifies how the scene will be redrawn in the resized window
\(\square\) In the previous examples the viewport was the entire OpenGL window
\(\square\) In this example, we set the viewport to be the largest square possible.
- The projection matrix maps the scene onto the viewport
int size \(=\min\) (width, height) gIViewport(0, 0, size, size),
- The rest (if any) of the window is unused
- glViewport parameters are \(x, y\), width and height in pixel coordinates, with \((x, y)\) being the bottom left corner of the viewport.
\(\square \operatorname{In}\) OpenGL, \(y\) coordinates always increase upwards, so \((0,0)\) is the bottom left corner of the window, not the top left as is normal in screen coordinates.

© 2008 Burkhard Wuensche
2) Define required view of the model. The two lines glMatrixMode(GL_MODELVIEW ); gILoadldentity();
initialise the "model + view matrix" to the identity matrix, meaning "don't transform the scene at all". Don't expect to understand this just yet!
\(\square\) View direction is along negative z axis.
(3) Set up scene lighting
- can not illuminate wireframes (since there is no surface normal)!
(4) Output scene primitives (as in the 2D example)
gIClear(GL_COLOR_BUFFER_BIT); // clear all pixels in frame buffer glColor3f (1.0, 0.0, 0.0);
// draw scene in red
glBegin(GL_LINES);
// draw edges as line segments (3D vertices)
for(int i=0;i<numEdges;i++)\{
gIVertex3tv(vertices[edges[i][0]])
gIVertex3fv(vertices[edges[i][1]])
\}
glEnd();
gIFlush ();
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

\section*{Exercises}
- Change the program to use g/Vertex3f everywhere instead of gIVertex3fv.
- How could you centre the picture in the output window? [Find a solution that involves only adjusting two of the numbers in the program]
- How could you increase the size of the picture in the output window?
- What is the effect of putting (a) the near plane, and (b) the far plane at \(\mathrm{z}=1\) ?
- What happens if the near and far faces of the projection volume are rectangular rather than square?

\section*{Changing the View}
- We can rotate the house to give a more useful view by changing step (2) to
gIMatrixMode(GL_MODELVIEW); \(\quad\) / Set the view matrix ..
gILoadldentity(); glLoadldentity);
/ ... to identity.
glRotatef(-40,1,2,-0.3f);
// Rotate -40 degrees around an axis through the
\[
\text { // origin in the direction ( } 1,2,-0.3 \text { ). }
\] // origin in the direction ( \(1,2,-0,3\) ).
- Looks vaguely OK, but how can we determine a suitable axis and angle, except by lots of experimentation?
- Answers: Either
(a) We can't. Yet. Need some maths! Or
(b) Use a GLU function to do it for us.

\section*{GLULookAt}
- Remember: GLU is a package of utility functions on top of GL.
- Replace start of display() with:
glMatrixMode( GL MODELVIEW );
glLoadIdentity();
gluLookAt(-1,2,5, 0.5f,0.75f,1, 0,1,0);
- Replace start of init() with:
glMatrixMode (GL_PROJECTION)
glLoadIdentity();
glortho(-2,2,-2,2,0,7);
w.r.t. camera lookatX, lookatY, lookatZ, UpX, UpY, UpZ)
specifies where the virtual camera is, where it's pointing to and how we're orienting (rotating) it.

\section*{GLULookAt (cont'd)}
- What's happening?
\(\square\) Camera coordinate system ( \(u, v, n\) axes) has origin at camera point, namely \((-1,2,5)\).
- vector from camera to lookAt defines the NEGATIVE \(n\) axis
- House image is projected onto viewplane, which is defined to be perpendicular to \(n\) axis
- Projection of \(u p\) onto viewplane is \(v\) axis.
\(\square\) Projection volume is defined by glOrtho, in camera coordinates


\subsection*{6.2 Vectors and Matrices in 3D}
- Vector and matrix operations as in 2D
- Determinant det \(\mathbf{M}\) (also written | M |) of a \(3 \times 3\) matrix \(\mathbf{M}\)
\[
\left|\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right|=m_{11}\left|\begin{array}{ll}
m_{22} & m_{23} \\
m_{32} & m_{33}
\end{array}\right|-m_{12}\left|\begin{array}{ll}
m_{21} & m_{23} \\
m_{31} & m_{33}
\end{array}\right|+m_{13}\left|\begin{array}{ll}
m_{21} & m_{22} \\
m_{31} & m_{32}
\end{array}\right|
\]
- Inverse of a matrix:
- The matrix \(\mathbf{M}^{-1}\) is called the inverse of \(\mathbf{M}\) if \(\mathbf{M}^{-1} \mathbf{M}=\mathbf{M M}^{-1}=1\)
\(\mathbf{M}=\left(\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right) \Rightarrow \mathbf{M}^{-1}=\frac{1}{|\mathbf{M}|} \mathbf{A}\) where \(\mathrm{a}_{\mathrm{ij}}=(-1)^{i+j}\left|\mathbf{A}^{j i}\right|, 1 \leq i, j \leq 3\)
and \(\mathbf{A}^{k l}\) is the \(2 \times 2\) matrix formed by deleting the \(k\) th row and \(l\) th column of \(\mathbf{M}\)

\section*{The Dot Product}

\section*{Coordinate Transformations}
- Definition
- The dot product (or inner product, or scalar product) of two 3D vectors \(\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)\) and \(\mathbf{w}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)\) is: \(\mathbf{v} \cdot \mathbf{w}=\mathrm{v}_{1} \mathrm{w}_{1}+\mathrm{v}_{2} \mathrm{w}_{2}+\mathrm{v}_{3} \mathrm{w}_{3}\).
- Properties (same as in 2D)
- Symmetry: \(\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}\)
- Linearity: \((\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}\)
\(\square\) Homogeneity: \((\mathbf{s a}) \cdot \mathbf{b}=\mathbf{s}(\mathbf{a} \cdot \mathbf{b})\)
\(\square|\mathbf{b}|^{2}=\mathbf{b} \cdot \mathbf{b}\)
\(\square\) Example: Prove \(|\mathbf{a}-\mathbf{b}|^{2}=\mathbf{a} \cdot \mathbf{a}-\mathbf{2 a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{b}\)
- Applications (same as in 2D, except where 2D "Perp" Vector is used)
\(\square\) Angle between two vectors
\(\square\) The sign of \(\mathbf{a} \cdot \mathbf{b}\) and perpendicularity
\(\square\) Projecting vectors
- Ray reflection
© 2008 Burkhard Wuensche

\subsection*{6.3 The Cross Product}
- Let \(\mathbf{i}, \mathbf{j}\), and \(\mathbf{k}\) be unit vectors along the \(x, y\) and \(z\) axes respectively.
- Define the cross product (or vector product) operator such that:
\(\square\) It's a linear operator, i.e.
\[
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}
\]
\(\square|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta\) where \(\theta\) is the angle between \(\mathbf{a}\) and \(\mathbf{b}\) in range \([0,2 \pi]\)
\(\square\) It's homogeneous, i.e. \((\mathbf{s a}) \times \mathbf{b}=s(\mathbf{a} \times \mathbf{b})\)
\(\square \mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}, \mathbf{k} \times \mathbf{i}=\mathbf{j}\)
\(\square \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \mathbf{i} \times \mathbf{k}=-\mathbf{j}\)
\(\square \mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}\)
- Can show from this (UDOO) that if
\(\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\) and \(\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\)
\[
\text { then } \mathbf{a} \times \mathbf{b}=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
\]
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 19

The component of a vector \(\mathbf{v}\) in a direction represented by a unit vector \(\mathbf{i}\) is the perpendicular projection of \(\mathbf{v}\) onto the direction of \(\mathbf{i}\).
Given by \((\mathbf{v} \cdot \mathbf{i}) \mathbf{i} \quad\) (formula from Chapter 5, slide 12)
Let \(P\) be a point and \(E\) be the camera location given in \(x, y, z\)-coordinates
The components of the point \(P\) expressed in the ( \(u, v, n\) ) coordinate system are: \((\mathbf{r} \cdot \mathbf{u}),(\mathbf{r} \cdot \mathbf{v})\) and \((\mathbf{r} \cdot \mathbf{n})\)
where \(r=P-E\)


\subsection*{6.4 Straight Lines, Line Segments and Rays}
- Use a parametric form for lines.
\(\square\) Straight line through two points \(P_{1}\) and \(P_{2}\) is
\[
\begin{aligned}
P(\alpha) & =(1-\alpha) P_{1}+\alpha P_{2} \\
& =P_{1}+\alpha\left(P_{2}-P_{1}\right) \\
& =P_{1}+\alpha \mathbf{v}
\end{aligned}
\]
\(\square\) where \(\mathbf{v}=P_{2}-P_{1}\) is the displacement vector from \(P_{1}\) to \(P_{2}\).
- If \(\alpha\) constrained to the range \([0,1]\) we have a line segment - all points between \(P_{1}\) and \(P_{2}\).
- If \(\alpha\) constrained to the range \([0, \infty]\) we have a ray.
- If \(\alpha\) is any real number, we have a full line in \(n\)-space.
© 2008 Burkhard Wuensche

\subsection*{6.5 The Geometry of Planes}The Point-Normal Form of a Plane Equation
\(\square\) Distance of a Plane from the Origin
\(\square\) Distance of a Point from a PlaneInside-Outside Half-Space TestIntersection Line-Plane

\section*{The Point-Normal Form of a Plane}
- Can define a plane by giving one point on it, \(S\) say, and its unit normal \(\mathbf{n}\).
- Then for any point \(P\) on the plane, \((P-S)\) is perpendicular to \(\mathbf{n}\). i.e. \(\mathbf{n} \cdot(P-S)=0\).

["Point-normal" form of plane equation]
- If \(\mathbf{p}\) and \(\mathbf{s}\) are the vectors to \(P\) and \(S\) then can write this as \(\mathbf{n} \cdot(\mathbf{p}-\mathbf{s})=0\)
i.e. \(\mathbf{n} \cdot \mathbf{p}=\mathbf{n} \cdot \mathbf{s}\)
or \(\mathbf{n} \cdot \mathbf{p}=d\) where \(d=\mathbf{n} \cdot \mathbf{s}\)
- If \(\mathbf{n}\) is \((a, b, c)\) and \(\mathbf{p}\) is \((x, y, z)\), then this is the familiar equation \(a x+b y+c z=d\).
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/-burkhard Slide 23
-

\section*{Distance of plane from origin}
- Let \(Q\) be a point on the plane such that \(\mathbf{q}\) is parallel to \(\mathbf{n}\). Then the length of \(\mathbf{q}\) is the "shortest distance" to the plane from the origin.
- We have the plane equation \(\mathbf{n} \cdot \mathbf{p}=d\)
for any point \(P\) on the plane. Hence \(\mathbf{n} \cdot \mathbf{q}=d\). But since \(\mathbf{n}\) is parallel to \(\mathbf{q}, \mathbf{n} \cdot \mathbf{q}=|\mathbf{q}|\).
Thus \(|\mathbf{q}|=d\).
- Hence, in the equations
\[
\mathbf{n} \cdot \mathbf{p}=d \quad \text { and }
\]
\(a x+b y+c z=d\)

\(d\) is the distance to the plane from the origin provided \(\mathbf{n}=(a, b, c)\) is a unit vector.
- UDOO: How far is the plane \(3 x+y-2 z=5\) from the origin?

\section*{Distance of Point from Plane}
- How far is a point \(Q\) from the plane \(\mathbf{n} \cdot \mathbf{p}=d\) ?
- Let \(P\) be the nearest point on the plane to \(Q\), so that \((Q-P)\) is parallel to \(\mathbf{n}\).
- Then the required answer \(\delta\) is
\[
\delta=|Q-P|=|(\mathbf{q}-\mathbf{p})|
\]
- Since \(\mathbf{q}-\mathbf{p}\) is parallel to \(\mathbf{n}\), can write as
\[
\begin{aligned}
& \delta=(\mathbf{q}-\mathbf{p}) \cdot \mathbf{n} \\
& =\mathbf{q} \cdot \mathbf{n}-\mathbf{p} \cdot \mathbf{n}=\mathbf{q} \cdot \mathbf{n}-d \\
& =a q_{1}+b q_{2}+c q_{3}-d
\end{aligned}
\]

\[
\text { where } \mathbf{n}=(a, b, c) \text { is the unit normal and } \mathbf{q}=\left(q_{1}, q_{2}, q_{3}\right)
\]
- \(\delta\) is positive if \(Q\) is outside the plane, negative if \(Q\) is inside.
- WARNING: Always scale plane equation \(a x+b y+c z=d\) so that \(\left(a^{2}+b^{2}+c^{2}\right)=1\).
© 2008 Burkhard Wuensche

\section*{Intersection Line-Plane}

Given is a line
\(\boldsymbol{p}(t)=\boldsymbol{p}_{0}+t \boldsymbol{c} \quad\) where \(\mathbf{c}\) is the line's direction
\(\square\) If all vectors are 2D, the plane becomes a line, and the equations give the distance of a line from the origin, the distance of a point from a line, and categorise a 2 D point as inside or outside a line.

\section*{and a plane \(\mathbf{n} \cdot \mathbf{p}=d\)}

The line intersects the plane when \(t=\frac{d-\mathbf{n}^{\bullet} \mathbf{p}_{0}}{\mathbf{n}^{\prime} \cdot \mathbf{c}}\)

Q: What happens if \(\mathbf{n} \cdot \mathbf{c}=0\) ?

\section*{The Normal to a Polygon}
- In principle, get normal \(\mathbf{n}\) from the cross product of any two adjacent edge vectors, e.g. \(\mathbf{n}=(D-C) \times(B-C)\)
- But this is non-robust - gives erroneous or unrepresentative value when:
\(\square 3\) vertices co-linear

\(\square 2\) adjacent vertices very close together
- Magnitude of cross product tends to zero and direction is sensitive to slight movement in either point
\(\square\) Polygon not coplanar
- e.g. (B-A)×(E-A), above, not representative
- Warning: In computer graphics, exceptional conditions occur all the time!
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

\subsection*{6.7 3D Transformations}
- Natural extension of 2D
- We will use the homogeneous coordinate form for all transformations.
- To convert between ordinary 3D coordinates and homogenous 3D coordinates:
\(\square\) 3D ordinary \(\rightarrow\) 3D homogeneous
\[
\begin{aligned}
& (x, y, z)^{\top} \rightarrow(x, y, z, 1)^{\top} \\
& \square 3 D \text { homogeneous } \rightarrow 3 \mathrm{D} \text { ordinary } \\
& \quad(x, y, z, w)^{\top} \rightarrow(x / w, y / w, z / w)^{\top}
\end{aligned}
\]
\(\square\) Short edges or nearly co-linear vertex triples give negligible cross product contribution
\(\square\) Long nearly-perpendicular edges give biggest contribution
Translation
The matrix for a translation by a
vector \(\mathbf{t}=\left(t_{x}, t_{y}, t_{z}\right)\) is:
\[
\mathbf{T}=\left(\begin{array}{cccc}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)
\]
Q2008 Burkhard wuensche

- The matrix for a scaling by factors of \(S_{x}, S_{y}, S_{z}\) in \(x, y\) and \(z\) respectively is:
\[
\mathbf{S}=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
- A negative \(S_{x}\) gives a reflection about the \(x=0\) plane.
- Similarly for negative \(\mathrm{S}_{\mathrm{y}}\) or \(\mathrm{S}_{\mathrm{z}}\).
\(\bigcirc 2008\) Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

\section*{Shearing}
- The general shear matrix is:
\[
\mathbf{H}=\left(\begin{array}{cccc}
1 & h_{y x} & h_{z x} & 0 \\
h_{x y} & 1 & h_{z y} & 0 \\
h_{x z} & h_{y z} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
- 3D shearing in its most general form is very rare. Occasionally meet horizontal shearing e.g. a pile of paper pushed to one side so that the sides of the pile are still straight but not vertical.
- UDOO: What would the matrix for that look like?

\footnotetext{
© 2008 Burkhard Wuensche
}

\section*{Rotation around Coordinate Axes}
- Have three axes to rotate about, so three different matrices.
- Let \(C=\cos \theta\) and \(S=\sin \theta\). Then the three matrices for positive (right handed) rotation are:
- Rotation about the x-axis:
\[
\mathbf{R}_{x}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C & -S & 0 \\
0 & S & C & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
- Rotation about the y axis:
- \(\mathbf{R}_{z}\) : UDOO.
\[
\mathbf{R}_{y}=\left(\begin{array}{cccc}
C & 0 & S & 0 \\
0 & 1 & 0 & 0 \\
-S & 0 & C & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]

Note on \(3 \times 3\) rotation matrices:

Row and column corresponding to axis of rotation are as for identity I
Other elements are C on diagonal, \(\pm \mathrm{S}\) off diagonal, so that \(\mathbf{R} \rightarrow \mathbf{I}\) if \(\theta \rightarrow 0\).
Sign of \(S\) can be inferred from the fact that rotation around \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) by \(\theta=90^{\circ}\) transforms \(y \rightarrow z, z \rightarrow\) \(\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y}\), respectively.

\section*{Rotating to Align wew Coordinate \\ Rotating to Align with New Coordinate Axes}
- Often we have some object and want it at a new position and with a new orientation
\(\square\) Generally involves both rotation and translation
\(\square\) Translation trivial -- focus only on rotation here
- Problem: what is the rotation matrix \(\mathbf{R}\) that rotates a coordinate system ( \(\mathbf{x}, \mathbf{y}, \mathbf{z}\) ) to align with a new coordinate system ( \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) ) with the same origin, where \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) are unit vectors along the new axes.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard

\section*{Rotating to Align with New Coordinate Axes (cont'd)}
- To get R: we have \(\square \mathbf{R}\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{\top}=\mathbf{a}\)
\(\square \mathbf{R}\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{\top}=\mathbf{b}\)
\(\square \mathbf{R}\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{\top}=\mathbf{c}\)
\[
\mathbf{R}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right)
\]
- Above 3 eqns equivalent to:
\[
\therefore \mathbf{R}=\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right) \quad \text { or } \mathbf{R}_{H . C .}=\left(\begin{array}{cccc}
a_{x} & b_{x} & c_{x} & 0 \\
a_{y} & b_{y} & c_{y} & 0 \\
a_{z} & b_{z} & c_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
- SO - IMPORTANT GENERAL RESULT: Columns of a \(3 \times 3\) rotation matrix are unit vectors along the rotated coordinate axis directions \(\square\) UDOO - derive \(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathrm{y}}, \mathbf{R}_{\mathbf{z}}\) from this rule.

\section*{Rotation about an arbitrary axis}
- Often, when building a 3D scene or object, need to rotate a component about some arbitrary axis through a reference point on it. [e.g. forearm of robot rotating around an axis through the elbow].
- Involves three steps:
\(\square\) (1) Translate reference point to origin
\(\square\) (2) Do the rotation
(3) Translate reference point back again
- Three approaches for step (2) [next 3 slides]:
\(\square\) Textbook method
- Decompose rotation into primitive rotations about \(x, y, z\) axes Nice exercise, but hard to get right in practice
\(\square\) Coordinate system alignment method
\(\square\) Generalised rotation matrix
- An aside: Quaternions provide an elegant way of manipulating (axis, angle) rotations directly.

\section*{Textbook Method}
- Rotate the object so that the required axis of rotation \(r\) lies along the \(z\) axis [ \(\mathbf{R}_{\text {alignz }}\) ]
- Do the rotation about \(z\) axis
- Undo original rotation [ \(\left.\mathbf{R}_{\text {alignz }}{ }^{-1}\right]\)
- How to get \(\mathbf{R}_{\text {alignz }}\) ?
\(\square\) Measure azimuth, \(\theta\), as a right handed rotation about the \(y\) axis, starting at the \(z\) axis.
\(\square\) Measure elevation, \(\varnothing\) (or "latitude") as angle above plane \(y=0\)

\(\mathbf{R}_{\text {alignz }}=\mathbf{R}_{\mathrm{x}}(\phi) \mathbf{R}_{\mathrm{y}}(-\theta)\)
© 2008 Burkhard Wuensche

\section*{The Inverse of a Rotation Matrix} [needed on previous slide]
- Remember: columns of a rotation matrix are unit vectors along the rotated coordinate axis directions
\(\square\) So columns are orthogonal, i.e dot products \(=0\)
- So
\[
\left(\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right)\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\]
- i.e. \(\mathbf{R}^{T} \mathbf{R}=\mathbf{I}\) and hence \(\mathbf{R}^{-1}=\mathbf{R}^{T}\)

So the inverse of a rotation matrix is its transpose (Note: a matrix with this property is called orthogonal.)
- Matrix for an arbitrary rotation is:
\(R=\left(\begin{array}{ccc}t x^{2}+c & t x y-s z & t x z+s y \\ t x y+s z & t y^{2}+c & t y z-s x \\ t x z-s y & t y z+s x & t z^{2}+c\end{array}\right)\)
where the axis of rotation (normalised) is ( \(x, y, z\) ), \(c\) and \(s\) are resp. the cosine and sine of the angle of rotation, and \(t=(1-c)\).
- Proof outline [for enthusiasts only]
\(\square\) see Maillot, Graphics Gems I, P498

© 2008 Burkhard Wuensche
- Assume we have a coordinate system (a,b,c) attached to the object and want to rotate it to a new known orientation ( \(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\) )
\(\square\) Slightly different problem from previous one
- Extension of "Rotate to align" problem
- Solution:
\(\square\) Translate object to origin
\(\square\) Rotate ( \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) ) to align with world coord axes
- The inverse of the "rotate to align" case
\(\square\) Rotate coord axes to align with ( \(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\) )
- Same as "rotate to align" case
\(\square\) Translate back again
Full matrix is: \(\mathbf{T}_{\mathbf{O}} \mathbf{R}_{\mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}^{\prime}} \mathbf{R}_{\mathbf{a b c}}^{-1} \mathbf{T}_{\mathbf{-}}\)
Coordinate System Alignment Method

\subsection*{6.8 Transformations in OpenGL}
- OpenGL rendering has two \(4 \times 4\) transformation matrices:
\(\square\) The Projection matrix, \(\mathbf{P}\)
\(\square\) The Model-View matrix, M
- All vertices (i.e. points, polygon vertices, etc) are multiplied by \(\mathbf{M}\) then \(\mathbf{P}\) before the \((x, y, z) \rightarrow(x, y)\) projection is done

\section*{Transformations in OpenGL (cont'd)}
- The \(\mathbf{P}\) matrix handles perspective projections (see later) and scaling from world coordinates to screen coordinates.
- The M matrix handles both

\section*{\(\square\) modelling operations}
- i.e. the transformations that are part of the process of specifying a scene, e.g. positioning some generic chair to a certain point in the scene)
\(\square\) the viewing transformation
- i.e. the rotation and translation required to allow us to view the scene from somewhere other than along the \(z\)-axis.
© 2008 Burkhard Wuensche

\section*{GG}

Example MODEL_VIEW Transformations
- In the display method of the House3D program ...

To set the value of one of the two matrices.
\(\square\) Select the one of interest, e.g. glMatrixMode( GL_MODELVIEW )
\(\square\) Set it to the identity, or load it with a specific matrix glLoadIdentity(), or
glLoadMatrixf(const GLfloat *m )
\(\square\) Multiply it on the right by one or more primitive matrices, e.g. glTranslatef(GLfloat dx, GLfloat dy, GLfloat dz)
gIScalef(GLfloat xFactor, GLfloat yFactor, GLfloat zFactor)
glRotatef(GLfloat anglelnDegrees, GLfloat axisX, GLfloat axisY, GLfloat axisZ) glMultMatrixf(const GLfloat *m) // general purpose matrix
// Matrix is 16 floats, columnwise, i.e. \(\mathrm{m}_{00}, \mathrm{~m}_{10}, \mathrm{~m}_{20}, \mathrm{~m}_{30}, \mathrm{~m}_{01}, \mathrm{~m}_{11}, \ldots . . \mathrm{m}_{33}\)
- Note: since matrices are multiplied on the right the last matrix multiplied in is the first to be applied to the vertices
\(\square\) Since ( \(\mathbf{P} \mathbf{Q} \mathbf{R}) \mathbf{v}=\mathbf{P}(\mathbf{Q}(\mathbf{R} \mathbf{v}))\)
© 2008 Burkhard Wuensche
http://www.cs.auckland.ac.nz/~burkhard

gILoadIdentity);

gLoadddentity); gll Translateff(-0.5f,-0.5f,-1.0f);
glRotatef \((9,0,0,0,1) ;\)
2008 Burkhard Wuensche

http://www.cs.auckland.ac.nz/~burkhard


\[
\begin{aligned}
& \text { glLoadIdentity(0; } \\
& \text { glTranslatef(-.5f,-0.5f,-1.0f); }
\end{aligned}
\]
glTranslatef(-0.5f,-0.5f,-1.0f)

\subsection*{6.9 A Virtual Trackball}
(from Angel, section 4.10.2)
- A way of using the mouse to rotate the scene
- Imagine the scene is encased in a freely rotateable transparent sphere.
- Half of sphere is "sticking out" of screen window
- Clicking and dragging the mouse over the window is like rotating the sphere to a new position.
- To compute rotation:
1. Map mouse drag end-points \(\left(e_{1}\right.\) and \(\left.e_{2}\right)\) from 2D window coordinates to 3D coordinates ( \(p_{1}\) and \(p_{2}\) ) on surface of virtual sphere. If window coords \((x, y)\) are in range -1 to +1 , and sphere is unit sphere, mapping is
\[
(x, y) \rightarrow\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)
\]
2. Compute the rotation reqd to move \(p_{1}\) to \(p_{2}\) [next slide]

\section*{A Virtual Trackball (cont'd)}
- Sphere rotation is about an axis \(\mathbf{n}=\frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|}\)
- where \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\) are position vectors of \(p_{1}\) and \(p_{2}\) [NB: they have unit length. Why?]
- Rotation angle is
\[
\theta=\cos ^{-1} \mathbf{v}_{1} \cdot \mathbf{v}_{2}
\]


\section*{class CTrackball}
\{
CTrackball();
virtual ~CTrackball();
void tblnit(GLuint button);
void tbMatrix();
void tbReshape(int width, int height)
void tbMouse(int button, int state, int x , int y );
void tbKeyboard(int key);
void tbMotion(int x , int y );

\section*{private:}

GLuint tb_lasttime; GLfloat tb_lastposition[3];
GLfloat tb_angle; GLfloat tb_axis[3];
/ rotation axis and angle
GLfloat tb_transform[4][4]; // current rotation matrix for GL MODEL_VIEW
GLuint tb_width; GLuint tb_height; // width and height of window GLint tb_button; GLboolean tb_tracking;
void _tbPointToVector(int \(x\), int \(y\), int width, int height, float \(\mathrm{v}[3]\) );
void _tbStartMotion(int \(x\), int \(y\), int button, int time);
void _tbStopMotion(int button, unsigned time);
\};
© 2008 Burkhard Wuensche

\section*{Trackball.cpp}
\#include <math.h>
\#include "Trackball.h"
\#include <gl/glut.h>
CTrackball::CTrackball()
tb_angle = 0.0;
tb_axis[0]=0.0;tb_axis[1] \(=0.0 ;\) tb_axis[2] \(=0.0\);
tb_tracking = GL_FALSE;
\}
CTrackball::~CTrackball() \(\}\)
void CTrackball::_tbPointToVector(int \(x\), int \(y\), int width, int height, float \(\mathrm{v}[3])\{\) float d, a;
// project \(x\), \(y\) onto a hemi-sphere centered within width, height. \(\mathrm{v}[0]=(\) float \()((2.0\) * x - width \() /\) width \() ;\)
\(\mathrm{v}[1]=(\) float \()\left(\left(\right.\right.\) height \(\left.-2.0^{*} \mathrm{y}\right) /\) height \() ;\)
\(\mathrm{d}=\) (float) (sqrt(v[0] *v[0] \(+\mathrm{v}[1] * \mathrm{v}[1])\) );
\(\mathrm{v}[2]=(\) float \()\left(\cos \left((3.14159265 / 2.0)^{*}((\mathrm{~d}<1.0) ? \mathrm{~d}: 1.0)\right)\right)\);
\(\mathrm{a}=(\) float \()(1.0 /\) sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
\(\mathrm{v}[0]^{*}=\mathrm{a} ; \mathrm{v}[1]^{*}=\mathrm{a} ; \mathrm{v}[2]^{*}=\mathrm{a}\);
\}
© 2008 Burkhard Wuensche

\section*{Trackball.cpp (cont'd)}
```

-

void CTrackball::tbMatrix() Trackball.cpp (cont'd)

```
void CTrackball::_tbStartMotion(int x , int y , int button, int time)
    tb_tracking \(=\) GL_TRUE;
    tb lasttime \(=\) time
    _tbPointToVector( \(\mathrm{x}, \mathrm{y}, \mathrm{tb}\) _width, tb_height, tb_lastposition);
    \}
    void CTrackball::_tbStopMotion(int button, unsigned time)
    tb_tracking = GL_FALSE;
    tb__angle \(=0.0\);
    \}
    void CTrackball::tbInit(GLuint button)
    tb_button = button;
    tb_angle \(=0.0\);
    // put the identity in the trackball transform
    for(int \(i=0 ; i<4 ; i++)\{\)
        for (int \(\mathrm{j}=0 ; \mathrm{j}<4 ; \mathrm{j}++\) ) tb_transform \([\mathrm{i}][\mathrm{j}]=0.0\);
        tb_transform \([i][i]=1.0\);
    \(\}^{\}}\)
© 2008 Burkhard Wuensche

\section*{Trackball.cpp (cont'd)}
void CTrackball::tbKeyboard(int key)
\({ }^{\text {void }}\)
int i,j;
for (i=0;i<4;i++)
for \((\mathrm{j}=0 ; \mathrm{j}<4 ; \mathrm{j}++\) )
tb_transform[i][j]=0.0
tb_transform[3][3]=1.0;
switch (key)
case (int) 'z': tb_transform[0][0]=tb_transform[1][1]=tb_transform[2][2]=1.0; break; case (int) 'y': tb_transform[0][1]=tb_transform[1][2]=tb_transform[2][0]=1.0; break; case (int) 'x': tb_transform[0][2]=tb_transform[1][0]=tb_transform[2][1]=1.0; break; default:;
\(\}_{/ /}\)re
// remember to draw new position glutPostRedisplay();
\}
void CTrackball::tbMotion(int \(x\), int \(y\) ) \(\{\) GLfloat current_position[3], dx, dy, dz;
if (tb_tracking \(==\) GL_FALSE) return;
_tbPointToVector( \(x, y, y, t b \_\)width, tb_height, current_position);
// calculate the angle to rotate by (directly proportional to the // length of the mouse movement
\(\mathrm{dx}=\) current_position \([0]\) - tb lastposition \([0]\);
\(\mathrm{dy}=\) current_position[1] - tb_lastposition[1];
\(\mathrm{dy}=\) current_position \([2]-\mathrm{tb}\) _lastposition \([2]\);
tb_angle \(=(\overline{\text { float }})\left(90.0^{*}\right.\) sqrt \((d x * d x+d y * d y+d z * d z)\);
// calculate the axis of rotation (cross product)
tb_axis[0] = tb_lastposition[1] * current_position[2] - tb_lastposition[2] * current_position[1]; tb_axis[1] = tb_lastposition[2] * current_position[0]-tb_lastposition[0] * current position[2]: tb axis[2] = tb_lastposition[0] * current_position[1] - tb_lastposition[1] * current position[0]:
// reset for next time
tb_lasttime = glutGet(GLUT_ELAPSED_TIME),
tb_lastposition[0] = current_position[0]
tb-lastposition[1] = current_position[1];
tb_lastposition[2] = current_position[2];
// remember to draw new position
glutPostRedisplay();
© 2008 Burkhard Wuensche

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{GG} \\
\hline \multicolumn{3}{|l|}{House3DWithTrackball (cont'd)} \\
\hline \multicolumn{3}{|l|}{void display(void)
\[
\{
\]} \\
\hline gIClear(GL_COLOR_BUFFER_BIT); glColor3f (1.0, 0.0, 0.0); & \begin{tabular}{l}
// clear all pixels in frame \\
// (red,green,blue) colour
\end{tabular} & nents \\
\hline gIMatrixMode( GL_MODELVIEW ); glLoadIdentity(); & \begin{tabular}{l}
// Set the view matrix ... \\
// ... to identity
\end{tabular} & \\
\hline \multicolumn{3}{|l|}{trackball.tbMatrix();} \\
\hline \multicolumn{3}{|l|}{// Rest is the same as in House3D} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{void init(void)} \\
\hline \multicolumn{3}{|l|}{// Rest of initialisation same as in House3D} \\
\hline \multicolumn{3}{|l|}{trackball.tblnit(GLUT_LEFT_BUTTON);} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
void reshape(int width, int height ) \{ \\
// Rest of reshape is the same as in House3D
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{trackball.tbReshape(width, height); \}} \\
\hline \(\bigcirc 2008\) Burkhard Wuensche ht & http://www.cs.auckland.ac.nz/-burkhard & \\
\hline
\end{tabular}

\section*{Notes on House3DWithTrackball}
- The main class is almost identical to House3D except:
\(\square\) Add a global trackball variable
\(\square\) Pass callback functions to GLUT for mouse click events, mouse motion events and keyboard events. In more complex programs we have to decide which events apply to the trackball and which events are related to other parts of the program.
\(\square\) Initialise trackball and specify the associated mouse button.
\(\square\) Update trackball if the window is reshaped.
\(\square\) Add trackball rotation matrix to the MODEL_VIEW matrix stack.
- The CTrackball class contains functions for handling trackball events.
\(\square\) Mouse positions are transformed into rotations
\(\square\) Trackball accumulates rotations
\(\square\) Use glutPostRedisplay() to redraw the window.
© 2008 Burkhard Wuensche```

