
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 1

6. 3D Vectors, Geometry and
Transformations

6.1 From 2D to 3D
6.2 Vectors and Matrices in 3D
6.3 The Cross Product (Vector Product)
6.4 Straight Lines, Line Segments and Rays
6.5 The Geometry of Planes
6.6 More Common Graphics Problems
6.7 3D Transformations
6.8 Transformations in OpenGL
6.9 A Virtual Trackball

"It's magic, or geometry,
or one of those things“

Terry Pratchett

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 2

6.1 From 2D to 3D

3D points and vectors are 3-tuples
Coordinate space is defined by three orthogonal unit vectors.

Convention: use upper-case letters for points, e.g. A, Q, bold
lower case letters for vectors, e.g. a, q, and bold upper-case
letters for matrices, e.g. M, R.
Addition, scaling, subtraction, magnitude and normalisation all as
for 2D, but with an extra coordinate.
A convex combination of points defines a convex polyhedron
rather than a polygon.
Products of vectors are very important in 3D

Dot Product (Scalar Product), Cross Product (Vector Product)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 3

House3D

A simple OpenGL program displaying a 3D object

What the program does
The code
Aspects of the code

Only consider aspects different from the 2D example:
Representing the 3D wireframe house
3D Orthographic Projection
Resizing the display window
Drawing the picture
Exercises
Changing the View (GluLookAt)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 4

What the program does
Defines a simple house shape in wireframe form (i.e. made up of just
straight lines representing the edges) in 3-space.
Displays a picture of the house using a 3D orthographic projection
along the z axis

Any point (x,y,z) projects to a point (x,y)
Much more on this later

Note that the y-axis is UP

The Program Output

x

z

y

The Situation

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 5

// A basic OpenGL program displaying a 3D house shape
#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glut.h>

const int windowWidth=400; const int windowHeight=400;

// define vertices and edges of the house
const int numVertices=10; const int numEdges=17;
const float vertices[numVertices][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,2},

{1,0,2},{0,1,2},{1,1,2},{0.5f,1.5f,0},{0.5f,1.5f,2}};
const int edges[numEdges][2] = {{0,1},{1,3},{3,2},{2,0},{4,5},{5,7},{7,6},{6,4},{0,4},

{1,5},{3,7},{2,6},{2,8},{8,3},{6,9},{9,7},{8,9}};
void display(void){

glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
glLoadIdentity(); // ... to identity.
glClear(GL_COLOR_BUFFER_BIT); // clear all pixels in frame buffer
glColor3f (1.0, 0.0, 0.0); // draw subsequent objects in red
glBegin(GL_LINES);
for(int i=0;i<numEdges;i++){

glVertex3fv(vertices[edges[i][0]]);
glVertex3fv(vertices[edges[i][1]]);

}
glEnd();
glFlush ();

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 6

void init(void) {
// select clearing color (for glClear)
glClearColor (1.0, 1.0, 1.0, 0.0); // RGB-value for white
// initialize view (simple 3D orthographic projection)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2,2,-2,2,-3,3);

}

void reshape(int width, int height) { // Called at start, and whenever user resizes component
int size = min(width, height);
glViewport(0, 0, size, size); // Largest possible square

}

// create a single buffered colour window
int main(int argc, char** argv){

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(windowWidth, windowHeight);
glutInitWindowPosition(100, 100);
glutCreateWindow("House3D");
init (); // initialise view
glutDisplayFunc(display); // Set function to draw scene
glutReshapeFunc(reshape); // Set function called if window is resized
glutMainLoop();
return 0;

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 7

x

z

y

0 1

2 3

4
5

6
7

8
9

Representing the Wireframe House

x

y

z

Have a vertex table and an edge table

const float vertices[numVertices][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,2},
{1,0,2},{0,1,2},{1,1,2},{0.5f,1.5f,0},{0.5f,1.5f,2}};

const int edges[numEdges][2] = {{0,1},{1,3},{3,2},{2,0},{4,5},{5,7},{7,6},{6,4},{0,4},
{1,5},{3,7},{2,6},{2,8},{8,3},{6,9},{9,7},{8,9}};

Each vertex table array entry is itself an array of 3 floats, representing a point
in R3 [3D-space]
Edge table values are indices into vertex table

e.g. edge {3,7} is the edge from V3 (1,1,0) to V7 (1,1,2)

Coordinate system is right handed

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

3D Orthographic Projection
There are typically at least four phases to drawing (“rendering”) a scene in
OpenGL:
(1) Define required projection
(2) Define required view (allows you to to rotate, scale, translate, etc. the model)
(3) Set up scene lighting
(4) Output scene primitives (i.e. describe/define the scene)

In this example we have a simple orthographic projection [i.e. (x,y,z) →(x,y)],
a trivial view and no lighting.

(1) Define required projection:
glMatrixMode(GL_PROJECTION); // Initialise projection matrix ...
glLoadIdentity(); // ... to the identity matrix [more later].
glOrtho(-2,2,-2,2,-3,3); // Set orthographic projection volume [more later]

glOrtho(left, right, bottom, top, near, far) defines the
coordinates of the projection volume, with near and far
being measured from the view point in the view direction,
i.e. they are depths not z-values.

(2,2,-3)

View direction
(negative of z axis)

Near plane Far plane

(-2,-2,-3)

Projection volume

(2,2,3)

View point
(origin)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 9

Resizing the Display Window
The argument of glutReshapeFunc (the function reshape) is called at the start
and whenever the display window gets resized

Specifies how the scene will be redrawn in the resized window
In the previous examples the viewport was the entire OpenGL window
In this example, we set the viewport to be the largest square possible.

The projection matrix maps the scene onto the viewport
The rest (if any) of the window is unused
glViewport parameters are x, y, width and height in pixel coordinates, with (x, y)
being the bottom left corner of the viewport.

In OpenGL, y coordinates always increase upwards, so (0,0) is the bottom left
corner of the window, not the top left as is normal in screen coordinates.

Viewportx
z

y

x
z

y

int size = min(width, height);
glViewport(0, 0, size, size);

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 10

Drawing the Picture
(2) Define required view of the model. The two lines

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

initialise the “model + view matrix” to the identity matrix, meaning “don’t
transform the scene at all”. Don’t expect to understand this just yet!!

View direction is along negative z axis.
(3) Set up scene lighting

- can not illuminate wireframes (since there is no surface normal)!
(4) Output scene primitives (as in the 2D example)

glClear(GL_COLOR_BUFFER_BIT); // clear all pixels in frame buffer
glColor3f (1.0, 0.0, 0.0); // draw scene in red
glBegin(GL_LINES); // draw edges as line segments (3D vertices)
for(int i=0;i<numEdges;i++){

glVertex3fv(vertices[edges[i][0]]);
glVertex3fv(vertices[edges[i][1]]);

}
glEnd();
glFlush ();

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 11

Exercises

Change the program to use glVertex3f everywhere instead of
glVertex3fv.
How could you centre the picture in the output window? [Find a
solution that involves only adjusting two of the numbers in the
program]
How could you increase the size of the picture in the output
window?
What is the effect of putting (a) the near plane, and (b) the far
plane at z = 1?
What happens if the near and far faces of the projection volume
are rectangular rather than square?

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 12

Changing the View
We can rotate the house to give a more useful view by changing step (2) to

glMatrixMode(GL_MODELVIEW); // Set the view matrix ..
glLoadIdentity(); // ... to identity.
glRotatef(-40,1,2,-0.3f);

// Rotate -40 degrees around an axis through the
// origin in the direction (1,2,-0.3).

Looks vaguely OK, but how can we determine a suitable axis and angle, except
by lots of experimentation?
Answers: Either
(a) We can’t. Yet. Need some maths! Or
(b) Use a GLU function to do it for us.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 13

Remember: GLU is a package of utility functions on top of GL.
Replace start of display() with:

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(-1,2,5, 0.5f,0.75f,1, 0,1,0);

Replace start of init() with:
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(-2,2,-2,2,0,7);

GLULookAt

The command gluLookAt(cameraX, cameraY, cameraZ,
lookatX, lookatY, lookatZ,
UpX, UpY, UpZ)

specifies where the virtual camera is, where it’s pointing to,
and how we’re orienting (rotating) it.

NB: projection volume coords are
w.r.t. camera

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

()
()

Let ,

then , , and

UpX cameraX lookAtX
UpY cameraY lookAtY
UpZ cameraZ lookAtZ

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−
= = = ×

−

w e

w w n nen v u v n
e w w n n

•
•

What's happening?
Camera coordinate system (u, v, n axes) has origin at camera point, namely
(-1, 2, 5).

vector from camera to lookAt defines the NEGATIVE n axis
House image is projected onto viewplane, which is defined to be
perpendicular to n axis
Projection of up onto viewplane is v axis.

Projection volume is defined by glOrtho, in camera coordinates

GLULookAt (cont’d)

viewplane

projection volume

u

v

n x

y

z

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15

Output of program is:

Each vertex has been projected in direction n onto the viewplane.
But to understand exactly what’s happening here we need to
understand 3D vectors, transformations and other miscellaneous
geometry.

GLULookAt (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 16

6.2 Vectors and Matrices in 3D
Vector and matrix operations as in 2D
Determinant det M (also written | M |) of a 3x3 matrix M

Inverse of a matrix:
The matrix M-1 is called the inverse of M if M-1M=MM-1=I

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

m m m
m m m m m m

m m m m m m
m m m m m m

m m m
= − +

()
11 12 13

1
21 22 23 ij

31 32 33

1 where a 1 , 1 , 3

and is the 2 2 matrix formed by deleting the th row and th column of .

i j ji

kl

m m m
m m m i j
m m m

k l

+−

⎛ ⎞
⎜ ⎟= ⇒ = = − ≤ ≤⎜ ⎟
⎜ ⎟
⎝ ⎠

×

M M A A
M

A M

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 17

The Dot Product
Definition

The dot product (or inner product, or scalar product) of two 3D vectors
v = (v1,v2,v3) and w = (w1,w2,w3) is: v • w = v1w1 + v2w2 + v3w3.

Properties (same as in 2D)
Symmetry: a • b = b • a
Linearity: (a+b) • c = a • c + b • c
Homogeneity: (sa) • b = s(a • b)
|b|2 = b • b
Example: Prove |a - b|2 = a • a - 2a • b + b • b

Applications (same as in 2D, except where 2D “Perp” Vector is used)
Angle between two vectors
The sign of a • b and perpendicularity
Projecting vectors
Ray reflection

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 18

Coordinate Transformations
The component of a vector v in a direction represented by a unit vector i is the
perpendicular projection of v onto the direction of i.
Given by (v • i) i (formula from Chapter 5, slide 12)

Let P be a point and E be the camera location given in x,y,z-coordinates
The components of the point P expressed in the (u,v,n) coordinate system are:
(r • u), (r • v) and (r • n)
where r = P – E

r P

E

u

v

n x

y

z

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 19

6.3 The Cross Product
Let i, j, and k be unit vectors along the x, y and z axes respectively.
Define the cross product (or vector product) operator such that:

It's a linear operator, i.e.
a × (b+c) = a × b + a × c

|a × b| = |a||b| sin θ where θ is the angle between a and b in range [0,2π]
It's homogeneous, i.e. (sa) × b = s (a × b)
i × j = k, j × k = i, k × i = j
j × i = -k, k × j = -i, i × k = -j
i × i = j × j = k × k = 0

Can show from this (UDOO) that if
a = a1i + a2j + a3k and b = b1i + b2j + b3k

2 3 3 2

3 1 1 3 1 2 3

1 2 2 1 1 2 3

then
a b a b
a b a b a a a
a b a b b b b

−⎛ ⎞
⎜ ⎟× = − =⎜ ⎟
⎜ ⎟−⎝ ⎠

i j k
a b

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 20

Properties of Cross Product

Key properties (UDOO proofs):
a × b is a vector perpendicular to both a and b
Direction of a × b is given by "right-hand rule"
a × b = – b × a
|a × b| is area of parallelogram defined by a and b
Hence area of triangle defined by a and b is 0.5 * |a × b|

a

b

a

b

a × b

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 21

6.4 Straight Lines, Line Segments
and Rays

Use a parametric form for lines.
Straight line through two points P1 and P2 is

where v = P2−P1 is the displacement vector from P1 to P2.
If α constrained to the range [0,1] we have a line segment – all
points between P1 and P2.
If α constrained to the range [0,∞] we have a ray.
If α is any real number, we have a full line in n-space.

1 2

1 2 1

1

() (1)
()

P P P
P P P
P

α α α
α
α

= − +
= + −
= + v

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 22

The Point-Normal Form of a Plane Equation
Distance of a Plane from the Origin
Distance of a Point from a Plane
Inside-Outside Half-Space Test
Intersection Line-Plane

6.5 The Geometry of Planes

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 23

The Point-Normal Form of a Plane

Can define a plane by giving one point on it,
S say, and its unit normal n.
Then for any point P on the plane,
(P-S) is perpendicular to n.
i.e. n•(P-S) = 0.
["Point-normal" form of plane equation]
If p and s are the vectors to P and S then can write this as

n•(p - s) = 0
i.e. n • p = n • s
or n • p = d where d = n • s

If n is (a,b,c) and p is (x,y,z), then this is the familiar equation
ax + by + cz = d.

S

O
P

p
s

n

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

Distance of plane from origin

Let Q be a point on the plane such that q is parallel to n. Then the
length of q is the "shortest distance" to the plane from the origin.
We have the plane equation n • p = d
for any point P on the plane. Hence n • q = d.
But since n is parallel to q, n • q = |q|.
Thus |q| = d.
Hence, in the equations
n • p = d and
ax + by + cz = d

d is the distance to the plane from the origin provided n = (a,b,c) is a
unit vector.
UDOO: How far is the plane 3x + y - 2z = 5 from the origin?

S

n

q

O

Q

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25

Distance of Point from Plane
How far is a point Q from the plane n • p = d ?
Let P be the nearest point on the plane to Q,
so that (Q-P) is parallel to n.
Then the required answer δ is

δ = |Q-P| = |(q - p)|
Since q - p is parallel to n, can write as

δ = (q - p) • n
= q • n - p • n = q • n - d
= aq1 + bq2 + cq3 - d

where n = (a,b,c) is the unit normal and q = (q1 , q2, q3)

δ is positive if Q is outside the plane, negative if Q is inside.
WARNING: Always scale plane equation ax+by+cz=d so that
(a2+b2+c2)=1.

Q

P

n
δ

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 26

Inside-Outside Half-Space Tests (cont’d)

If plane defined in point-normal form, can by convention take
n to be the outward normal and points "on that side" of the
plane are said to be "outside", while points on the other side
are "inside".
Hence, if S is a point on the plane and Q is a point to be
tested:

(Q-S) • n >0 → Q is outside
(Q-S) • n =0 → Q is on the plane
(Q-S) • n <0 → Q is inside

(see chapter 5, slide 11)

Q

S

n

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 27

Inside-Outside Half-Space Tests

NOTE:
Above plane equations assume 3D vectors.
If all vectors are 2D, the plane becomes a line,
and the equations give the distance of a line from
the origin, the distance of a point from a line, and
categorise a 2D point as inside or outside a line.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 28

Intersection Line-Plane

Given is a line
p(t) = p0 + tc where c is the line’s direction

and a plane n•p=d

The line intersects the plane when

Q: What happens if n • c = 0 ?

0dt −= n p
n c

•
•

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 29

6.6. More Common Graphics Problems

The Area of a Triangle
use magnitude of a cross product
see "Properties of Cross Product"

The Robust Normal to a Polygon

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 30

The Normal to a Polygon

In principle, get normal n from the cross product of any two
adjacent edge vectors, e.g. n = (D-C)×(B-C)
But this is non-robust — gives erroneous or
unrepresentative value when:

3 vertices co-linear
2 adjacent vertices very close together

Magnitude of cross product tends to zero and
direction is sensitive to slight movement in either point

Polygon not coplanar
e.g. (B-A)×(E-A), above, not representative

Warning: In computer graphics, exceptional conditions
occur all the time!

A
B

C

D
E

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 31

A Robust Normal Algorithm

Just add together all the cross products of adjacent edge vectors
i.e. (B–A) × (E–A) + (C–B) × (A–B) +
(D–C) × (B–C) + (E–D) × (C–D) + (A-E) × (D–E)

Normalise the result.
Robust.

Short edges or nearly co-linear vertex triples give negligible
cross product contribution
Long nearly-perpendicular edges give biggest contribution

A
B

C

D
E

Polygon ABCDE

n
NOTE: The orientation of the resulting
normal is such that the vertices are listed
in counterclockwise order around it.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 32

6.7 3D Transformations

Natural extension of 2D.
We will use the homogeneous coordinate form for all
transformations.
To convert between ordinary 3D coordinates and
homogenous 3D coordinates:

3D ordinary → 3D homogeneous
(x, y, z)T → (x, y, z, 1)T

3D homogeneous → 3D ordinary
(x, y, z,w)T → (x/w, y/w, z/w)T

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 33

Translation

The matrix for a translation by a
vector t = (tx, ty, tz) is:

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

z

t
t
t

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

T

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 34

Scaling

The matrix for a scaling by factors of Sx, Sy, Sz
in x, y and z respectively is:

A negative Sx gives a reflection about the x = 0
plane.
Similarly for negative Sy or Sz.

0 0 0
0 0 0
0 0 0
0 0 0 1

x

y

z

S
S

S

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

S

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 35

Shearing

The general shear matrix is:

3D shearing in its most general form is very rare.
Occasionally meet horizontal shearing e.g. a pile of
paper pushed to one side so that the sides of the pile
are still straight but not vertical.
UDOO: What would the matrix for that look like?

1 0
1 0

1 0
0 0 0 1

yx zx

xy zy

xz yz

h h
h h
h h

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

H

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 36

Rotation

Rotations are by far the most confusing of the
transformations
Most texts cover rotations around the three coordinate
axes and try to build all other rotations from those

But some cases very difficult
We will consider three different rotation situations:

Rotation around the three coordinate axes
Rotation to align an object with a new coordinate
system
Rotation around an arbitrary axis

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 37

Rotation around Coordinate Axes
Have three axes to rotate about, so three different matrices.
Let C = cos θ and S = sin θ. Then the three matrices for
positive (right handed) rotation are:
Rotation about the x-axis:

Rotation about the y axis:

Rz: UDOO.

1 0 0 0
0 0
0 0
0 0 0 1

x

C S
S C

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

R

0 0
0 1 0 0

0 0
0 0 0 1

y

C S

S C

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

R

Note on 3 × 3 rotation
matrices:

Row and column corresponding
to axis of rotation are as for
identity I

Other elements are C on
diagonal, ± S off diagonal, so
that R→ I if θ → 0.

Sign of S can be inferred from
the fact that rotation around x,y,z
by θ=90ο transforms y→z , z →
x, x → y, respectively.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 38

Rotating to Align with New Coordinate Axes
Often we have some object and want it at a new position and
with a new orientation

Generally involves both rotation and translation
Translation trivial -- focus only on rotation here

Problem: what is the rotation matrix R that rotates a coordinate
system (x,y,z) to align with a new coordinate system (a,b,c) with
the same origin, where a,b,c are unit vectors along the new axes.

x
(1,0,0)

y
(0,1,0)

z
(0,0,1)

a

b

c

R*(x,y,z)=

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 39

Rotating to Align with New Coordinate
Axes (cont'd)
To get R: we have

R (1 0 0)T = a
R (0 1 0)T = b
R (0 0 1)T = c

Above 3 eqns equivalent to:

SO – IMPORTANT GENERAL RESULT: Columns of a 3 x 3 rotation matrix are
unit vectors along the rotated coordinate axis directions

UDOO – derive Rx, Ry, Rz from this rule.

1 0 0
0 1 0
0 0 1

x x x

y y y

z z z

a b c
a b c
a b c

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R

x x x

y y y

z z z

a b c
a b c
a b c

⎛ ⎞
⎜ ⎟∴ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

R . .

0
0

or
0

0 0 0 1

x x x

y y y
H C

z z z

a b c
a b c
a b c

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

R

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 40

Rotation about an arbitrary axis
Often, when building a 3D scene or object, need to rotate a component about
some arbitrary axis through a reference point on it. [e.g. forearm of robot rotating
around an axis through the elbow].
Involves three steps:

(1) Translate reference point to origin
(2) Do the rotation
(3) Translate reference point back again

Three approaches for step (2) [next 3 slides]:
Textbook method

Decompose rotation into primitive rotations about x,y,z axes
Nice exercise, but hard to get right in practice

Coordinate system alignment method
Generalised rotation matrix

An aside: Quaternions provide an elegant way of manipulating (axis, angle)
rotations directly.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 41

Textbook Method
Rotate the object so that the
required axis of rotation r lies
along the z axis [RalignZ]
Do the rotation about z axis
Undo original rotation [RalignZ

-1]
How to get RalignZ?

Measure azimuth, θ , as a right
handed rotation about the y
axis, starting at the z axis.
Measure elevation, ø (or
"latitude") as angle above
plane y=0.

RalignZ = Rx(φ) Ry(–θ)

x

y

z

θ

φ

U = (ux, uy, uz)

r

φ = tan −1 uy

u x
2 + uz

2

θ = atan2 (ux , uz) {i.e. a 4 - quadrant tan −1 u x

uz
}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 42

Coordinate System Alignment Method

Assume we have a coordinate system (a,b,c)
attached to the object and want to rotate it to a
new known orientation (a',b',c')

Slightly different problem from previous one
Extension of "Rotate to align" problem
Solution:

Translate object to origin
Rotate (a,b,c) to align with world coord axes

The inverse of the "rotate to align" case
Rotate coord axes to align with (a',b',c')

Same as "rotate to align" case
Translate back again

Full matrix is: 1
' ' '

−
−O a b c abc OT R R T

a

b

c

O

b'

a'
c'

O

x

y

z
x

y

z

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 43

The Inverse of a Rotation Matrix
[needed on previous slide]

Remember: columns of a rotation matrix are unit vectors along
the rotated coordinate axis directions

So columns are orthogonal, i.e dot products = 0
So:

i.e. and hence

So the inverse of a rotation matrix is its transpose
(Note: a matrix with this property is called orthogonal.)

1 0 0
0 1 0
0 0 1

x y z x x x

x y z y y y

x y z z z z

a a a a b c
b b b a b c
c c c a b c

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

T =R R I 1 T− =R R

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 44

Generalised Rotation Matrix

Matrix for an arbitrary rotation is:

where the axis of rotation
(normalised) is (x,y,z), c and s
are resp. the cosine and sine of
the angle of rotation, and t=(1-c).
Proof outline [for enthusiasts only]

see Maillot, Graphics Gems I, P498
for details

2

2

2

tx c txy sz txz sy
R txy sz ty c tyz sx

txz sy tyz sx tz c

⎛ ⎞+ − +
⎜ ⎟= + + −⎜ ⎟
⎜ ⎟− + +⎝ ⎠

Rotation axis, n (normalised)

P

(point to

rotate)

P ′ (= P rotated θ)

O (origin)

H
V (= P rotated 90º)

n

θ

Not exam relevant!

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 45

6.8 Transformations in OpenGL

OpenGL rendering has two 4 x 4 transformation
matrices:

The Projection matrix, P
The Model-View matrix, M

All vertices (i.e. points, polygon vertices, etc) are
multiplied by M then P before the (x,y,z) → (x,y)
projection is done

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 46

Transformations in OpenGL (cont’d)

The P matrix handles perspective projections (see later)
and scaling from world coordinates to screen coordinates.

The M matrix handles both
modelling operations

i.e. the transformations that are part of the process of
specifying a scene, e.g. positioning some generic chair to a
certain point in the scene)

the viewing transformation
i.e. the rotation and translation required to allow us to view the
scene from somewhere other than along the z-axis.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 47

Transformations in OpenGL (cont’d)

To set the value of one of the two matrices:
Select the one of interest, e.g.

glMatrixMode(GL_MODELVIEW)
Set it to the identity, or load it with a specific matrix

glLoadIdentity(), or
glLoadMatrixf(const GLfloat *m)

Multiply it on the right by one or more primitive matrices, e.g.
glTranslatef(GLfloat dx, GLfloat dy, GLfloat dz)
glScalef(GLfloat xFactor, GLfloat yFactor, GLfloat zFactor)
glRotatef(GLfloat angleInDegrees, GLfloat axisX, GLfloat axisY, GLfloat axisZ)
glMultMatrixf(const GLfloat *m) // general purpose matrix
// Matrix is 16 floats, columnwise, i.e. m00, m10, m20, m30,m01, m11, m33

Note: since matrices are multiplied on the right the last matrix multiplied in is the
first to be applied to the vertices

Since (P Q R)v = P (Q (R v))

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 48

Example MODEL_VIEW Transformations

glLoadIdentity(); glLoadIdentity();
glRotatef(90,0,0,1);

glLoadIdentity();
glTranslatef(-0.5f,-0.5f,-1.0f);

glLoadIdentity();
glTranslatef(-0.5f,-0.5f,-1.0f);
glRotatef(90,0,0,1);

glLoadIdentity();
glRotatef(90,0,0,1);
glTranslatef(-0.5f,-0.5f,-1.0f);

glLoadIdentity();
glScalef(2,0.5f,1);

In the display method of the House3D program ...

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 49

6.9 A Virtual Trackball
(from Angel, section 4.10.2)

A way of using the mouse to rotate the scene
Imagine the scene is encased in a freely rotateable transparent sphere.
Half of sphere is "sticking out" of screen window
Clicking and dragging the mouse over the window is like rotating the sphere to
a new position.

z

x
y

window

e1

p1

p2

e2

To compute rotation:
1. Map mouse drag end-points (e1 and e2) from 2D

window coordinates to 3D coordinates (p1 and p2)
on surface of virtual sphere. If window coords
(x,y) are in range -1 to +1, and sphere is unit
sphere, mapping is

()2 2(,) , , 1x y x y x y→ − −

2. Compute the rotation reqd to move p1 to p2 [next slide]

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 50

A Virtual Trackball (cont'd)

Sphere rotation is about an axis

where v1 and v2 are position vectors of p1 and p2
[NB: they have unit length. Why?]
Rotation angle is

1 2

1 2

×=
×

v vn
v v

1
1 2cosθ −= ⋅v v

v1

z

x

yv2

n

θ

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 51

Trackball.hclass CTrackball
{
public:

CTrackball();
virtual ~CTrackball();
void tbInit(GLuint button);
void tbMatrix();
void tbReshape(int width, int height);
void tbMouse(int button, int state, int x, int y);
void tbKeyboard(int key);
void tbMotion(int x, int y);

private:
GLuint tb_lasttime; GLfloat tb_lastposition[3];
GLfloat tb_angle; GLfloat tb_axis[3]; // rotation axis and angle
GLfloat tb_transform[4][4]; // current rotation matrix for GL_MODEL_VIEW
GLuint tb_width; GLuint tb_height; // width and height of window
GLint tb_button; GLboolean tb_tracking;
void _tbPointToVector(int x, int y, int width, int height, float v[3]);
void _tbStartMotion(int x, int y, int button, int time);
void _tbStopMotion(int button, unsigned time);

};

Code not exam relevant!

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 52

Trackball.cpp
#include <math.h>
#include "Trackball.h"
#include <gl/glut.h>

CTrackball::CTrackball(){
tb_angle = 0.0;
tb_axis[0]=0.0;tb_axis[1]=0.0;tb_axis[2]=0.0;
tb_tracking = GL_FALSE;

}

CTrackball::~CTrackball(){}

void CTrackball::_tbPointToVector(int x, int y, int width, int height, float v[3]){
float d, a;

// project x, y onto a hemi-sphere centered within width, height.
v[0] = (float) ((2.0 * x - width) / width);
v[1] = (float) ((height - 2.0 * y) / height);
d = (float) (sqrt(v[0] * v[0] + v[1] * v[1]));
v[2] = (float) (cos((3.14159265 / 2.0) * ((d < 1.0) ? d : 1.0)));
a = (float) (1.0 / sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
v[0] *= a; v[1] *= a; v[2] *= a;

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 53

Trackball.cpp (cont’d)
void CTrackball::_tbStartMotion(int x, int y, int button, int time)
{

tb_tracking = GL_TRUE;
tb_lasttime = time;
_tbPointToVector(x, y, tb_width, tb_height, tb_lastposition);

}

void CTrackball::_tbStopMotion(int button, unsigned time)
{

tb_tracking = GL_FALSE;
tb_angle=0.0;

}

void CTrackball::tbInit(GLuint button)
{

tb_button = button;
tb_angle = 0.0;

// put the identity in the trackball transform
for(int i=0;i<4;i++){

for(int j=0;j<4;j++) tb_transform[i][j]=0.0;
tb_transform[i][i]=1.0;

}
}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 54

Trackball.cpp (cont’d)void CTrackball::tbMatrix()
{

glPushMatrix();
glLoadIdentity();
glRotatef(tb_angle, tb_axis[0], tb_axis[1], tb_axis[2]);
glMultMatrixf((GLfloat *)tb_transform);
glGetFloatv(GL_MODELVIEW_MATRIX, (GLfloat *)tb_transform);
glPopMatrix();
glMultMatrixf((GLfloat *)tb_transform);

}

void CTrackball::tbReshape(int width, int height)
{

tb_width = width;
tb_height = height;

}

void CTrackball::tbMouse(int button, int state, int x, int y)
{

if (state == GLUT_DOWN && button == tb_button)
_tbStartMotion(x, y, button, glutGet(GLUT_ELAPSED_TIME));

else if (state == GLUT_UP && button == tb_button)
_tbStopMotion(button, glutGet(GLUT_ELAPSED_TIME));

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 55

Trackball.cpp (cont’d)

void CTrackball::tbKeyboard(int key)
{

int i,j;
for(i=0;i<4;i++)

for(j=0;j<4;j++)
tb_transform[i][j]=0.0;

tb_transform[3][3]=1.0;
switch (key)
{

case (int) 'z': tb_transform[0][0]=tb_transform[1][1]=tb_transform[2][2]=1.0; break;
case (int) 'y': tb_transform[0][1]=tb_transform[1][2]=tb_transform[2][0]=1.0; break;
case (int) 'x': tb_transform[0][2]=tb_transform[1][0]=tb_transform[2][1]=1.0; break;
default:;

}
// remember to draw new position
glutPostRedisplay();

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 56

Trackball.cpp (cont’d)
void CTrackball::tbMotion(int x, int y){

GLfloat current_position[3], dx, dy, dz;
if (tb_tracking == GL_FALSE) return;
_tbPointToVector(x, y, tb_width, tb_height, current_position);

// calculate the angle to rotate by (directly proportional to the
// length of the mouse movement
dx = current_position[0] - tb_lastposition[0];
dy = current_position[1] - tb_lastposition[1];
dz = current_position[2] - tb_lastposition[2];
tb_angle = (float) (90.0 * sqrt(dx * dx + dy * dy + dz * dz));

// calculate the axis of rotation (cross product)
tb_axis[0] = tb_lastposition[1] * current_position[2] - tb_lastposition[2] * current_position[1];
tb_axis[1] = tb_lastposition[2] * current_position[0] - tb_lastposition[0] * current_position[2];
tb_axis[2] = tb_lastposition[0] * current_position[1] - tb_lastposition[1] * current_position[0];

// reset for next time
tb_lasttime = glutGet(GLUT_ELAPSED_TIME);
tb_lastposition[0] = current_position[0];
tb_lastposition[1] = current_position[1];
tb_lastposition[2] = current_position[2];

// remember to draw new position
glutPostRedisplay();

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 57

House3DWithTrackball#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glut.h>
#include <iostream>
using namespace std;
#include "Trackball.h"

const int windowWidth=400; const int windowHeight=400;

// define vertices and edges of the house
const int numVertices=10;
const int numEdges=18;
const float vertices[numVertices][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,2},

{1,0,2},{0,1,2},{1,1,2},{0.5f,1.5f,0},{0.5f,1.5f,2}};
const int edges[numEdges][2] = {{0,1},{1,3},{3,2},{2,0},{4,5},{5,7},{7,6},{6,4},{0,4},

{1,5},{3,7},{2,6},{2,8},{8,3},{6,9},{9,7},{8,9}};

CTrackball trackball; // Add a trackball to our OpenGL program

void handleMouseMotion(int x, int y){ trackball.tbMotion(x, y); }
void handleMouseClick(int button, int state, int x, int y){ trackball.tbMouse(button, state, x, y);}
void handleKeyboardEvent(unsigned char key, int x, int y){ trackball.tbKeyboard(key);}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 58

House3DWithTrackball (cont’d)
void display(void)
{

glClear(GL_COLOR_BUFFER_BIT); // clear all pixels in frame buffer
glColor3f (1.0, 0.0, 0.0); // (red,green,blue) colour components

glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
glLoadIdentity(); // ... to identity

trackball.tbMatrix();

// Rest is the same as in House3D
}

void init(void)
{

// Rest of initialisation same as in House3D

trackball.tbInit(GLUT_LEFT_BUTTON);
}

void reshape(int width, int height) {
// Rest of reshape is the same as in House3D

trackball.tbReshape(width, height);
}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 59

House3DWithTrackball (cont’d)

int main(int argc, char** argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(windowWidth, windowHeight);
glutInitWindowPosition(100, 100);
glutCreateWindow("House3D");
init (); // initialise view

glutMouseFunc(handleMouseClick); // Set function to handle mouse clicks
glutMotionFunc(handleMouseMotion); // Set function to handle mouse motion
glutKeyboardFunc(handleKeyboardEvent); // Set function to handle keyboard input

glutDisplayFunc(display); // Set function to draw scene
glutReshapeFunc(reshape); // Set function called if window gets resized
glutMainLoop();
return 0;

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 60

Notes on House3DWithTrackball

The main class is almost identical to House3D except:
Add a global trackball variable
Pass callback functions to GLUT for mouse click events, mouse motion
events and keyboard events. In more complex programs we have to decide
which events apply to the trackball and which events are related to other
parts of the program.
Initialise trackball and specify the associated mouse button.
Update trackball if the window is reshaped.
Add trackball rotation matrix to the MODEL_VIEW matrix stack.

The CTrackball class contains functions for handling trackball events.
Mouse positions are transformed into rotations.
Trackball accumulates rotations
Use glutPostRedisplay() to redraw the window.

