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5.  2D Geometry
In order to design and render complex scenes we require techniques 
for transforming points and vectors. Points are used to represent 
OpenGL primitives (glVertex) and vectors are used to represent 
surface normals (necessary for computing the illumination at a point).

5.1 Points and Vectors
5.2  Applications of the Scalar Product (Dot Product)
5.3  Convex and Concave Objects
5.4 Implicit Curves
5.5 Parametric Curves
5.6 2D Affine Transformations
5.7 2D Homogeneous Coordinates
5.8  Notes & Examples
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5.1.  Points and Vectors
A point is a position in space, e.g. Auckland
A vector represents a displacement – a difference between two 
points.  
The only way to represent a point is with reference to the origin of 
a coordinate system. The vector from the origin of the coordinate 
system to the point is the position vector of the point.

Example: Describe where 
Hamilton is!

120km to the south-south-
west of Auckland
37.43S Latitude, 175.19E 
Longitude
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Points and Vectors (cont’d)
Vectors are represented as 2-tuples (2D) or 3-tuples (3D) in a 
coordinate system.
We denote the components of a vector v in 2D with v1and v2 and 
of a vector u in 3D with u1, u2 and u3:
We denote vectors with small bold letters and points with capital 
letters, e.g. p is the position vector of the point P.
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Points and Vectors (cont’d)

Operations on vectors
Can add, subtract and scale vectors

Operations on points
Subtracting one point from another gives a vector (the 
displacement between these points)
Can NOT add two points (what is Auckland + Hamilton??)
But we can add and subtract their                               
position vectors w.r.t. some origin.
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Basic Operations on Vectors
Addition

Represents the combined displacement
Implement by adding components

Scaling
i.e. multiplication by a scalar
Defined such that v + v = 2v
Implement by multiplying all components by the scalar.

Subtraction
Addition of a negated vector, 
i.e. one in opposite direction.
Implement by subtracting components.

The magnitude of a vector
i.e. its "length" (2-norm). 

Normalisation
The process of creating a unit vector (length 1)
Scale by reciprocal of magnitude:
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Basic Operations on Matrices
Dimension of a matrix

A m×n matrix is a matrix 
has m rows and n columns. 

Addition/Subtraction
Implement by adding/subtracting components.

Scaling
Implement by multiplying all 
components by the scalar.
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Basic Operations on Matrices (cont’d)

Transpose (indicated by T) of a matrix M
Swap mij and mji for all i,j.

Algebraic rules for transposition: 

(MT)T=M
(sM)T=s(MT)
(M+N)T=MT+NT

(MN)T=NTMT

11 21
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12 22
21 22 23

13 23
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m m
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Basic Operations on Matrices (cont’d)

Determinant det M (also written | M |) of a matrix M
For a 2x2 matrix:

Inverse M-1 of a matrix M
For a 2x2 matrix:
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2221

1211 mmmm
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mm
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Exercise: Prove that M-1 is the inverse of M, i.e. show M-1M=MM-1=I
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Basic Operations on Vectors and Matrices
The transpose of a vector 

Transpose of a row vector is a 
column vector and vice versa

The dot product (scalar product)
Symmetry: a•b=b•a
Linearity: (a+b)•c=a•c+b•c
Homogeneity: (sa)•b=s(a•b)
|b|2= b•b

Matrix multiplication
Multiplying an l× m and m × n matrix gives an l × n matrix with 
the elements                                                 [Note: aij= rowi•columnj]
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5.2  Applications of the Scalar 
Product (Dot Product)

Angle between two vectors
Projection of a vector
Distance of a point to a line
Reflections
Area of a triangle
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The Angle between Two Vectors
The most important application of the dot product is to find the angle between 
two vectors (or two intersecting lines).

Two non-zero vectors b and c with common start point are
less than 90o apart if b•c>0
exactly 90o apart if b•c=0   [b and c are orthogonal (perpendicular)]
more than 90o apart if b•c<0
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Projection of a Vector
In many applications we must compute the projection of a 
vector onto another vector and the distance of a point from 
a line:

Let L be a line through A in the direction of a.
Let b be the vector from A to a point B.

We want to find ba the orthogonal projection of b onto a.
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A orthogonal 
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Distance of a Point to a Line

In the previous slide we computed

hence the distance of B to the line L is

ab ˆ

a
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Reflections
Ray tracing is a popular rendering algorithm which displays a 
scene by tracing rays from the eye through each pixel of the 
screen into the scene (i.e. trace a light ray hitting the eye 
backwards → see 2nd part of this course!). If the scene contains 
reflective objects such as mirrors it is necessary to compute for a 
ray with direction a its reflection r. 
Let n be the surface normal at the 
point where the ray hits the object:
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Orthogonal Vectors in 2D

Let a=(a1 , a2)T then in 2D we can find two 
vectors perpendicular to it 

a⊥=(-a2 , a1)T (note a⊥• a=0)

-a⊥=(a2 , -a1)T   (note -a⊥• a=0)

a

x

y

⊥a
90o

⊥a-

In the textbook a⊥ is 
called the “Perp” vector
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The Area of a Triangle (in 2D)
The area of a parallelogram:

Area of a triangle:
Area is half the area of the parallelogram formed by two of its 
edges
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A Convex Polygon is a polygon where any line connecting any 
pair of vertices lies entirely within the polygon (this is equivalent 
with: all interior angles between neighbouring edges are smaller or 
equal to 180 degree). If a polygon is not convex it is called 
concave.

The Convex Hull of a set of points is the smallest                             
convex set containing the points. [i.e. smallest                
convex polygon containing the points]

convex not convex
>180o

Convex Hull

5.3 Convex and Concave Objects
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5.4 Implicit Curves
Implicit curves

A 2D curve can be defined as the set of points p=(x,y)T

fulfilling the mathematical equation f(x,y)=0.

Example: 
x2+y2-1=0 

defines a unit circle centred at the origin

Disadvantages:
Modelling is non-intuitive (e.g. how to draw a penguin?)
Difficult to draw: have to find a set of points fulfilling the equation (hard!) 
and connect them by line segments.

Advantages:
Easy to compute normal n at a point (x0,y0)T:
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0( , )y

T

x y

f f
x y

⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠
n
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Parametric curves
A 2D curve defined by a set of points p(t)=(x(t), y(t))T where x(t) and y(t) are functions 
of the parameter t (often called the “speed”).
Have to specify the parameter interval [tmin, tmax] for t.                                                  
It’s a good idea to specify curve such that [tmin, tmax]=[0,1].

Example: 

defines a unit circle centred at the origin.

Disadvantages:
Modelling is still non-intuitive (e.g. how to draw a penguin?)

Advantages
Can compute tangent at a point by the derivative of the components
Easy to “splice” curve segments together.
Can draw curve by computing points on the curve and connecting them by line 
segments.
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5.5 Parametric Curves
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Parametric Curves (cont’d)

Examples for parametric curves (in all cases t∈[0,1] ):

Curve with centre c and radius r: 

Ellipsoid with centre c, long axis a and short axis b:

Logarithmic spiral with centre c and n revolutions:
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How to draw a parametric curve?
Compute (n+1) points                                         on the curve

Connect the points with line segments

 for 0,...,i
i i n
n

⎛ ⎞= =⎜ ⎟
⎝ ⎠

v p
0v

1v
2v

3v

Parametric Curves (cont’d)
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void CParametricCurve::init(){                // compute (n+1) points on the curve
for(int i=0;i<=n;i++) 

computePointOnCurve((float) i/(float) n,vertices[i][0],vertices[i][1]);}

void CParametricCurve::draw(){ // draw line segments
glBegin(GL_LINE_STRIP);

for(int i=0;i<=n;i++) glVertex2fv(vertices[i]);
glEnd();}

void CParametricCircle::computePointOnCurve(float t, float& x, float& y){
x=cx+r*cos(t*2.0*PI);
y=cy+r*sin(t*2.0*PI);}

Parametric Curves (cont’d)
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5.6  2D Affine Transformations

Examples of affine transformations:

Scaling about Origin
For any point p= (p1, p2)T, 
scale p1 by factor s1, p2 by factor s2.

Translation ("movement")
Add a vector t to all points in the 
scene, i.e. q = p + t

Affine Transformations transform a pair of parallel straight lines to 
another pair of parallel straight lines and preserve ratios of distances. 
Assume for now that the transformations apply only to points but with 
an origin and an underlying vector space defined. 
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Note that "scaling" includes "reflection" if s1 and/or s2 is negative:

Reflection at the y-axis:

Reflection at the x-axis

Reflection at the origin

2D affine transformations (cont’d)
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Rotation about origin by an angle θ (right-handed i.e. anticlockwise)
Proof: UDOO

Shearing

2D affine transformations (cont’d)

cos sin
where  

sin cos
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Some properties of affine 
transformations (both 2D & 3D)
Straight lines are preserved
Parallel lines remain parallel
Proportional distances are preserved
Any closed area in 2D or volume in 3D is multiplied by  | det M | 
(unchanged by translation)
Any arbitrary affine transformation can be represented as a 
sequence of shearing, scaling, rotation and translation
Affine transformations do not in general commute (i.e. T1T2
≠ T2T1)
Transformations are associative, i.e. T1(T2T3) = (T1T2) T3
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5.7  2D Homogeneous Coordinates

Translation is a nuisance - don't have a matrix 
representation for it.
So we introduce homogeneous coordinates as a way of 
"unifying" the representation of translation with the other 
transformations.

The idea
Geometric interpretation
Converting from HC to ordinary coordinates
Composition of transformations
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The idea
Represent the ordinary 2D point (x, y)T as a homogeneous 
coordinate  point (x, y, 1)T.
Then can do translation by:

and the other transformations by

1 0
0 1

1 0 0 1 1

x x x

y y y

q t p
q t p
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

0
0
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x x

y y

q a b p
q c d p
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
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Geometric interpretation

Can see that the translation in 2D is implemented as a 
shear in 3D.

x

y

z

1

plane =1

P
Q

t

Qactual

Pactual
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Converting from HC to Ordinary Coordinates

More generally, we regard all homogenous coordinate 
points (w p1, w p2, w)T, w ≠ 0, as representing the same 
ordinary coordinate point (p1, p2)T.
Hence, in general, the homogeneous coordinate point 
(a,b,c)T converts to the ordinary coordinate point (a/c, 
b/c)T.
With all the transformations so far, c will equal 1, but 
we will see a couple of examples later where this is not 
the case.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 31

5.8 Notes & Examples
Be careful when transforming vectors. Doesn't work 
for position vectors or surface normals (i.e. vectors 
perpendicular to given surfaces).

' shear≠v M v

  shearapply M

v

shear shear

1 1 2 1
=  , =  '

0 0 1 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⇒ = ≠⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v M M v v
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Transforming Vectors (cont’d)
How do we find the transformed surface normal v’ ?

( ) ( )1 1'  for any surface normal and linear transf. 
TT − −= =v M v M v v M

'v
  = shearapply M M

v

a

b 'b

'a

( )
( ) ( )1 1

 is perpendicular to ( ) ( ) 0 ( ) 0
'  ( ' ') ( ' ') ' 0 ( ' ') ' 0

( ' ') ' ( ) ' ( ) ' ( ) '

Cho

must be 

ose '  then ( ' ') '

p

( ) (

erpendicular to

T

T

TT T T T

T T T T T− −

− ⇔ − = ⇔ − =
− ⇔ − = ⇔ − =

− = − = − = −

= − = − = −

v b a b a v b a v
v b a b a v b a v

b a v Mb Ma v M b a v b a M v

v M v b a v b a M M v b a

•
•

) 0=v•
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Composition of transformations
With homogeneous coordinates, it’s now much easier to compose multiple 
transformations into a single one.
Consider for example the problem of rotating some object about its centre point C.

translate the whole object so that its centre is at the origin, rotate about the 
origin, and then translate back.
Hence, transformation is

Can multiply the three component matrices to get the composite 
transformation matrix M, and then apply M to all points in the object.
UDOO: Work out M – show that it is equivalent to a rotation of θ followed by a 
single (different) translation.

( ) ( )1 2 1 2

1 1

2 2

1 1
where

1 0 cos sin 0 1 0
0 1 sin cos 0 0 1
0 0 1 0 0 1 0 0 1

T Tq q p p

c c
c c

θ θ
θ θ

=

− −⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

M

M
θ p

C
x

y q
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Example 1
In general affine transformations do not commute:

First scale by (1,2), then rotate 90o

First rotate 90o then scale by (1,2) 

0 1 0 1 0 0 0 2 0
1 0 0 0 2 0 1 0 0
0 0 1 0 0 1 0 0 1

− −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

M

1 0 0 0 1 0 0 1 0
0 2 0 1 0 0 2 0 0
0 0 1 0 0 1 0 0 1

− −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

M
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Example 2
Find the homogenous coordinate transformation matrix that transforms the figure 
on the left to the figure on the right

Often easier to do these backwards, then take inverse. In this case, starting with 
figure on right:

Rotate -30o , shift by (-3,1) , scale by (1/2, 1)
Hence required transformation from right to left is:

R(30) T(3,-1) S(2,1)
Easy to convert to HC matrix expression [UDOO]

0 1 0
0

1

x x

y

y

2

3

1

30o
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Example 3
Given is the 2D scene in part (a) of the image below. Write down the 
homogeneous 2D transformation matrix M, which transforms the object 
shown in (a) into the object in part (b) of the image. You are allowed to write the 
transformation matrix as a product of simpler matrices (i.e. you are not required 
to multiply the matrices).


