
© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 1

4. Introduction to OpenGL
4.1 Resources
4.2 Background
4.3 GL/GLU/GLUT etc.
4.4 A Simple OpenGL Program

What the Program Does
The Code
Aspects of the Code

4.5 Geometric Primitives in OpenGL

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 2

4.1 Resources

“OpenGL Programming Guide: The Official Guide to
Learning OpenGL”, Woo, Neider, and Davis, Addison-
Wesley (aka “The Red Book”).

1st edition online: http://www.glprogramming.com/red

OpenGL/GLUT manuals
See COMP 372 Resources page

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 3

Resources (cont’d)
OpenGL homepage: http://www.opengl.org/

Examples, Discussion forums, etc.
OpenGL Examples (see 372 Resources page)

Consists of one solution (.sol)
with one project for each example
Contains all major examples from the OpenGL Programming
Guide.
In order to run an example open the solution, choose an active
project, compile and execute it (try fog, teapots, material,
dof, aapoly).

The examples fogindex and aaindex require 256 colour mode.
Read comments at the beginning of each source files (you are
not expected to understand them, yet).

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 4

4.2 Background
SGI (Silicon Graphics Inc.) devised a proprietary
graphics language IrisGL
IrisGL is a software interface to polygon-rendering
hardware and consists of a library of C functions to:

define geometric objects in 2D and 3D.
Control how these objects are rendered in the frame
buffer (set up view transformations, perspective
transformations, illumination).
Output textured Gouraud-shaded polygons (with z-
buffering), plus lines and points.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 5

Background (cont’d)
In 1992, SGI made the spec. publicly available, calling it OpenGL

Widely adopted by other graphics companies
Specification maintained and expanded by the OpenGL Architectural Review
Board (ARB)
Supported by most PC graphics card manufacturers
Standard for most Unix workstations, adopted by Apple for the Mac
Incorporated into Windows 9X/NT/2000

Competes with Direct-3D component of Direct-X

In 2004, OpenGL 2.0 was released including a number of major
additions to the standard. The most significant one is GLSL (the
OpenGL Shading Language) which enables the programmer to
replace the OpenGL fixed-function vertex and fragment processing

A public domain source-code implementation called Mesa is
available for a wide range of platforms

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 6

OpenGL Applications
Professional 3D Graphics & Effects

3D graphics & special effects in the movie industry.
CAD/CAM/CAE, entertainment, medical imaging and virtual reality.
All leading 3D modelling, rendering & animation, and visualization software
packages use OpenGL (3D StudioMax, Lightwave3D, AVS Express,
Amira, …).

Games
OpenGL allows hardware accelerated rendering,
texture-mapping and special effects.
Many leading games support both OpenGL and
DirectX (Halo 2, Half-Life 2, World of Warcraft etc.)
for hardware acceleration.

Mobile applications
Nokia has licensed Hybrid Graphics’ OpenGL ES
http://www.khronos.org/opengles/

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 7

4.3 GL/GLU/GLUT etc
In usual C implementations, OpenGL has three
components

GL, GLU and GLUT
There may also be a package for directly interfacing to a
particular windowing system e.g. GLX for OpenGL on X-
window systems, but we’ll ignore.

Application Program

GLUT

GLU

GL
Hardware-specific drivers

Graphical User Interfaces (GUIs)
are often developed using a
platform independent scripting
language (Python, Tcl/Tk)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 8

GL/GLU/GLUT etc (cont’d)
GL is the main function library for polygon rendering

All function names begin with "gl”
Increasingly, the GL functions are done in hardware on the graphics card.

GLU is the OpenGL Utility library
Extra functions, such as tesselations of spheres, cones, curved surfaces …
All function names begin with "glu”
Functionality provided through calls to GL functions

GLUT, the OpenGL Utility Toolkit
Not officially specified/supported by ARB
Provides support for a windowing environment in a window-system
independent manner

Window creation/destruction, Pop-up menus, Mouse and keypress
interactions

But rather limited (e.g. no pull down menus, toolbars, panes, splits, scrolling,
…)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 9

GL/GLU/GLUT etc (cont’d)
OpenGL, GLU and GLUT come as include libraries (.lib) and
as dynamic link libraries (.dll)
Two versions: Microsoft (opengl32.lib, glu32.lib, glut32.lib)
and Silicon Graphics (opengl.lib, glu.lib, glut.lib).

We are using the Microsoft version.
Microsoft libraries very old, but you get access to the latest OpenGL
functionality by using OpenGL extensions
(http://oss.sgi.com/projects/ogl-sample/registry/)
and by downloading a suitable driver for your graphics card

Both versions use the same header files (gl.h, glu.h, glut.h)
Downloads, manuals and examples are available on the
COMP 372 Resources page.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 10

How to use OpenGL?
A typical OpenGL program looks like this:

Create_a_Window // open a window into the frame buffer into which the
// program will draw.
// A GL context is associated with the window and all
// subsequent OpenGL commands are with respect to the
// current context:

Define_view // Specify how scene (2D or 3D) is mapped onto a window
// on the screen

Define_rendering_parameters // For example, lighting
Draw_the_scene // Set colour or material properties of objects.

// Draw object
// Note: A scene (a collection of geometric objects) must be
// converted into primitives (polygons) before calling the
// OpenGL drawing routines. GLUT defines a number of
// geometric objects (sphere, torus, …) using polygons.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 11

4.4 A Simple OpenGL Program
What the program does
The code
Aspects of the code

Include the graphic libraries
Represent the Wireframe House
Create a Drawing window
Initialise window & view
Draw the Picture

Summary
Remarks
Exercises

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 12

What the program does
Defines a simple house shape in wireframe form
(i.e. made up of straight lines representing the
edges) in 2D-space.

The Situation The Program Output

Displays a picture
of the house using
a 2D orthographic
projection

– Maps a section of
the 2D coordinate
system onto the
output window.

x

y

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 13

The code
#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glut.h>

const int windowWidth=300; const int windowHeight=400;
// define vertices and edges of the house
const int numVertices=5; const int numEdges=6;
const float vertices[numVertices][2] = {{0.0, 0.0},{100.0, 0.0},{0.0, 100.0},{100.0, 100.0},{50.0,

150.0}};
const int edges[numEdges][2] = {{0, 1},{1, 3},{3, 2},{2, 0},{2, 4},{3, 4}};

void display(void){
glClear(GL_COLOR_BUFFER_BIT); // clear all pixels in frame buffer

glColor3f (1.0, 0.0, 0.0); // draw edges in red [given as RGB (red,green,blue) value]
glBegin(GL_LINES);
for(int i=0;i<numEdges;i++){

glVertex2fv(vertices[edges[i][0]]);
glVertex2fv(vertices[edges[i][1]]); }

glEnd();
glFlush (); // start processing buffered OpenGL routines

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 14

The code (cont’d)
void init(void) {

// select clearing color (for glClear)
glClearColor (1.0, 1.0, 1.0, 0.0); // RGB-value for white
// initialize view (simple orthographic projection)
GLdouble halfWidth=(GLdouble) windowWidth/2.0;
GLdouble halfHeight=(GLdouble) windowHeight/2.0;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(-halfWidth, halfWidth, -halfHeight, halfHeight);

}

// create a single buffered colour window
int main(int argc, char** argv){

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(windowWidth, windowHeight);
glutInitWindowPosition(100, 100);
glutCreateWindow("My first OpenGL program");
init (); // initialise view
glutDisplayFunc(display); // draw scene
glutMainLoop();
return 0;

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 15

OpenGL code Graphics Pipeline

MODELVIEW
Transformation

PROJECTION
Transformation

Viewport
Transformation Display

Clipping Illumination

Rasterization

x

yDefine vertices
(glVertex2fv)

No model transformations in example!

No illumination
in example!Project vertices onto OpenGL

window (gluOrtho2D) – uses
info from GLUT initialisation

No clipping!

No viewport
transformation!

Vertices get assembled to
lines [glBegin(GL_LINES)]
and drawn on the screen

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 16

Aspects of the Code

Include the graphic libraries
Define the scene
Create a drawing window
Initialise window & view
Draw the scene

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 17

Including the graphic libraries
#include <windows.h>

includes constants and function prototypes of the Graphic Device Interface
(GDI), which is at the core of all Windows graphics.

#include <gl/gl.h>

#include <gl/glu.h>

#include <gl/glut.h>

include constants and function prototypes of the OpenGL, GLU,
and GLUT libraries, respectively.
Header files are stored in a subdirectory ‘gl’ of the Visual C++
‘include’ directory.
glut.h includes all other header files, but it is good style to
include them explicitly as done above

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 18

Defining the Scene
Have a vertex table and an edge table

const int numVertices=5;

const int numEdges=6;

const float vertices[numVertices][2] = {{0.0, 0.0},
{100.0, 0.0},{0.0, 100.0},{100.0, 100.0},{50.0, 150.0}};

const int edges[numEdges][2] = {{0, 1},{1, 3},{3, 2},
{2, 0},{2, 4},{3, 4}};

Each vertex table array entry is an array of 2 floats,
representing a point in R2 [2D-space]
Edge table values are indices into vertex table

e.g. edge {1,3} is the edge from
V1=(100.0, 0.0) to V3 =(100.0, 100.0).
Ordering of both vertex table and edge table is arbitrary
Ordering of vertices in an edge is also arbitrary,
e.g. {1,3} is identical to {3,1} x

y

10

2 3

4

1000
0

100

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 19

Creating a Drawing Window
glutInit(int *argcp,char** argv);

Initiates Window session with the underlying operating
system (OS)
Uses command line arguments from main() [OS-specific].

glutInitDisplayMode(unsigned int mode);

Specifies display mode for the to be created window .
Select single buffered (GLUT_SINGLE) colour (GLUT_RGB)
window (i.e. the window is associated with one frame buffer
of RGB values).

glutInitWindowSize(int width, int height);

Width and height (in pixels) of the to be created window.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 20

Creating a Drawing Window (cont’d)
glutInitWindowPosition(int x, int y);

x and y coordinate of the screen location of the to be
created window.

glutCreateWindow(char* s);

Create window with the title s.
Size, location, and mode of the window are specified by
the current state of the OpenGL program (set by the
previous three commands).
Returns a unique window identifier. Important when using
multiple windows.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 21

Initialisation window & view

glClearColor(Glclampf red, Glclampf green, Glclampf blue,
Glclampf alpha);

– Set colour used for clearing (glClear()) the drawing window.
– Colour is an RGBA tuple (red, green, blue, alpha) where alpha is transparency.
– Arguments are floats (values are clamped to the range [0,1])

glMatrixMode(Glenum mode);

– Applies subsequent matrix operations to the matrix stack specified by mode.
– GL_PROJECTION selects the projection matrix stack.
– The projection matrix specifies how the scene (2D or 3D) is projected onto the

2D drawing window.

glLoadIdentity();

– Initialise the matrix stack with an identity matrix.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 22

Initialisation window & view (cont’d)
gluOrtho2D(Gldouble left, Gldouble right, Gldouble
bottom, Gldouble top);

– Defines a 2D orthographic projection matrix.
– Maps a section of the 2D world coordinates (the coordinates in which the scene

is defined) onto the drawing window.
– Ratio (right-left):(top-bottom) should be the same as width:height of the window

→otherwise scene is distorted

x

y

150-150

200

-200

x

y

150-150

200

-50

(a) Using ‘gluOrtho2D(-150, 150, -200, 200)’ (b) Using ‘gluOrtho2D(-150, 150, -50, 200)’

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 23

gluOrtho2D
How does gluOrtho2D do the mapping?

gluOrtho2D implements a (world-)window-to-viewport mapping.
The world-window is the section of the world coordinates we want to display
(specified by the coordinates w.l, w.r, w.b, w.t).
The viewport is the drawing window on the screen.
The viewport is described with respect to the screen coordinates (eg. top-left pixel
of the screen is (0,0) and the bottom-right pixel of screen (1023,767)).
The viewport is then specified by the coordinates v.l, v.r, v.t and v.t with respect
to those screen coordinates.

v.l v.r

v.b

v.t

x

y

150-150

200

-200

w.l w.r
w.b

w.t

u

v

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 24

gluOrtho2D (cont’d)

Denote the world coordinates by

and the screen coordinates by

then the world-to-viewport mapping is described by the equation

0

0

x

y
u
v

u A x C
v B y D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

x

u

This equation can be described by a single matrix multiplication
(see chapter 4). The matrix is pushed onto the projection matrix stack!

Ax C
By D

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

5

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 25

gluOrtho2D (cont’d)

bwBbv
bwtw
bvtv

y

lwAlv
lwrw
lvrv

lw
lwrw
lvrvlvx

lwrw
lvrvu

w.r-w.l
w.lx

lvrv
lvu

xu
x

.*.D and
..
..B

gives for ality proportionSimilarly

.*.C and
..
..A

 gives slide previous thefromequation linear with thescoefficent Comparing

.
..
...

..
..or

..
.

) ofnality (proportio boundariesport right view andleft the to of ratio theto
equal bemust boundary owright wind andleft the to of distances theof ratio The

−=
−
−=

−=
−
−=

⎟
⎠
⎞

⎜
⎝
⎛

−
−−+

−
−=−=

−
−

w.l w.r

x

v.l v.r

u

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 26

Drawing the Scene

glClear(GLbitfield mask);

– Clears all pixels in the buffer specified by mask.
– In order to clear colour buffer use GL_COLOR_BUFFER_BIT as mask.

→ Sets all pixels of the drawing window to the previously defined ‘clear-colour’.

glColor3f(GLfloat red, GLfloat green, GLfloat blue);

– Sets colour for subsequent drawing commands.
– Colour is an RGB tuple (red, green, blue).
– Many different versions of this command are available:

– void glColor3b(GLbyte red, GLbyte green, GLbyte blue)

– void glColor3d(GLdouble red, GLdouble green, GLdouble blue)

– void glColor4f(GLfloat red, GLfloat green, GLfloat blue,
GLfloat alpha)

– see manual for a complete listing

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 27

Drawing the Scene (cont’d)
glBegin(Glenum mode);
…
glEnd();

– glBegin and glEnd delimit the vertices that define a primitive or a group of like
primitives.

– The type of primitive is specified by the argument mode.
– GL_LINES treats each pair of vertices as an independent line segment. Vertices 2n-1

and 2n define line n. N/2 lines are drawn.

glVertex2fv(const GLfloat *v)

– v specifies a pointer to an array of two float numbers representing a vertex.
– the glVertex command is used within glBegin/glEnd pairs to specify point, line,

and polygon vertices. The current color, normal, and texture coordinates are associated
with the vertex when glVertex is called.

glFlush()

– empties all buffers, causing all issued commands to be executed as quickly as they are
accepted by the actual rendering engine.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 28

Summary An OpenGL program has 3 important parts:
Like all C programs it has a main function,
which is used to initialise the drawing window
and set up the scene and event handling.
Before drawing a scene the scene and the
virtual camera (view of the scene) must be
defined

Can be done inside the display function
but more efficient to define a separate
method init.
Only called once, except if the view is
changed (e.g. zoom in).

Scene is draw by the display function.
Window must be redrawn if it is created,
moved or uncovered.
Performed automatically by GLUT by
calling glutDisplayFunc(display).

Two parts missing in our example:
could define reshape function in case the
drawing window is resized.
event handling (mouse and keyboard input).

void display(void){
// draw scene objects

}

void init(void) {
// set up background colour, window etc.
// set up view projection (e.g. glOrtho2D)
// set up scene

}

int main(int argc, char** argv){
// create a single buffered colour window
// initialise view and scene
// set up event handling
glutDisplayFunc(display); // draw scene
glutMainLoop();
return 0;

}

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 29

Remarks
Note that many methods (e.g. glColor2f, glVertex2fv) are of the form:
glXXX<n><t>[v], where

n is dimension of quantity being defined (3 ⇒ 3-space)
t is type of parameter (f = float)
optional v denotes “vector” parameter, e.g. glVertex3fv takes a 3-element
array of floats as a parameter, whereas glVertex3f takes three separate
floats, (x,y,z)

OpenGL often defines several different forms of each call, e.g.
glVertex{234}{sifd}[v]

24 forms in total!
In 372 we are using the f form (float) everywhere

Simplest to stick with a single type when learning
Although double is often a little more convenient, it costs too much in
memory and performance.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 30

Remarks (cont’d)
The GL data types (Glfloat, Gldouble, …) are not C types.

For example, GLint is not necessarily equivalent with the C type int.
The reason for this is that OpenGL needs for each data type a certain
minimum number of bits in order to get the necessary precision for graphics
operation.
The corresponding C data types are specified in the file gl.h, e.g.

typedef float GLfloat;

typedef float GLclampf;

typedef double GLdouble;

…

Hence if you use float instead of Glfloat you won’t get a warning
message. However, it’s a good style to use the GL data types in case you
port you program to another machine.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 31

Exercises [Try doing all these]

Change the program to draw the picture in white on a black background
Change the program to use glVertex2f everywhere instead of glVertex2fv.
Modify the program such that the left-bottom corner of the house is at the left-
bottom corner of the window

Do this by modifying the vertex table only
Do this by modifying the arguments of gluOrtho2D only

Add a variable f to the program and modify the program such that it increases
the size of the picture in the output window by a factor f.
Draw only the vertices of the house (use GL_POINTS)

In order to better see the points call glPointSize(3.0)before
glBegin.

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 32

4.5 Geometric Primitives in OpenGL
As mentioned before the command sequence
glBegin(Glenum mode);
…
glEnd();
defines a primitive or a group of like primitives from the N vertices defined in
between.

The argument mode specifies how the vertices are interpreted and can be any
of the following:

GL_POLYGONGL_QUAD_STRIP

GL_QUADSGL_TRIANGLE_FAN

GL_TRIANGLE_STRIPGL_TRIANGLES

GL_LINE_LOOPGL_LINE_STRIP

GL_LINESGL_POINTS

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 33

GL_POINTS

treats each vertex as a single point.
vertex n defines point n (n=0,...,N-1).

GL_LINES

treats each pair of vertices as an independent line segment.
Vertices 2n and 2n+1 defines line n (n=0,...,N/2-1).

Geometric Primitives (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 34

GL_LINE_STRIP

draws a connected group of line segments from the first vertex to the
last.
vertices n and n+1 define line n (n=0,...,N-2).

GL_LINE_LOOP

as above, but additionally a line segment is drawn from the last vertex to
the first.

Geometric Primitives (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 35

GL_TRIANGLES

treats each triplet of vertices as one independent triangle.
vertices 3n, 3n+1 and 3n+2 define triangle n (n=0,…,N/3-1).

GL_TRIANGLE_STRIP

draws a connected group of triangles with the first three vertices defining
a triangle and each subsequent vertex forming a triangle with the last two
vertices of the previous triangle.
for even n vertices n, n+1 and n+2 define triangle n, for odd n vertices
n+1, n and n+2 define triangle n (n=0,…,N-3).

Geometric Primitives (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 36

GL_TRIANGLE_FAN

draws a connected group of triangles. Each pair of vertices after the first
vertex defines one triangle with the first vertex.
vertices 0, n+1 and n+2 defines triangle n (n=0,…,N-3).

GL_POLYGON

draws a single convex polygon defined by the vertices 0 to N-1.

Geometric Primitives (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 37

GL_QUADS

treats each group of four vertices as an independent quadrilateral.
vertices 4n , 4n+1 , 4n+2 and 4n+3 define quadrilateral n (n=0,…,N/4-1).

GL_QUAD_STRIP

draws a connected group of quadrilaterals with the first four vertices
defining one quadrilateral and each subsequent pair of vertices defining a
quadrilateral with the last two vertices of the previous one.
vertices 2n , 2n+1 , 2n+3 and 2n+2 define quadrilateral n (n=0,…,N/2-2).

Geometric Primitives (cont’d)

© 2008 Burkhard Wuensche http://www.cs.auckland.ac.nz/~burkhard Slide 38

Geometric primitives are defined identical in 2D and 3D with the dimension of
the vertices being the only difference.
The vertices of a triangle strip or quad strip should be all either in clockwise or
in anticlockwise order (necessary for a consistent surface orientation in 3D).
Point size is modified with glPointSize(Glfloat size).
Line width is modified with glLineWidth(Glfloat width).
Can apply a colour either to all vertices or to each vertex individually. In the
latter case the vertex colours are interpolated.

Remarks

