
HINTS TO QUESTION 2 b):

Why do we need to change coordinate systems to perform mirroring?

Answer: Draw yourself a 2D coordinate system and then a mirror not aligned with the axes and not
centered at the origin. Now take an arbitrary point p and try to compute the mirror image of it. Then try to
determine a single matrix performing this transformation. You will recognize very soon that the
computation is very complex – and it’s even more complex in 3D.
However, we have seen in the lecture that it is very easy to reflect a point on a coordinate axes (a
coordinate plane in 3D) – this is achieved by a simple scaling where one of the scaling factors is -1.
Hence if we can transform a point into mirror coordinates we can compute the mirrored point by a simple
reflection of one of its coordinates.
So the whole transformation looks like this: Mmirror = Ruvn_to_xyz Sreflect_n_coordinate Rxyx_to_uvn

Have a look at the code and you will see that all you have to so is implementing two of these matrices :P

Now let’s have another look how to transform a point from one coordinate system to another one:

Translation only:

Given is a uv-coordinate system with origin
2
3
⎛ ⎞= ⎜ ⎟
⎝ ⎠

q (where q is the position vector of the point Q) and

the basis vectors
1
0
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

u x and
0
1
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

v y . The point P in xy-coordinates is
5
4
⎛ ⎞= ⎜ ⎟
⎝ ⎠

p . We want to

find the uv-coordinates of this point.

As indicated in the figure above you can find these coordinates by simply subtracting the origin of the uv-

coordinate system, i.e. uv-coordinates xy-coordinates

1 0
0 1
0 0 1 1

x x

y y

q p
q p

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟= − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

p p q .

So we can see that it’s a simple translation by –q.

In the above example (using 2D coordinates) we get

5 2 3
4 3 1

u

v

p
p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

which is indeed the correct answer :-)

Rotation only:

Given is a uv-coordinate system with origin
0
0
⎛ ⎞= ⎜ ⎟
⎝ ⎠

q (where q is the position vector of the point Q) and

the basis vectors
0
1
⎛ ⎞= ⎜ ⎟
⎝ ⎠

u and
1

0
−⎛ ⎞= ⎜ ⎟
⎝ ⎠

v , i.e. the uv-coordinate system is obtained by rotating the xy-

coordinate system by 90 degree.

The point P in xy-coordinates is
2

1
−⎛ ⎞= ⎜ ⎟
⎝ ⎠

p . We want to find the uv-coordinates of this point.

As indicated in the figure above you can find these coordinates by projecting the vector p onto the u-axis
and v-axis.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+=•=+=•=

1

100
0
0

1
 formmatrix in or

 and

y

x

yx

yx

v

u

yyxxvyyxxu

p
p

vv
uu

p
p

vpvppupupp vpup

We can see that this is just the rotation matrix which rotates the uv-coordinate system into the xy-
coordinate system (i.e. it’s the inverse of the matrix in chapter 5, slide 40 of the handouts)!

In the above example (using 2D coordinates) we get

0 1 2 1
1 0 1 2

u

v

p
p

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

which is indeed the correct answer :-)

The general case:

In the general case you have to perform a rotation and a translation as shown above. You only have to
figure out which one comes first :-)
In question 1 you deal with 3x3 matrices, hence you will have to use 4x4 matrices if you use homogenous
coordinates. However, note that you don’t need homogenous coordinates: say you want to transform the
point p first by a translation and then a rotation, then you can compute this as R (p+t) where R is a 3x3
rotation matrix and t is a translation vector. Hence you can use the methods in the Geometry library in
order to solve this question.

NOTES:

1. We can see from the above that in order to transform a point from xy-coordinates into uv-
coordinates we have to transform the uv-coordinate system into the xy-coordinate system, i.e
transforming a point from coordinate system 1 into coordinate system 2 is equivalent with
transforming the coordinate system 2 into the coordinate system 1. This is the reason why we have
a negative translation vector and the inverse of the rotation matrix we talked about in the lecture.

2. If we want to transform a point from uv-coordinates to xy-coordinates then the opposite would be

the case.

3. The same principles apply in question 1, except that this time you have to define a 4x4 matrix
doing the coordinate transformation which is then used by me to perform the mirroring in OpenGL.

