Why do we need to change coordinate systems to perform mirroring?

Answer: Draw yourself a 2D coordinate system and then a mirror not aligned with the axes and not centered at the origin. Now take an arbitrary point \mathbf{p} and try to compute the mirror image of it. Then try to determine a single matrix performing this transformation. You will recognize very soon that the computation is very complex - and it's even more complex in 3D.
However, we have seen in the lecture that it is very easy to reflect a point on a coordinate axes (a coordinate plane in 3 D) - this is achieved by a simple scaling where one of the scaling factors is -1 . Hence if we can transform a point into mirror coordinates we can compute the mirrored point by a simple reflection of one of its coordinates.
So the whole transformation looks like this: $\mathbf{M}_{\text {mirror }}=\mathbf{R}_{\text {uvn_to_xyz }} \mathbf{S}_{\text {reflect_n_coordinate }} \mathbf{R}_{\text {xyx_to_uvn }}$
Have a look at the code and you will see that all you have to so is implementing two of these matrices : P
Now let's have another look how to transform a point from one coordinate system to another one:

Translation only:

Given is a uv-coordinate system with origin $\mathbf{q}=\binom{2}{3}$ (where \mathbf{q} is the position vector of the point Q) and the basis vectors $\mathbf{u}=\mathbf{x}=\binom{1}{0}$ and $\mathbf{v}=\mathbf{y}=\binom{0}{1}$. The point P in xy-coordinates is $\mathbf{p}=\binom{5}{4}$. We want to find the uv-coordinates of this point.

As indicated in the figure above you can find these coordinates by simply subtracting the origin of the uv-
coordinate system, i.e. $\mathbf{p}_{\text {uv-coordinates }}=\mathbf{p}_{\text {xy-coordinates }}-\mathbf{q}=\left(\begin{array}{ccc}1 & 0 & -q_{x} \\ 0 & 1 & -q_{y} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right)$.
So we can see that it's a simple translation by -q.

In the above example (using 2D coordinates) we get
$\binom{p_{u}}{p_{v}}=\binom{5}{4}-\binom{2}{3}=\binom{3}{1}$
which is indeed the correct answer :-)

Rotation only:

Given is a uv-coordinate system with origin $\mathbf{q}=\binom{0}{0}$ (where \mathbf{q} is the position vector of the point Q) and the basis vectors $\mathbf{u}=\binom{0}{1}$ and $\mathbf{v}=\binom{-1}{0}$, i.e. the uv-coordinate system is obtained by rotating the xycoordinate system by 90 degree.

The point P in xy-coordinates is $\mathbf{p}=\binom{-2}{1}$. We want to find the uv-coordinates of this point.
As indicated in the figure above you can find these coordinates by projecting the vector \mathbf{p} onto the u-axis and v-axis.
$p_{u}=\mathbf{p} \bullet \mathbf{u}=p_{x} u_{x}+p_{y} u_{y}$ and $p_{v}=\mathbf{p} \bullet \mathbf{v}=p_{x} v_{x}+p_{y} v_{y}$
or in matrix form $\left(\begin{array}{c}p_{u} \\ p_{v} \\ 1\end{array}\right)=\left(\begin{array}{ccc}u_{x} & u_{y} & 0 \\ v_{x} & v_{y} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right)$

We can see that this is just the rotation matrix which rotates the uv-coordinate system into the xycoordinate system (i.e. it's the inverse of the matrix in chapter 5, slide 40 of the handouts)!

In the above example (using 2D coordinates) we get
$\binom{p_{u}}{p_{v}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{-2}{1}=\binom{1}{2}$
which is indeed the correct answer :-)

The general case:

In the general case you have to perform a rotation and a translation as shown above. You only have to figure out which one comes first :-)
In question 1 you deal with $3 x 3$ matrices, hence you will have to use 4×4 matrices if you use homogenous coordinates. However, note that you don't need homogenous coordinates: say you want to transform the point \mathbf{p} first by a translation and then a rotation, then you can compute this as $\mathbf{R}(\mathbf{p}+\mathbf{t})$ where \mathbf{R} is a $3 x 3$ rotation matrix and \mathbf{t} is a translation vector. Hence you can use the methods in the Geometry library in order to solve this question.

NOTES:

1. We can see from the above that in order to transform a point from xy-coordinates into uvcoordinates we have to transform the uv-coordinate system into the xy-coordinate system, i.e transforming a point from coordinate system 1 into coordinate system 2 is equivalent with transforming the coordinate system 2 into the coordinate system 1 . This is the reason why we have a negative translation vector and the inverse of the rotation matrix we talked about in the lecture.
2. If we want to transform a point from uv-coordinates to xy-coordinates then the opposite would be the case.
3. The same principles apply in question 1 , except that this time you have to define a 4×4 matrix doing the coordinate transformation which is then used by me to perform the mirroring in OpenGL.
