
HINTS TO QUESTION 2 b): 
 
 
 
Why do we need to change coordinate systems to perform mirroring? 
 
Answer: Draw yourself a 2D coordinate system and then a mirror not aligned with the axes and not 
centered at the origin. Now take an arbitrary point p and try to compute the mirror image of it. Then try to 
determine a single matrix performing this transformation. You will recognize very soon that the 
computation is very complex – and it’s even more complex in 3D.  
However, we have seen in the lecture that it is very easy to reflect a point on a coordinate axes (a 
coordinate plane in 3D) – this is achieved by a simple scaling where one of the scaling factors is -1. 
Hence if we can transform a point into mirror coordinates we can compute the mirrored point by a simple 
reflection of one of its coordinates. 
So the whole transformation looks like this:  Mmirror = Ruvn_to_xyz Sreflect_n_coordinate Rxyx_to_uvn 
 
Have a look at the code and you will see that all you have to so is implementing two of these matrices :P 
 
Now let’s have another look how to transform a point from one coordinate system to another one: 
 
 
Translation only: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given is a uv-coordinate system with origin 
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p . We want to 

find the uv-coordinates of this point. 
 
As indicated in the figure above you can find these coordinates by simply subtracting the origin of the uv-

coordinate system, i.e. uv-coordinates xy-coordinates
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So we can see that it’s a simple translation by –q. 
 
 



 
In the above example (using 2D coordinates) we get  
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which is indeed the correct answer :-) 
 
 
 
 
 
 
Rotation only: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given is a uv-coordinate system with origin 
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q  (where q is the position vector of the point Q) and 
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v , i.e. the uv-coordinate system is obtained by rotating the xy-

coordinate system by 90 degree. 
 

The point P in xy-coordinates is 
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p . We want to find the uv-coordinates of this point. 

 
As indicated in the figure above you can find these coordinates by projecting the vector p onto the u-axis 
and v-axis. 
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We can see that this is just the rotation matrix which rotates the uv-coordinate system into the xy-
coordinate system (i.e. it’s the inverse of the matrix in chapter 5, slide 40 of the handouts)! 



 
 
In the above example (using 2D coordinates) we get  
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which is indeed the correct answer :-) 
 
 
 
The general case: 
 
In the general case you have to perform a rotation and a translation as shown above. You only have to 
figure out which one comes first :-) 
In question 1 you deal with 3x3 matrices, hence you will have to use 4x4 matrices if you use homogenous 
coordinates. However, note that you don’t need homogenous coordinates: say you want to transform the 
point p first by a translation and then a rotation, then you can compute this as R (p+t) where R is a 3x3 
rotation matrix and t is a translation vector. Hence you can use the methods in the Geometry library in 
order to solve this question. 
 
NOTES: 
 

1. We can see from the above that in order to transform a point from xy-coordinates into uv-
coordinates we have to transform the uv-coordinate system into the xy-coordinate system, i.e 
transforming a point from coordinate system 1 into coordinate system 2 is equivalent with 
transforming the coordinate system 2 into the coordinate system 1. This is the reason why we have 
a negative translation vector and the inverse of the rotation matrix we talked about in the lecture. 

 
2. If we want to transform a point from uv-coordinates to xy-coordinates then the opposite would be 

the case. 
 

3. The same principles apply in question 1, except that this time you have to define a 4x4 matrix 
doing the coordinate transformation which is then used by me to perform the mirroring in OpenGL.  


