
Logic Group First Draft January 1992

Report Logic-92-1 Current Version June 1992

Knowledge Interchange Format
Version 3.0

Reference Manual

by

Michael R. Genesereth
Richard E. Fikes

in collaboration with

Daniel Bobrow
Ronald Brachman
Thomas Gruber
Patrick Hayes
Reed Letsinger
Vladimir Lifschitz

Robert MacGregor
John McCarthy
Peter Norvig
Ramesh Patil
Len Schubert

This manual is the \living document" of the InterlinguaWorking Group of the DARPA

Knowledge Sharing E�ort. As such, it represents work in progress toward a proposal for a

standard knowledge interchange format.

Computer Science Department

Stanford University

Stanford, California 94305

1

Abstract: Knowledge Interchange Format (KIF) is a computer-oriented language for

the interchange of knowledge among disparate programs. It has declarative semantics (i.e.

the meaning of expressions in the representation can be understood without appeal to

an interpreter for manipulating those expressions); it is logically comprehensive (i.e. it

provides for the expression of arbitrary sentences in the �rst-order predicate calculus); it

provides for the representation of knowledge about the representation of knowledge; it

provides for the representation of nonmonotonic reasoning rules; and it provides for the

de�nition of objects, functions, and relations.

2

Table of Contents

1. Introduction... 5

2. Syntax... 7

2.1. Linear KIF.. 7

2.2. Structured KIF.. 7

3. Conceptualization..13

3.1. Objects...13

3.2. Functions and Relations...................................13

4. Semantics..15

4.1. Interpretation..15

4.2. Variable Assignment.......................................16

4.3. Semantic Value..17

4.4. Truth Value...20

4.5. Logical Entailment..22

4.6. Indexical Entailment......................................23

4.7. Nonmonotonic Entailment...................................23

4.8. Definitions...24

5. Numbers..26

5.1. Functions on Numbers......................................26

5.2. Relations on Numbers......................................30

6. Lists..31

7. Sets...34

7.1. Basic Concepts..34

7.2. Sets..35

7.3. Boundedness...38

7.4. Paradoxes...39

8. Functions and Relations..41

8.1. Basic Vocabulary..41

8.2. Function and Relation Constants...........................42

8.3. Concretion..43

8.4. Abstraction...43

8.5. Additional Concepts.......................................44

9. Metaknowledge..46

9.1. Naming Expressions..46

9.2. Formalizing Syntax..47

9.3. Changing Levels of Denotation.............................52

3

10. Nonmonotonicity...54

10.1. Monotonic Rules...54

10.2. Logic Programs..55

10.3. Circumscribing Abnormality..............................55

11. Definitions...57

11.1. Complete Definitions....................................57

11.2. Partial Definitions.....................................58

A. Abstract Algebra...65

A.1. Binary Operations...65

A.2. Binary Relations..65

A.3. Algebraic Structures......................................66

Bibliography

4

Chapter 1

Introduction

Knowledge Interchange Format (KIF) is a formal language for the interchange of

knowledge among disparate computer programs (written by di�erent programmers, at

di�erent times, in di�erent languages, and so forth).

KIF is not intended as a primary language for interaction with human users (though

it can be used for this purpose). Di�erent programs can interact with their users in

whatever forms are most appropriate to their applications (for example frames, graphs,

charts, tables, diagrams, natural language, and so forth).

KIF is also not intended to be an internal representation for knowledge within com-

puter programs or within closely related sets of programs (though it can be used for this

purpose as well). Typically, when a program reads a knowledge base in KIF, it converts

the data into its own internal form (specialized pointer structures, arrays, etc.). All com-

putation is done using these internal forms. When the program needs to communicate

with another program, it maps its internal data structures into KIF.

The purpose of KIF is roughly analogous to that of Postscript. Postscript is com-

monly used by text and graphics formatting programs in communicating information

about documents to printers. Although it is not as e�cient as a specialized represen-

tation for documents and not as perspicuous as a specialized wysiwyg display, Postscript

is a programmer-readable representation that facilitates the independent development of

formatting programs and printers. While KIF is not as e�cient as a specialized represen-

tation for knowledge nor as perspicuous as a specialized display (when printed in its list

form), it too is a programmer-readable language and thereby facilitates the independent

development of knowledge-manipulation programs.

The de�nition of KIF is highly detailed. Some of these details are essential; others

are arbitrary. The following general features are essential in the de�nition of KIF.

1. The language has declarative semantics. It is possible to understand the meaning of

expressions in the language without appeal to an interpreter for manipulating those

expressions. In this way, KIF di�ers from other languages that are based on speci�c

interpreters, such as Emycin and Prolog.

2. The language is logically comprehensive { it provides for the expression of arbitrary

sentences in predicate calculus. In this way, it di�ers from relational database lan-

guages (many of which are con�ned to ground atomic sentences) and Prolog-like lan-

guages (that are con�ned to Horn clauses).

3. The language provides for the representation of knowledge about the representation of

knowledge. This allows us to make all knowledge representation decisions explicit and

permits us to introduce new knowledge representation constructs without changing

the language.

In addition to these hard criteria, KIF is designed to maximize in a joint fashion the

following somewhat softer measures as well (to the extent possible while satisfying the

preceding criteria).

5

1. Translatability. A central operational requirement for KIF is that it enable practi-

cal means of translating declarative knowledge bases to and from typical knowledge

representation languages.

2. Readability. Although KIF is not intended primarily as a language for interaction with

humans, human readability facilitates its use in describing representation language

semantics, its use as a publication language for example knowledge bases, its use in

assisting humans with knowledge base translation problems, etc.

3. Useability as a representation language. Although KIF is not intended for use within

programs as a representation or communication language, it can be used for that

purpose if so desired.

This document supplies full technical details of KIF. Chapter 2 presents the formal

syntax of the language. Chapter 3 discusses conceptualizations of the world. Chapter 4

de�nes the semantics of the language. Chapter 5 deals with lists; chapter 6, with sets;

and chapter 7, with functions and relations. Chapter 8 describes how metaknowledge is

encoded. Chapter 9 describes the formalization of monotonic and nonmonotonic rules of

inference. Chapter 10 discusses de�nitions.

6

Chapter 2

Syntax

Like many computer-oriented languages, KIF has two varieties. In linear KIF, all

expressions are strings of ASCII characters and, as such, are suitable for storage on serial

devices (such as magnetic disks) and for transmission on serial media (such as phone

lines). In structured KIF, the legal \expressions" of the language are structured objects.

Structured KIF is of special use in communication between programs operating in the same

address space.

Fortunately, there is a simple correspondence between the two varieties of KIF. For

every character string, there is exactly one corresponding list structure; and, for every list

structure, there is exactly one corresponding character string (once all unnecessary white

space is eliminated).

In what follows, we �rst de�ne the mapping between the linear and structured forms

of the language; and, thereafter, we deal exclusively with the structured form.

x2.1 Linear KIF

The alphabet of linear KIF consists of the 128 characters in the ASCII character

set. Some of these characters have standard print representations; others do not. The

characters with standard print representations (93 of the 128) are shown below.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 () [] { } < >

= + - * / \ & ^ ~ ' ` " _ @ # $ % : ; , . ! ?

KIF originated in a Lisp application and inherits its syntax from Lisp. The relationship

between linear KIF and structured KIF is most easily speci�ed by appeal to the Common

Lisp reader [Steele]. In particular, a string of ascii characters forms a legal expression

in linear KIF if and only if (1) it is acceptable to the Common Lisp reader (as de�ned

in Steele's book) and (2) the structure produced by the Common Lisp reader is a legal

expression of structured KIF (as de�ned in the next section).

x2.2 Structured KIF

In structured KIF, the notion of word is taken as primitive. An expression is ei-

ther a word or a �nite sequence of expressions. In our treatment here, we use enclosing

parentheses to bound the items in a composite expression.

<word> ::= a primitive syntactic object

<expression> ::= <word> | (<expression>*)

The set of all words is divided into the categories listed below. This categorization

is disjoint and exhaustive. Every word is a member of one and only one category. (The

categories de�ned here are used again in the grammatical rules of subsequent tables.)

7

<indvar> ::= a word beginning with the character ?

<seqvar> ::= a word beginning with the character @

<termop> ::= listof | setof | quote | if | cond |

the | setofall | kappa | lambda

<sentop> ::= = | /= | not | and | or | => | <= | <=> | forall | exists

<ruleop> ::= =>> | <<= | consis

<defop> ::= defobject | defunction | defrelation | := | :=> | :&

<objconst> ::= a word denoting an object

<funconst> ::= a word denoting a function

<relconst> ::= a word denoting a relation

<logconst> ::= a word denoting a truth value

From these fundamental categories, we can build up more complex categories, viz.

variables, operators, and constants.

<variable> ::= <indvar> | <seqvar>

<operator> ::= <termop> | <sentop> | <ruleop> | <defop>

<constant> ::= <objconst> | <funconst> | <relconst> | <logconst>

A variable is a word in which the �rst character is ? or @. A variable that begins with

? is called an individual variable. A variable that begins with an @ is called a sequence

variable. Individual variables are used in quantifying over individual objects. Sequence

variables are used in quantifying over sequences of objects.

Operators are used in forming complex expressions of various sorts. There are four

types of operators in KIF { term operators, sentence operators, rule operators, and de�ni-

tion operators. Term operators are used in forming complex terms. Sentence operators are

used in forming complex sentences. Rule operators are using in forming rules. De�nition

operators are used in forming de�nitions.

A constant is any word that is neither a variable nor an operator. There are four

categories of constants in KIF { object constants, function constants, relation constants,

and logical constants. Object constants are used to denote individual objects. Function

constants denote functions on those objects. Relation constants denote relations. Logical

constants express conditions about the world and are either true or false.

Some constants are basic in that their type and meaning are �xed in the de�nition of

KIF. All other constants are non-basic in that the language user gets to choose the type

and the meaning. All numbers, characters, and strings are basic constants in KIF; the

remaining basic constants are described in the remaining chapters of this document.

KIF is unusual among logical languages in that there is no way of determining the

category of a non-basic constant (i.e. whether it is an object, function, relation, or logical

constant) from its inherent properties (i.e. its spelling). The user selects the category

8

of every non-basic constant for himself. The user need not declare that choice explicitly.

However, the category of a constant determines how it can be used in forming expressions,

and its category can be determined from this use. Consequently, once a constant is used

in a particular way, its category becomes �xed.

There are four special types of expressions in the language { terms, sentences, rules,

and de�nitions. Terms are used to denote objects in the world being described; sentences

are used to express facts about the world; rules are used to express legal steps of inference;

and de�nitions are used to de�ne constants; and forms are either sentences, rules, or

de�nitions.

The set of legal terms in KIF is de�ned below. There are ten types of terms { individual

variables, object constants, function constants, relation constants, functional terms, list

terms, set terms, quotations, logical terms, and quanti�ed terms. Individual variables,

object constants, function constants, and relation constants were discussed earlier.

<term> ::= <indvar> | <objconst> | <funconst> | <relconst>|

<funterm> | <listterm> | <setterm> |

<quoterm> | <logterm> | <quanterm>

<listterm> ::= (listof <term>* [<seqvar>])

<setterm> ::= (setof <term>* [<seqvar>])

<funterm> ::= (<funconst> <term>* [<seqvar>])

<quoterm> ::= (quote <expression>)

<logterm> ::= (if <sentence> <term> [<term>])|

(cond (<sentence> <term>) ... (<sentence> <term>))

<quanterm> ::= (the <term> <sentence>)|

(setofall <term> <sentence>)|

(kappa (<indvar>* [<seqvar>]) <sentence>*)|

(lambda (<indvar>* [<seqvar>]s) <term>)

A functional term consists of a function constant and an arbitrary number of argu-

ment terms, terminated by an optional sequence variable. Note that there is no syntactic

restriction on the number of argument terms { the same function constant can be applied

to di�erent numbers of arguments; arity restrictions in KIF are treated semantically.

A list term consists of the listof operator and a �nite list of terms, terminated by

an optional sequence variable.

A set term consists of the setof operator and a �nite list of terms, terminated by an

optional sequence variable.

Quotations involve the quote operator and an arbitrary list expression. The embedded

expression can be an arbitrary list structure; it need not be a legal expression in KIF.

Remember that the Lisp reader converts strings of the form '� into (quote �).

9

Logical terms involve the if and cond operators. The if form allows for the testing

of a single condition only, whereas the cond form allows for the testing of a sequence of

conditions.

Quanti�ed terms involve the operators the, setofall, kappa, and lambda. A desig-

nator consists of the the operator, a term, and a sentence. A set-forming term consist of

the setof operator, a term, and a sentence. A relation-forming term consists of kappa,

a list of variables, and a sentence. A function-forming term consists of lambda, a list of

variables, and a term. Strictly speaking, we do not need kappa and lambda { both can be

de�ned in terms of setof; they are included in KIF for the sake of convenience.

The following BNF de�nes the set of legal sentences in KIF. There are six types of

sentences. We have already mentioned logical constants.

<sentence> ::= <logconst>|<equation>|<inequality>|

<relsent>|<logsent>|<quantsent>

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relconst> <term>* [<seqvar>])|

(<funconst> <term>* <term>)

<logsent> ::= (not <sentence>)|

(and <sentence>*)|

(or <sentence>*)|

(=> <sentence>* <sentence>)|

(<= <sentence> <sentence>*)|

(<=> <sentence> <sentence>)

<quantsent> ::= (forall <indvar> <sentence>)|

(forall (<indvar>*) <sentence>)|

(exists <indvar> <sentence>)|

(exists (<indvar>*) <sentence>)

An equation consists of the = operator and two terms.

An inequality consist of the /= operator and two terms.

A relational sentence consists of a relation constant and an arbitrary number of argu-

ment terms, terminated by an optional sequence variable. As with functional terms, there

is no syntactic restriction on the number of argument terms in a relation sentence { the

same relation constant can be applied to any �nite number of arguments.

The syntax of logical sentences depends on the logical operator involved. A sentence

involving the not operator is called a negation. A sentence involving the and operator is

called a conjunction, and the arguments are called conjuncts. A sentence involving the

or operator is called a disjunction, and the arguments are called disjuncts. A sentence

involving the => operator is called an implication; all of its arguments but the last are

10

called antecedents; and the last argument is called the consequent. A sentence involving

the <= operator is called a reverse implication; its �rst argument is called the consequent;

and the remaining arguments are called the antecedents. A sentence involving the <=>

operator is called an equivalence.

There are two types of quanti�ed sentences { a universally quanti�ed sentence is sig-

nalled by the use of the forall operator, and an existentially quanti�ed sentence is signalled

by the use of the exists operator.

The following BNF de�nes the set of legal KIF rules.

<rule> ::= (=>> <premise>* <sentence>) |

(<<= <sentence> <premise>*)

<premise> ::= <sentence> | (consis <sentence>)

The last argument in a forward rule is called the consequent of the rule. Analogously,

the �rst argument in a reverse rule is called the consequent. The premises that are sentences

are its prerequisites, and the premises that have the form (consis �) are its justi�cations.

The following BNF de�nes the set of legal KIF de�nitions.

<definition> ::= <complete> | <partial>

<complete> ::=

(defobject <objconst> := <term>) |

(deffunction <funconst> (<indvar>* [<seqvar>]) := <term>) |

(defrelation <relconst> (<indvar>* [<seqvar>]) := <sentence>)

<partial> :: <conservative> | <unrestricted>

<conservative> ::=

(defobject <objconst> [:conservative-axiom <sentence>]) |

(deffunction <funconst> [:conservative-axiom <sentence>]) |

(defrelation <relconst> [:conservative-axiom <sentence>])|

(defrelation <relconst> (<indvar>* [<seqvar>])

:=><sentence> [:conservative-axiom <sentence>])

<unrestricted> ::=

(defobject <objconst> <sentence>*) |

(deffunction <funconst> <sentence>*) |

(defrelation <relconst> <sentence>*) |

(defrelation <relconst> (<indvar>* [<seqvar>])

:=> <sentence> [:axiom <sentence>])

De�nitions are used to make category declarations and specify de�ning axioms for

constants (e.g. \A triangle is a polygon with 3 sides."). KIF de�nitions can be complete in

that they specify an expression that de�nes the concept completely, or they can be partial in

that they constrain the concept without necessarily giving a complete equivalence. Partial

de�nitions can be either conservative or unrestricted. Conservative de�nitions are restricted

11

in that their addition to a knowledge base does not result in the logical entailment of any

additional sentences not containing the constant being de�ned.

Object constants are de�ned using the defobject operator by specifying (1) a term

that is equivalent to the constant or (2) a sentence that provides a partial description of

the object denoted by the constant. Function constants are de�ned using the deffunction

operator by specifying (1) a term that is equivalent to the function applied to a given set of

arguments or (2) a sentence that provides a partial description of the function denoted by

the constant. Relation constants are de�ned using the defrelation operator by specifying

(1) necessary and su�cient conditions for the relation to hold, (2) necessary conditions for

the relation to hold, or (3) arbitrary sentences describing the relation.

A form in KIF is either a sentence, a rule, or a de�nition.

<form> ::= <sentence> | <definition> | <rule>

A knowledge base is a �nite set of forms. It is important to keep in mind that a

knowledge base is a set of sentences, not a sequence; the order of forms within the knowledge

base is unimportant.

12

Chapter 3

Conceptualization

The formalization of knowledge in KIF, as in any declarative representation, requires

a conceptualization of the world in terms of objects, functions, and relations.

x3.1 Objects

A universe of discourse is the set of all objects presumed or hypothesized to exist in

the world. The notion of object used here is quite broad. Objects can be concrete (e.g.

a speci�c carbon atom, Confucius, the Sun) or abstract (e.g. the number 2, the set of

all integers, the concept of justice). Objects can be primitive or composite (e.g. a circuit

that consists of many subcircuits). Objects can even be �ctional (e.g. a unicorn, Sherlock

Holmes).

Di�erent users of a declarative representation language, like KIF, are likely to have

di�erent universes of discourse. KIF is conceptually promiscuous in that it does not require

every user to share the same universe of discourse. On the other hand, KIF is conceptually

grounded in that every universe of discourse is required to include certain basic objects.

The following basic objects must occur in every universe of discourse.

� Words. Yes, the words of KIF are themselves objects in the universe of discourse,

along with the things they denote.

� All complex numbers.

� All �nite lists of objects in the universe of discourse.

� All sets of objects in the universe of discourse.

� ? (pronounced \bottom") { a distinguished object that occurs as the value of various

functions when applied to arguments for which the functions make no sense.

Remember, however, that to these basic elements, the user can add whatever non-basic

objects seem useful.

x3.2 Functions and Relations

A function is one kind of interrelationship among objects. For every �nite sequence

of objects (called the arguments), a function associates a unique object (called the value).

More formally, a function is de�ned as a set of �nite lists of objects, one for each combi-

nation of possible arguments. In each list, the initial elements are the arguments, and the

�nal element is the value. For example, the 1+ function contains the list h2; 3i, indicating

that integer successor of 2 is 3.

A relation is another kind of interrelationship among objects in the universe of dis-

course. More formally, a relation is an arbitrary set of �nite lists of objects (of possibly

varying lengths). Each list is a selection of objects that jointly satisfy the relation. For

example, the < relation on numbers contains the list h2; 3i, indicating that 2 is less than

3.

13

Note that both functions and relations are de�ned as sets of lists. In fact, every

function is a relation. However, not every relation is a function. In a function, there

cannot be two lists that disagree on only the last element. This would be tantamount

to the function having two values for one combination of arguments. By contrast, in a

relation, there can be any number of lists that agree on all but the last element. For

example, the list h2; 3i is a member of the 1+ function, and there is no other list of length

2 with 2 as its �rst argument, i.e. there is only one successor for 2. By contrast, the <

relation contains the lists h2; 3i, h2; 4i, and so forth, indicating that 2 is less than 3, 4, and

so forth.

Many mathematicians require that functions and relations have �xed arity, i.e they

require that all of the lists comprising a function or relation have the same length. The

de�nitions here allow for functions and relations with variable arity, i.e. it is perfectly

acceptable for a function or a relation to contain lists of di�erent lengths. For example,

the + function contains the lists h1; 1; 2i and h1; 1; 1; 3i, reecting the fact that the sum

of 1 and 1 is 2 and the fact that the sum of 1 and 1 and 1 is 3. Similarly, the relation <

contains the lists h1; 2i and h1; 2; 3i, reecting the fact that 1 is less than 2 and the fact

that 1 is less than 2 and 2 is less than 3. This exibility is not essential, but it is extremely

convenient and poses no signi�cant theoretical problems.

14

Chapter 4

Semantics

Intuitively, the semantics of KIF is very simple. Unfortunately, the formal details are

quite complex. Consequently, we proceed gradually in our presentation. In this chapter,

we introduce the basic notions underlying the semantics of KIF (in particular, the notions

of interpretation, variable assignment, semantic value, truth value, and various types of

entailment).

The basis for KIF semantics is a correlation between the terms and sentences of the

language and a conceptualization of the world. Every term denotes an object in the

universe of discourse associated with the conceptualization, and every sentence is either

true or false.

When we encode knowledge in KIF, we select constants on the basis of our under-

standing of their meanings. In some cases (e.g. the basic constants of the language), these

meanings are �xed in the de�nition of the language. In other cases (i.e. the non-basic

constants), the meanings can vary from one user to another.

Given exact meanings for the constants of the language (whether they are the meanings

in the de�nition of the language or our own concoctions), the semantics of KIF tells us the

meaning of its complex expressions. We can unambiguously determine the referent of any

term, and we can unambiguously determine the truth or falsity of any sentence.

Unfortunately, few of us have complete knowledge about the world. In keeping with

traditional logical semantics, this is equivalent to not knowing the exact referent for every

constant in the language. In such situations, we write sentences that reect all of the

meanings consistent with whatever knowledge we have. In such situations, the semantics

of the language cannot pick out exact meanings for all expressions in the language, but it

does place constraints on the meanings of complex expressions.

And, of course, the meanings we ascribe to non-basic constants may di�er from those

ascribed by others. However, we can convey our meanings to others by writing sentences

to constrain those meanings in accordance with our usage. By writing more and more

sentences, the set of possible referents for our constants is decreased.

In the remainder of this section, we provide precise de�nitions for the ideas just

introduced. We start o� with a de�nition for the interpretation of constants, and we

introduce the related notion of variable assignment. We then show how these concepts are

used in de�ning the semantic value of terms and the truth value of sentences. Finally, we

introduce several approaches to entailment, which eliminates the dependence of meaning

on the interpretation of non-basic constants.

x4.1 Interpretation

An interpretation is a function i that associates the constants of KIF with the ele-

ments of a conceptualization. In order to be an interpretation, a function must satisfy the

following two properties.

First, the function must map constants into concepts of the appropriate type. It

must map object constants into objects in the universe of discourse. It must map function

constants into functions on the universe of discourse. It must map relation constants into

15

relations on the universe of discourse. Notice that we allow for functions and relations

of variable, �nite arity. The function must map logical constants into one of the boolean

values true or false (which may or may not be members of the universe of discourse).

1. If � is an object constant, then i(�) 2 O.

2. If � is a function constant, then i(�) : O� �! O.

3. If � is a relation constant, then i(�) � O
�.

3. If � is a logical constant, then i(�) 2 ftrue; falseg.

Second, i must \satisfy" the conditions and axioms given in this chapter and the

remaining chapters of this document. As a start, this includes the following conditions.

Every interpretation must map every numerical constant � into the corresponding

number n (assuming base 10).

i(�) = n

Every interpretation must map the object constant bottom into ?.

i(bottom) = ?

Every interpretation must map the logical constant true into true and the logical

constant false into false.

i(true) = true

i(false) = false

Note that, even with these restrictions, KIF is only a \partially interpreted" language.

Although the interpretations of some constants (the basic constants) are constrained in

the de�nition of the language, the meanings of other constants (the non-basic constants)

are left open (i.e. left to the imaginations of the language users).

x4.2 Variable Assignment

A variable assignment is a function that (1) maps individual variables V into objects

in a universe of discourse O and (2) maps sequence variables W into �nite sequences of

objects.

v : V �! O

v :W �! O
�

The notion of a variable assignment is important in de�ning the meaning of quanti�ed

terms and sentences and is discussed further below.

16

x4.3 Semantic Value

Given an interpretation and a variable assignment, we can assign a semantic value to

every term in the language. We formalize this as a function siv from the set T of terms

into the set O of objects in the universe of discourse.

siv : T �! O

If an expression is an individual variable �, the semantic value is the object assigned

to that variable by the given variable assignment.

siv(�) = v(�)

The semantic value of an object constant � is the object assigned to that constant by

the given interpretation.

siv(�) = i(�)

The semantic value of a function constant � is the set of tuples in the universe of

discourse corresponding to the function denoted by �. Here, we use the operator lambda

to denote this function. A full description of the semantics of expressions involving lambda

is given later.

siv(�) = siv((lambda (@l) (� @l)))

The semantic value of a relation constant � is the set of tuples in the universe of

discourse corresponding to the relation denoted by �. Here, we use the operator kappa to

denote this relation. A full description of the semantics of expressions involving kappa is

given later.

siv(�) = siv((kappa (@l) (� @l)))

In most cases, the semantic value of a function or relation constant is the same as its

interpretation. However, in order to avoid paradoxes, it must in some cases be di�erent.

See the chapter on sets for a fuller discussion of this subject.

The semantic value of a functional term without a terminating sequence variable is

obtained by applying the function denoted by the function constant in the term to the

objects denoted by the arguments.

siv((� �1...�n)) = i(�)[siv(�1); :::; siv(�n)]

If a functional term has a terminating sequence variable, the semantic value is obtained

by applying the function to the sequence of arguments formed from the values of the terms

that precede the sequence variable and the values in the sequence denoted by the sequence

variable. (The vertical bar j here means that the objects in the sequence following the bar

are appended to the sequence of elements before the bar.)

siv((� �1...�n !)) = i(�)[siv(�1); :::; siv(�n)jsiv(!)]

17

A term that begins with listof refers to the sequence of objects denoted by the argu-

ments in the term. There is no restriction on the objects in the sequence.

siv((listof �1 ... �k)) = hsiv(�1); :::; siv(�k)i

If a term that begins with listof ends with a sequence variable, the value of the

term as a whole is the sequence consisting of the objects denoted by the terms prior to

the sequence variable together with the objects in the sequence denoted by the sequence

variable.

siv((listof �1 ... �k !)) = hsiv(�1); :::; siv(�k)jsiv(!)i

A term that begins with setof refers to the set of \bounded" objects denoted by the

arguments in the term. The concept of boundedness is discussed further in the chapter on

sets.

siv((setof �1 ... �k)) = fsiv(�1); :::; siv(�k)g

If a term that begins with setof ends with a sequence variable, the value of the term

as a whole is the set consisting of the bounded objects denoted by the terms prior to

the sequence variable together with the bounded objects in the sequence denoted by the

sequence variable.

siv((setof �1 ... �k !)) = fsiv(�1); :::; siv(�k)g [fxjx = siv(!)ng

A quotation denotes the expression contained as argument of the quote operator.

Remember that the universe of discourse for every interpretation must contain all list

expressions and that the argument to quote can be any list expression, whether or not it

is a legal expression in KIF.

siv((quote �)) = �

Note that any KIF expression (other than a word) is a sequence of KIF expressions.

Thus, there are two ways it can be denoted { with quote and with listof. This means

we have the following equivalence.

siv((quote (�1 ... �n))) = siv((listof (quote �1) ... (quote �n)))

The semantic value of a simple conditional term depends on the truth value of the

embedded sentence (see next section). If the truth value of the embedded sentence is true,

then the semantic value of the term as a whole is the semantic value of the �rst term;

otherwise, it is the semantic value of the second term (if there is one).

siv((if � �1 �2)) =

�
siv(�1) tiv(�) = true

siv(�2) otherwise

18

If a simple conditional has only one embedded term and the truth value of the em-

bedded sentence is true, then the semantic value of the term is the semantic value of the

embedded term. Otherwise, the value is ?.

siv((if � �1)) =
n
siv(�1) tiv(�) = true

? otherwise

The semantic value of a complex conditional is the semantic value of the �rst term

for which the truth value of the corresponding sentence is true. If none of the sentences

are true, the semantic value is ?.

siv((cond (�1 �1) ... (�n �n))) =

8><
>:
siv(�1) tiv(�1) = true

::: ...

siv(�2) tiv(�n) = true

? otherwise

The semantic value of a quanti�ed term with an interpretation i and variable assig-

ment v is determined by the semantic value of the embedded term or the truth value of

the embedded sentence under the same interpretation but with various new versions of the

variable assignment. We say that a variable assignment v0 is a version of variable assign-

ment v with respect to variables �1,, �n if and only if v0 agrees with v on all variables

except for �1,, �n. The assignments for �1,, �n can be the same as those in v or can

be completely di�erent.

The referent of a designator with term � as �rst argument and sentence � can be one

of two things. Consider all versions v0 of v with respect to the free variables in � . If there

is at least one version v
0 that makes � true and the semantic value of � is the same in

every v0 that makes � true, then the semantic value of the designator as a whole is that

value. If there is more than one such value, the semantic value is ?.

siv((the � �)) =

(
siv0 (�) tiv0(�) = true and

siv00 (�) = siv0 (�) for all v00 tiv00(�) = true

? otherwise

A set-forming term with the term � as �rst argument and the sentence � as second

argument denotes the set of objects in the universe of discourse with the following proper-

ties. (1) The object must be the semantic value of � for some version v0 of v that makes �

true. (2) The object must be bounded. A term is bounded if and only if it satis�es the in-

terpretation of the bounded relation. See the chapter on sets for the axioms characterizing

this relation.

siv((setofall � �)) = fsiv0 (�)jtiv0(�) = true; siv0 (�) 2 i(bounded)g

A function-forming term denotes the set of tuples of bounded objects corresponding

to the function that maps every tuple of objects matching the �rst argument of the term

into the semantic value of the second argument.

siv((lambda (�1...�n) �)) = siv((setofall (listof �1...�n �) (= � �))

19

If the argument list of the function-forming term terminates in a sequence variable, the

semantic value of the term is the union of the in�nite series of sets of tuples corresponding

to (1) the same term in which all occurrences of the sequence variable are dropped, (2)

the same term in which all occurrences of the sequence variable are replaced by a single

individual variable, (3) the same term in which all occurrences of the sequence variable are

replaced by two individual variables, etc.

A relation-forming term denotes the set of all tuples of bounded objects that satisfy

the embedded sentence.

siv((kappa (�1...�n [�]) �)) = siv((setofall (listof �1...�n [�]) �))

x4.4 Truth Value

In a manner similar to that for terms, we de�ne the truth value for sentences in the

language as a function tiv that maps sentences S into the truth values true or false.

tiv : S �! ftrue; falseg

The truth value of a logical constant is the truth value assigned by the corresponding

interpretation.

tiv(�) = i(�)

An equation is true if and only if the terms in the equation refer to the same object

in the universe of discourse.

tiv((= �1 �2)) =

�
true siv(�1) = siv(�2)

false otherwise

An inequality is true if and only if the terms in the equation refer to distinct objects

in the universe of discourse.

tiv((/= �1 �2)) =
n
false siv(�1) = siv(�2)

true otherwise

The truth value of a simple relational sentence without a terminating sequence variable

is true if and only if the relation denoted by the relation constant in the sentence is true of

the objects denoted by the arguments. Equivalently, viewing a relation as a set of tuples,

we say that the truth value of a relational sentence is true if and only if the tuple of objects

formed from the values of the arguments is a member of the set of tuples denoted by the

relation constant.

tiv((� �1 ... �n)) =

�
true hsiv(�1); :::; siv(�n)i 2 i(�)

false otherwise

If a relational sentence terminates in a sequence variable, the sentence is true if and

only if the relation contains the tuple consisting of the values of the terms that precede

20

the sequence variable together with the objects in the sequence denoted by the variable.

Remember that the vertical bar j means that the objects in the sequence following the bar

are appended to the sequence of elements before the bar.

tiv((� �1 ... �n !)) =

�
true hsiv(�1); :::; siv(�n)jsiv(!)i 2 i(�)

false otherwise

The truth value of a negation is true if and only if the truth value of the negated

sentence is false.

tiv((not �)) =

�
true tiv(�) = false

false otherwise

The truth value of a conjunction is true if and only if the truth value of every conjunct

is true.

tiv((and �1 ... �n)) =

�
true tiv(�j) = true for all j 1 � j � n

false otherwise

The truth value of a disjunction is true if and only if the truth value of at least one

of the disjuncts is true.

tiv((or �1 ... �n)) =

�
true tiv(�j) = true for some j 1 � j � n

false otherwise

If the truth value of every antecedent in an implication is true, then the the truth

value of the implication as a whole is true if and only if the truth value of the consequent is

true. If any of the antecedents is false, then the implication as a whole is true, regardless

of the truth value of the consequent.

tiv((=> �1 ... �n �)) =

�
true for some j tiv(�j) = false or tiv(�) = true

false otherwise

A reverse implication is just an implication with the consequent and antecedents

reversed.

tiv((<= � �1 ... �n)) =

�
true tiv(�) = true or for some j tiv(�j) = false

false otherwise

The truth value of an equivalence is true if and only if the embedded sentences have

the same truth value.

tiv((<=> �1 �2)) =

�
true tiv(�1) = tiv(�2)

false otherwise

Given an interpretation i and variable assignment v, the truth value of an existentially

quanti�ed sentence is true if and only if the truth value of the second argument is true for

some version v0 of variable assignment v with respect to the variables in the �rst argument.

21

tiv((exists (�1 ... �k !) �)) =

�
true 9v0 tiv0(�) = true

false otherwise

Given an interpretation i and variable assignment v, the truth value of a universally

quanti�ed sentence is true if and only if the truth value of the second argument of the

sentence is true for every version v0 of v with respect to variables in the �rst argument.

tiv((forall (�1 ... �k !) �)) =

�
true 8v0 tiv0(�) = true

false otherwise

x4.5 Logical Entailment

The de�nition of truth value relies on both an interpretation for the constants of KIF

and an assignment for its variables. In encoding knowledge, we often have in mind a speci�c

interpretation for the constants in our language, but we want our variables to range over

the universe of discourse (either existentially or universally). In order to provide a notion

of semantics that is independent of the assignment of variables, we turn to the notion of

satisfaction.

An interpretation i logically satis�es a sentence � if and only if the truth value of the

sentence is true for all variable assignments. Whenever this is the case, we say that i is

a model of �. Extending this notion to sets of sentences, we say that an interpretation is

a model of a set of sentences if and only if it is a model of every sentence in the set of

sentences.

Obviously, a variable assignment has no e�ect on the truth value of a sentence with-

out free variables (i.e. a ground sentence or one in which all variables are bound). Conse-

quently, if an interpretation satis�es such a sentence for one variable assignment, it satis�es

it for every variable assignment.

The occurrence of free variables in a sentence means that the sentence is true for all

assignments of the variables. For example, the sentence (p $x) means that the relation

denoted by p is true for all objects in the universe of discourse. In other words, the

meaning of a sentence with free variables is the same as the meaning of a universally

quanti�ed sentence in which all of the free variables are boundby the universal quanti�er.

In KIF, we use this fact to sanction the dropping of pre�x universal quanti�ers that do

not occur inside the scope of existential quanti�ers. In other words, we are permitted to

write (=> (apple $x) (red $x)) in place of the more cumbersome (forall ($x) (=>

(apple $x) (red $x))).

Unfortunately, the notion of satisfaction is disturbing in that it is relative to an inter-

pretation. As a result, di�erent individuals and di�erent programs with di�erent interpre-

tations may disagree on the truth of a sentence.

It is true that, as we add more sentences to a knowledge base, the set of models

generally decreases. The goal of knowledge encoding is to write enough sentences so that

unwanted interpretations are eliminated. Unfortunately, this is not always possible. In the

light of this fact, how are we to interpret the expressions in such situations? The answer

is to generalize over interpretations as earlier we generalized over variable assignments.

22

If � is a set of sentences, we say that � logically entails a sentence � if and only every

model of � is also a model of �.

With this notion, we can rephrase the goal of knowledge representation as follows. It

is to encode enough sentences so that every conclusion we desire is logically entailed by

our set of sentences. It is a sad fact that this is not always possible, but it is the ideal

toward which we strive.

x4.6 Indexical Entailment

In the de�nition of logical entailment, all interpretations are taken into account; there

is no constraint. In certain situations, it is desirable to restrict the possible interpretations

to those in which certain constants are assigned values having to do with the set of sentences

itself. In this case, the constants are said to be indexical. An interpretation then is indexical

if and only if it assigns these indexical constants correctly.

In KIF, there is a single indexical constant, viz. the object constant knowedge-base.

An indexical interpretation of a knowledge base � is one in which this constant is assigned

� as value. This one indexical makes it possible for the user to write sentences that depend

on the knowledge base within which the sentences are contained.

Finally, we say that a set of sentences indexically entails a conclusion if and only if

every indexical interpretation and variable assignment that satis�es the set of sentences

also satis�es the conclusion.

x4.7 Nonmonotonic Entailment

Recall that the truth value of a sentence is de�ned relative to an interpretation i and

a variable assignment v. To de�ne the nonmonotonic value of a premise in a rule, we need

to select, instead of a single interpretation i, a set of interpretations { the interpretations

that are considered \possible". In the following de�nition, I is a set of interpretations

which all have the same universe of discourse O, and v is a variable assignment with this

universe. We consider prerequisites and justi�cations separately.

The nonmonotonic value of a prerequisite is true if and only if it is true at every

\possible" intepretation.

nIv(�) =

�
true 8i 2 I tiv(�) = true

false otherwise

The nonmonotonic value of a justi�cation is true if and only if its argument is true

for at least one \possible" intepretation.

nIv((consis �)) =

�
true 9i 2 I tiv(�) = true

false otherwise

Let � be a knowledge base with rules. We de�ne when a set I of interpretations is \a

set of possible worlds" for �, by means of the following �xpoint construction. Consider a

universe of discourse O; by a world we understand an interpretation with the universe O.

Let I be the set of all worlds that satisfy the sentences in �. Consider a maximal set I 0

of worlds such that, for each rule � 2 � and each variable assignment v with the universe

23

O, the following condition holds. If the nonmonotonic value of every prerequisite of � for

I
0 and v is true, and the nonmonotonic value of every justi�cation of � for I and v is true,

then the nonmonotonic value of the consequent of � for I 0 and v is true. (This I 0 always

exists.) If I 0 is maximal, then we say that I 0 is a set of possible worlds for �. Typically, a

knowledge base with rules has many sets of possible worlds; it is clear, for instance, that

any two interpretations with di�erent universes cannot belong to the same set of possible

worlds.

An interpretation i is a nonmonotonic model of � if it belongs to some set of possible

worlds for �. We say that a nonmonotonic knowledge base � nonmonotonically entails a

sentence � if and only every nonmonotonic model of � is also a model of �.

Note that the de�nition of a model for nonmonotonic knowledge bases is \nonlocal" {

we cannot check whether an interpretation i is a model by looking at each rule in isolation.

This feature of the de�nition is responsible for the nonmonotonic character in this notion

of entailment.

x4.8 De�nitions

The de�nitional operators in KIF allow us to state sentences that are true \by de�ni-

tion" in a way that distinguishes them from sentences that express contingent properties

of the world. De�nitions have no truth values in the sense described above. They are so

because we say that they are so.

On the other hand, de�nitions have content { sentences that allow us to derive other

sentences as conclusions. In KIF, every de�nition has a corresponding set of sentences,

called the content of the de�nition. In general, there are three parts to this content.

First of all, there is information about the category of the constant in the de�nition.

If the constant is a function constant or a relation constant, there is also information about

its arity.

Second, there is the de�ning axiom associated with the de�nition (see below).

Finally, there is a sentence stating that the de�ning axiom associated with the de�ni-

tion is indeed a de�ning axiom for the associated concept (named by the constant � used

in the de�nition). The following sentence expresses this fact. Note the use of quotes to

capture the fact that this is a relationship between a constant and a sentence.

(defining-axiom '� '�)

The rules for determining the de�ning axioms for a de�nition are somewhat com-

plicated and are described fully in the chapter on de�nitions. The following is a brief

outline, su�cient to enable the reader to understand the use of de�nitional constructs in

the intervening chapters.

The defobject operator is used to de�ne objects. The two simplest forms are shown

below, together with their de�ning axioms. In the �rst case, the de�ning axiom is the

equation involving the object constant in the de�nition with the de�ning term. In the

second case, the de�ning axiom is the conjunction of the constituent sentences.

24

De�nition De�ning Axiom

(defobject � := �) (= � �)

(defobject � �1 ... �n) (and �1 ... �n)

The deffunction operator is used to de�ne functions. Again, the two simplest forms

are shown below, together with their de�ning axioms. In the �rst case, the de�ning axiom

is the equation involving (1) the term formed from the function constant in the de�nition

and the variables in its argument list and (2) the de�ning term. In the second case, as

with object de�nitions, the de�ning axiom is the conjunction of the constituent sentences.

De�nition De�ning Axiom

(deffunction � (�1 ...�n) := �) (= � (lambda (�1 ...�n) �))

(deffunction � �1 ... �n) (and �1 ... �n)

The defrelation operator is used to de�ne relations. The two simplest forms are

shown below, together with their de�ning axioms. In the �rst case, the de�ning axiom is

the equivalence relating (1) the relational sentence formed from the relation constant in

the de�nition and the variables in its argument list and (2) the de�ning sentence. In the

second case, as with object and function de�nitions, the de�ning axiom is the conjunction

of the constituent sentences.

De�nition De�ning Axiom

(defrelation � (�1 ...�n) := �) (= � (kappa (�1 ...�n) �))

(defrelation � �1 ... �n) (and �1 ... �n)

For most purposes, a de�nition can be viewed as shorthand for the sentences in the

content of the de�nition.

25

Chapter 5

Numbers

KIF includes the following standard vocabulary for describing properties of numbers.

A formal axiomatization of numbers and of the associated functions and relations is being

developed for inclusion in later versions of this manual. Common Lisp is being used as a

guide in that development to determine both the types of numbers and the number-related

functions and relations to include in the language. The informal descriptions below are

provided to indicate the anticipated vocabulary.

x5.1 Functions on Numbers

* - If �1, ..., �n denote numbers, then the term (* �1 : : : �n) denotes the product of those

numbers.

+ - If �1, ..., �n are numerical constants, then the term (+ �1:::�n) denotes the sum � of

the numbers corresponding to those constants.

- - If � and �1, ..., �n denote numbers, then the term (- � �1:::�n) denotes the di�erence

between the number denoted by � and the numbers denoted by �1 through �n. An exception

occurs when n = 0, in which case the term denotes the negation of the number denoted

by � .

/ - If �1, ..., �n are numbers, then the term (/ �1:::�n) denotes the result � obtained by

dividing the number denoted by �1 by the numbers denoted by �2 through �n. An exception

occurs when n = 1, in which case the term denotes the reciprocal � of the number denoted

by �1.

1+ - The term (1+ �) denotes the sum of the object denoted by � and 1.

(deffunction 1+ (?x) := (+ ?x 1)) (5.1)

1- - The term (1- �) denotes the di�erence of the object denoted by � and 1.

(deffunction 1- (?x) := (- ?x 1)) (5.2)

abs - The term (abs �) denotes the absolute value of the object denoted by � .

(deffunction abs (?x) := (if (>= ?x 0) ?x (- ?x))) (5.3)

acos - If � denotes a number, then the term (acos �) denotes the arc cosine of that

number (in radians).

acosh - The term (acosh �) denotes the arc cosine of the object denoted by � (in radians).

ash - The term (ash �1 �2) denotes the result of arithmetically shifting the object denoted

by �1 by the number of bits denoted by �2 (left or right shifting depending on the sign of

�2).

26

asin - The term (asin �) denotes the arc sine of the object denoted by � (in radians).

asinh - The term (asinh �) denotes the hyperbolic arc sine of the object denoted by �

(in radians).

atan - The term (atan �) denotes the arc tangent of the object denoted by � (in radians).

atanh - The term (atanh �) denotes the hyperbolic arc tangent of the object denoted

by � (in radians).

boole - The term (boole � �1 �2) denotes the result of applying the operation denoted

by � to the objects denoted by �1 and �2.

ceiling - If � denotes a real number, then the term (ceiling �) denotes the smallest

integer greater than or equal to the number denoted by � .

cis - The term (cis �) denotes the complex number denoted by cos(�) + isin(�). The

argument is any non-complex number of radians.

conjugate - If � denotes a complex number, then the term (conjugate �) denotes the

complex conjugate of the number denoted by � .

(deffunction conjugate (?c) :=

(complex-number (realpart ?c) (- (imagpart ?c)))) (5.4)

cos - The term (cos �) denotes the cosine of the object denoted by � (in radians).

cosh - The term (cosh �) denotes the hyperbolic cosine of the object denoted by � (in

radians).

decode-float - The term (decode-float �) denotes the mantissa of the object denoted

by � .

denominator - The term (denominator �) denotes the denominator of the canonical

reduced form of the object denoted by � .

exp - The term (exp �) denotes e raised to the power the object denoted by � .

(deffunction exp (?x) := (expt e ?x)) (5.5)

expt - The term (expt �1 �2) denotes the object denoted by �1 raised to the power the

object denoted by �2.

fceiling - The term (fceiling �) denotes the smallest integer (as a oating point

number) greater than the object denoted by � .

ffloor - The term (ffloor �) denotes the largest integer (as a oating point number)

less than the object denoted by � .

float - The term (float �) denotes the oating point number equal to the object

denoted by � .

float-digits - The term (float-digits �) denotes the number of digits used in the

representation of a oating point number denoted by � .

27

float-precision - The term (float-precision �) denotes the number of signi�cant

digits in the oating point number denoted by � .

float-radix - The term (float-radix �) denotes the radix of the oating point number

denoted by � . The most common values are 2 and 16.

float-sign - The term (float-sign �1 �2) denotes a oating-point number with the

same sign as the object denoted by �1 and the same absolute value as the object denoted

by �2.

floor - The term (floor �) denotes the largest integer less than the object denoted by

� .

fround - The term (fround �) is equivalent to (ffloor (+ 0.5 �)).

ftruncate - The term (ftruncate �) denotes the largest integer (as a oating point

number) less than the object denoted by � .

gcd - The term (gcd �1 : : : �n) denotes the greatest common divisor of the objects denoted

by �1 through �n.

imagpart - The term (imagpart �) denotes the imaginary part of the object denoted by

� .

integer-decode-float - The term (integer-decode-float �) denotes the signi�cand

of the object denoted by � .

integer-length - The term (integer-length �) denotes the number of bits required

to store the absolute magnitude of the object denoted by � .

isqrt - The term (isqrt �) denotes the integer square root of the object denoted by � .

lcm - The term (lcm �1 : : : �n) denotes the least common multiple of the objects denoted

by �1; : : : ; �n.

log - The term (log �1 �2) denotes the logarithm of the object denoted by �1 in the

base denoted by �2.

logand - The term (logand �1 : : : �n) denotes the bit-wise logical and of the objects

denoted by �1 through �n.

logandc1 - The term (logandc1 �1 �2) is equivalent to (logand (lognot �1) �2).

logandc2 - The term (logandc2 �1 �2) is equivalent to (logand �1 (lognot �2)).

logcount - The term (logcount �) denotes the number of on bits in the object denoted

by � . If the denotation of � is positive, then the one bits are counted; otherwise, the zero

bits in the twos-complement representation are counted.

logeqv - The term (logeqv �1 : : : �n) denotes the logical-exclusive-or of the objects de-

noted by �1; : : : ; �n.

logior - The term (logior �1 : : : �n) denotes the bit-wise logical inclusive or of the

objects denoted by �1 through �n. It denotes 0 if there are no arguments.

28

lognand - The term (lognand �1 �2) is equivalent to (lognot (logand �1 �2)).

lognor - The term (lognor �1 �2) is equivalent to (not (logior �1 �2)).

lognot - The term (lognot �) denotes the bit-wise logical not of the object denoted by

� .

logorc1 - The term (logorc1 �1 �2) is equivalent to (logior (lognot �1) �2).

logorc2 - The term (logorc2 �1 �2) is equivalent to (logior �1 (lognot �2)).

logxor - The term (logxor �1 : : : �n) denotes the bit-wise logical exclusive or of the

objects denoted by �1 through �n. It denotes 0 if there are no arguments.

max - The term (max �1 : : : �k) denotes the largest object denoted by �1 through �n.

min - The term (min �1 : : : �k) denotes the smallest object denoted by �1 through �n.

mod - The term (mod �1 �2) denotes the root of the object denoted by �1 modulo the

object denoted by �2. The result will have the same sign as denoted by �1.

numerator - The term (numerator �) denotes the numerator of the canonical reduced

form of the object denoted by � .

phase - The term (phase �) denotes the angle part of the polar representation of the

object denoted by � (in radians).

rationalize - The term (rationalize �) denotes the rational representation of the

object denoted by � .

realpart - The term (realpart �) denotes the real part of the object denoted by � .

rem - The term (rem <number> <divisor>) denotes the remainder of the object denoted

by <number> divided by the object denoted by <divisor>. The result has the same sign

as the object denoted by <divisor>.

round - The term (round �) denotes the integer nearest to the object denoted by � . If

the object denoted by � is halfway between two integers (for example 3.5), it denotes the

nearest integer divisible by 2.

scale-float - The term (scale-float �1 �2) denotes a oating-point number that is

the representational radix of the object denoted by �1 raised to the integer denoted by �2.

signum - The term (signum �) denotes the sign of the object denoted by � . This is one

of -1, 1, or 0 for rational numbers, and one of -1.0, 1.0, or 0.0 for oating point numbers.

sin - The term (sin �) denotes the sine of the object denoted by � (in radians).

sinh - The term (sinh �) denotes the hyperbolic sine of the object denoted by � (in

radians).

sqrt - The term (sqrt �) denotes the principal square root of the object denoted by � .

tan - The term (tan �) denotes the tangent of the object denoted by � (in radians).

29

tanh - The term (tanh �) denotes the hyperbolic tangent of the object denoted by � (in

radians).

truncate - The term (truncate �) denotes the largest integer less than the object

denoted by � .

x5.2 Relations on Numbers

integer - The sentence (integer �) means that the object denoted by � is an integer.

real-number - The sentence (real-number �) means that the object denoted by � is a

real number.

complex-number - The sentence (complex-number �) means that the object denoted by

� is a complex number.

(defrelation number (?x) :=

(or (real-number ?x) (complex-number ?x))) (5.6)

(defrelation natural (?x) := (and (integer ?x) (>= ?x 0))) (5.7)

(defrelation rational-number (?x) :=

(exists (?y) (and (integer ?y) (integer (* ?x ?y))))) (5.8)

< - The sentence (< �1 �2) is true if and only if the number denoted by �1 is less than

the number denoted by �2.

(defrelation > (?x ?y) := (< ?y ?x)) (5.9)

(defrelation =< (?x ?y) := (or (= ?x ?y) (< ?x ?y))) (5.10)

(defrelation >= (?x ?y) := (or (> ?x ?y) (= ?x ?y))) (5.11)

(defrelation positive (?x) := (> ?x 0)) (5.12)

(defrelation negative (?x) := (< ?x 0)) (5.13)

(defrelation zero (?x) := (= ?x 0)) (5.14)

(defrelation odd-integer (?x) := (integer (/ (+ ?x 1) 2)) (5.15)

(defrelation even-integer (?x) := (integer (/ ?x 2)) (5.16)

logbit - The sentence (logbit �1 �2) is true if bit �2 of �1 is 1.

logtest - The sentence (logtest �1 �2) is true if the logical and of the two's-complement

representation of the integers �1 and �2 is not zero.

30

Chapter 6

Lists

A list is a �nite sequence of objects. The objects in a list need not be KIF expressions,

though they may be. In other words, it is just as acceptable to talk about a list of two

people as it is to talk about a list of two symbols.

In KIF, we use the term (listof �1 ... �k) to denote the list of objects denoted

by �1, ..., �k. For example, the following expression denotes the list of an object named

mary, a list of objects named tom, dick, and harry, and an object named sally.

(listof mary (listof tom dick harry) sally)

The relation list is the type predicate for lists. An object is a list if and only if there

is a corresponding expression involving the listof operator.

(defrelation list (?x) :=

(exists (@l) (= ?x (listof @l))) (6.1)

The object constant nil denotes the empty list. null tests whether or not an object

is the empty list. The relation constants single, double, and triple allow us to assert

the length of lists containing one, two, and three elements, respectively.

(defobject nil := (listof)) (6.2)

(defrelation null (?l) := (= ?l (listof))) (6.3)

(defrelation single (?l) := (exists ?x (= ?l (listof ?x)))) (6.4)

(defrelation double (?l) :=

(exists (?x ?y) (= ?l (listof ?x ?y)))) (6.5)

(defrelation triple (?l) :=

(exists (?x ?y ?z) (= ?l (listof ?x ?y ?z)))) (6.6)

The functions first, rest, last, and butlast each take a single list as argument

and select individual items or sublists from those lists.

(deffunction first (?l) := (if (= (listof ?x @items) ?l) ?x) (6.7)

(deffunction rest (?l) :=

(cond ((null ?l) ?l)

((= ?l (listof ?x @items)) (listof @items)))) (6.8)

(deffunction last (?l) :=

(cond ((null ?l) bottom)

((null (rest ?l)) (first ?l))

(true (last (rest ?l))))) (6.9)

31

(deffunction butlast (?l) :=

(cond ((null ?l) bottom)

((null (rest ?l)) nil)

(true (cons (first ?l) (butlast (rest ?l)))))) (6.10)

The sentence (item �1 �2) is true if and only if the object denoted by �2 is a non-

empty list and the object denoted by �1 is either the �rst item of that list or an item in

the rest of the list.

(defrelation item (?x ?l) :=

(and (list ?l)

(not (null ?l))

(or (= ?x (first ?l)) (item ?x (rest ?l))))) (6.11)

The sentence (sublist �1 �2) is true if and only if the object denoted by �1 is a �nal

segment of the list denoted by �2.

(defrelation sublist (?l1 ?l2) :=

(and (list ?l1)

(list ?l2)

(or (= ?l1 ?l2)

(sublist ?l1 (rest ?l2))))) (6.12)

The function cons adds the object speci�ed as its �rst argument to the front of the

list speci�ed as its second argument.

(deffunction cons (?x ?l) :=

(if (= ?l (listof @l)) (listof ?x @l))) (6.13)

The function append adds the items in the list speci�ed as its �rst argument to the

list speci�ed as its second argument. The function revappend is simiar, except that it

adds the items in reverse order.

(deffunction append (?l1 ?l2) :=

(if (null ?l1) (if (list ?l2) ?l2)

(cons (first ?l1) (append (rest ?l1) ?l2)))) (6.14)

(deffunction revappend (?l1 ?l2) :=

(if (null ?l1) (if (list ?l2) ?l2)

(revappend (rest ?l1) (cons (first ?l1) ?l2)))) (6.15)

The function reverse produces a list in which the order of items is the reverse of that

in the list supplied as its single argument.

(deffunction reverse (?l) := (revappend ?l (listof))) (6.16)

The functions adjoin and remove construct lists by adding or removing objects from

the lists speci�ed as their arguments.

(deffunction adjoin (?x ?l) := (if (item ?x ?l) ?l (cons ?x ?l))) (6.17)

32

(deffunction remove (?x ?l) :=

(cond ((null ?l) nil)

((and (= ?x (first ?l)) (listp ?l))

(remove ?x (rest ?l)))

((list ?l) (cons ?x (remove ?x (rest ?l)))))) (6.18)

The value of subst is the object or list obtained by substituting the object supplied as

�rst argument for all occurrences of the object supplied as second argument in the object

or list supplied as third argument.

(deffunction subst (?x ?y ?z) :=

(cond ((= ?y ?z) ?x)

((null ?z) nil)

((list ?z) (cons (subst ?x ?y (first ?z))

(subst ?x ?y (rest ?z))))

(true ?z))) (6.19)

The function constant length gives the number of items in a list. nth returns the item

in the list speci�ed as its �rst argument in the position speci�ed as its second argument.

nthrest returns the list speci�ed as its �rst argument minus the �rst n items, where n is

the number speci�ed as its second argument.

(deffunction length (?l) :=

(cond ((null ?l) 0)

((list ?l) (1+ (length (rest ?l)))))) (6.20)

(deffunction nth (?l ?n) :=

(cond ((= ?n 1) (first ?l))

((positive ?n) (nth (rest ?l) (1- ?n))))) (6.21)

(deffunction nthrest (?l ?n) :=

(cond ((= ?n 0) (if (listp ?l) ?l))

((positive ?n)) (nthrest (rest ?l) (1- ?n))))) (6.22)

33

Chapter 7

Sets

In many applications, it is helpful to talk about sets of objects as objects in their own

right, e.g. to specify their cardinality, to talk about subset relationships, and so forth.

The formalization of sets of simple objects is a simple matter; but, when we begin

to talk about sets of sets, the job becomes di�cult due to the threat of paradoxes (like

Russell's hypothesized set of all sets that do not contain themselves).

Fortunately, there is no shortage of mathematical theories for our use in KIF { various

higher order logics, Zermelo-Fraenkel set theory, von Neuman-Bernays-G�odel set theory,

Quine's variants on the previous two approaches, the more recently elaborated proposals

by Feferman and Aczel, and so forth. In KIF, we have adopted a version of the von

Neumann-Bernays-G�odel set theory.

In our presentation here, we �rst discuss the basic concepts of this theory { the notions

of set and membership. Next, we look at some terminology for describing the properties

of sets. We then present the standard axioms of set theory. Finally, we discuss the threat

of paradox and indicate how our use of the von Neumann-Bernays-G�odel set theory avoids

this problem.

An important word of warning for mathematicians. In KIF, certain words are used

nontraditionally. Speci�cally, the standard notion of class is here called a set; the standard

notion of set is replaced by the notion of bounded set; and the standard notion of proper

class is replaced by unbounded set.

x7.1 Basic Concepts

In KIF, a fundamental distinction is drawn between individuals and sets. A set is a

collection of objects. An individual is any object that is not a set.

A distinction is also drawn between objects that are bounded and those that are

unbounded. This distinction is orthogonal to the distinction between individuals and sets.

There are bounded individuals and unbounded individuals. There are bounded sets and

unbounded sets.

The fundamental relationship among these various types of entities is that of member-

ship. Sets can have members, but individuals cannot. Bounded objects can be members

of sets, but unbounded objects cannot. (It is this condition that allows us to avoid the

traditional paradoxes of set theory.)

In KIF, we use the unary relation constants individual and set, bounded and un-

bounded to make these distinctions; and we use the binary relation constant member to

talk about membership.

The sentence (individual �) is true if and only if the object denoted by � is an

individual. The sentence (set �) is true if and only if the object denoted by � is a set.

As just described, individuals and sets are exhaustive and mutually disjoint.

(or (set ?x) (individual ?x)) (7.1)

(or (not (set ?x)) (not (individual ?x))) (7.2)

34

The sentence (bounded �) is true if and only if the object denoted by � is bounded.

The sentence (unbounded �) is true if and only if the object denoted by � is unbounded.

Boundedness and unboundedness are exhaustive and mutually disjoint.

(or (bounded ?x) (unbounded ?x)) (7.3)

(or (not (bounded ?x)) (not (unbounded ?x))) (7.4)

The sentence (member �1 �2) is true if and only if the object denoted by �1 is con-

tained in the set denoted by �2. As mentioned above, an object can be a member of another

object if and only if the former is bounded and the latter is a set.

(=> (member ?x ?s)

(bounded ?x)) (7.5)

(=> (member ?x ?s)

(set ?x)) (7.6)

An important property shared by all sets is the extensionality property. Two sets are

identical if and only if they have the same members.

(=> (and (set ?s1) (set ?s2))

(<=> (forall (?x) (<=> (member ?x ?s1) (member ?x ?s2)))

(= ?s1 ?s2))) (7.7)

x7.2 Sets

To allow us to name speci�c sets, KIF provides the operators setof and setofall.

The term (setof �1 ... �k) denotes the set consisting of the objects denoted by

�1, ..., �k that are bounded.

(=> (item ?x (listof @items))

(bounded ?x)

(member ?x (setof @items))) (7.8)

(=> (member ?x (setof @items))

(item ?x (listof @items))) (7.9)

Note that the cardinality of the set denoted by (setof �1 ... �k) can be less than

k. By de�nition, an object can appear in a set only once. Consequently, if �i and �j (for

di�erent i and j) denote the same object, the resulting set must contain fewer than k

members.

The operator setofall allows us to de�ne sets in terms of their properties. The term

(setofall � �) denotes the set of all bounded objects denoted by � for any assignment

of the free variables in � that satis�es �.

(<=> (member � (setofall � �))

(and (bounded �) ��=�)) (7.10)

Note that the �rst argument to setofall must be a term, not a list of variables as

with forall and exists. The term can be a single variable, a functional expression, or

35

even a quanti�ed term. If the term contains no free variables, then the set consists of either

zero members or one member, depending on the truth value of the embedded sentence.

The empty relation is true of the empty set but false of all other objects.

(defrelation empty (?x) := (= ?x (setof))) (7.11)

In KIF, the functions union, intersection, difference, and complement are de�ned

as follows.

(deffunction union (@sets) :=

(if (forall (?s) (=> (item ?s (listof @sets)) (set ?s)))

(setofall ?x (exists (?s) (and (item ?s (listof @sets))

(member ?x ?s))))) (7.12)

(deffunction intersection (@sets) :=

(if (forall (?s) (=> (item ?s (listof @sets)) (set ?s)))

(setofall ?x (forall (?s) (=> (item ?s (listof @sets))

(member ?x ?s))))) (7.13)

(deffunction difference (?set @sets) :=

(if (and (set ?set)

(forall (?s) (=> (item ?s (listof @sets)) (set ?s))))

(setofall ?x

(and (member ?x ?set)

(forall (?s) (=> (item ?s (listof @sets))

(not (member ?x ?s)))))))) (7.14)

(deffunction complement (?s) :=

(if (set ?s)

(setofall ?x (not (member ?x ?s))))) (7.15)

The functions generalized-union and generalized-intersection allow us to talk

about the union and intersection of the sets in a set of sets.

(deffunction generalized-union (?set) :=

(if (and (set ?set)

(forall (?s) (=> (member ?s ?set) (set ?s)))

(setofall ?x (exists (?s) (and (member ?s ?set)

(member ?x ?s)))))) (7.16)

(deffunction generalized-intersection (?set) :=

(if (and (set ?set)

(forall (?s) (=> (member ?s ?set) (set ?s)))

(setofall ?x (exists (?s) (=> (member ?s ?set)

(member ?x ?s)))))) (7.17)

The sentence (subset �1 �2) is true if and only if �1 and �2 are sets and the objects

in the set denoted by �1 are contained in the set denoted by �2.

36

(defrelation subset (?s1 ?s2) :=

(and (set ?s1) (set ?s2)

(forall ?x (=> (member ?x ?s1) (member ?x ?s2))))) (7.18)

The sentence (proper-subset �1 �2) is true if the set denoted by �1 is a subset of

the set denoted by �2 but not vice-versa.

(defrelation proper-subset (?s1 ?s2) :=

(and (subset ?s1 ?s2)

(not (subset ?s2 ?s1)))) (7.19)

Two sets are disjoint if and only if there is no object that is a member of both sets.

Sets are pairwise-disjoint if and only if every set is disjoint from every other set. Sets are

mutually-disjoint if and only if there is no object that is a member of all of the sets. Note

that mutually-disjoint sets need not be pairwise disjoint; in fact, every pair of sets might

be overlapping. For example, the sets fa; bg and fb; cg and fa; cg are mutually disjoint but
not pairwise disjoint.

(defrelation disjoint (?s1 ?s2) :=

(empty (intersection ?s1 ?s2))) (7.20)

(defrelation pairwise-disjoint (@sets) :=

(forall (?s1 ?s2) (=> (item ?s1 (listof @sets))

(item ?s2 (listof @sets))

(or (= ?s1 ?s2) (disjoint ?s1 ?s2))))) (7.21)

(defrelation mutually-disjoint (@sets) :=

(= (intersection @sets) (set))) (7.22)

(defrelation set-partition (?s @sets) :=

(and (= ?s (union @sets))

(pairwise-disjoint @sets))) (7.23)

(defrelation set-cover (?s @set) :=

(subset ?s (union @sets)))

(7.24)

We close this section with two axioms that allow us to conclude that sets of various

sorts do, in fact, exist. The �rst is the axiom of regularity { every non-empty set has an

element with which it has no members in common.

(forall (?s)

(=> (not (empty ?s))

(exists (?u) (and (member ?u ?s) (disjoint ?u ?s))))) (7.25)

This axiom is not absolutely essential for set theory. However, it makes many proofs

a lot easier, and so it is commonly included among the axioms of set theory.

37

The second axiom is the axiom of choice. It asserts that there is a set that associates

every bounded set with a distinguished element of that set. In e�ect, it chooses an element

from every bounded set.

(exists (?s)

(and (set ?s)

(forall (?x) (=> (member ?x ?s) (double ?x)))

(forall (?x ?y ?z) (=> (and (member (listof ?x ?y) ?s)

(member (listof ?x ?z) ?s))

(= ?y ?z)))

(forall (?u)

(=> (and (bounded ?u) (not (empty ?u)))

(exists (?v) (and (member ?v ?u)

(member (listof ?u ?v) ?s)))))))) (7.26)

Again, this axiom is not essential. In some versions of set theory, the axiom of choice

is omitted. However, it is a highly desirable property and is included here for that reason.

x7.3 Boundedness

As mentioned earlier, the key di�erence between bounded and unbounded objects is

that the former can be members of other sets while the latter cannot. This fact establishes

a necessary and su�cient test for boundedness { an object is bounded just in case it is

a member of a set. However, this is not very helpful, since we often need to determine

whether or not an object is bounded based on other properties, not the sets of which it is

a member. In this section, we look at some axioms that help us make this determination

for sets.

First of all, we have the �nite set axiom. Any �nite set of bounded sets is itself a

bounded set.

(bounded (setof @l)) (7.27)

The subset axiom assures that the set of all of subsets of a bounded set is also a

bounded set.

(=> (bounded ?v) (bounded (setofall ?u (subset ?u ?v)))) (7.28)

The union axiom tells us that the generalized union of any bounded set of bounded

sets is also a bounded set. Since every �nite set is bounded, this allows us to conclude, as

a special case, that the union of any �nite number of bounded sets is a bounded set.

(=> (and (bounded ?u) (forall (?x) (=> (member ?x ?u) (bounded ?x))))

(bounded (generalized-union ?u))) (7.29)

The intersection axiom tells us that the intersection of a bounded set and any other

set is a bounded set. So long as one of the sets de�ning the intersection is bounded, the

resulting set is bounded.

(=> (and (bounded ?u) (set ?s))

(bounded (intersection ?u ?s))) (7.30)

38

Finally, we have the axiom of in�nity. There is a bounded set containing a set, a set

that properly contains that set, a third set that properly contains the second set, and so

forth. In short, there is at least one bounded set of in�nite cardinality.

(exists (?u)

(and (bounded ?u)

(not (empty ?u))

(forall (?x)

(=> (member ?x ?u)

(exists (?y) (and (member ?y ?u)

(proper-subset ?x ?y))))))) (7.31)

x7.4 Paradoxes

The presence of sets in our universe of discourse does not in itself lead to paradoxes.

The paradoxes appear only when we try to de�ne set primitives that are too powerful. We

have de�ned the sentence (member � �) to be true in exactly those cases when the object

denoted by � is a member of the set denoted by �, and we might consider de�ning the term

(setofall � �) to mean simply the set of all objects denoted by � for any assignment of

the free variables of � that satis�es �. Unfortunately, these two de�nitions quickly lead to

paradoxes.

Let ��=� be the result of substituting term � for all free occurrences of � in sentence

�. Provided that � is a term not containing any free variables captured in ��� , then the

following schema follows from our informal de�nition. This schema is called the principle

of unrestricted set abstraction.

(<=> (member � (setofall � �)) ��=�)

Now, let us substitute the variable ?x for �, the sentence (not (member ?x ?x)) for

�, and the term (setofall ?x (not (member ?x ?x))) for � . The resulting instance of

the principle of unrestricted set abstraction follows.

(<=> (member (setofall ?x (not (member ?x ?x)))

(setofall ?x (not (member ?x ?x))))

(not (member (setofall ?x (not (member ?x ?x))))

(setofall ?x (not (member ?x ?x)))))

This sentence has the form (<=> � (not �)), which cannot be true in any interpre-

tation. This is Russell's paradox, only one of a family of familiar absurdities following

from the principle of unrestricted set abstraction.

It is crucial that the paradoxes of set theory be avoided. One of the goals in the

design of KIF is that it have a clearly speci�ed model-theoretic semantics in terms of

which the concepts of entailment, equivalence, consistency, soundness and completeness

can be de�ned. If the paradoxes are allowed to persist in principle, even if they are easy

to avoid in practice, the consequence would be that no KIF theory would be true in any

model. De�nitions couched in terms of models would be trivialized, becoming useless. All

sentences would be entailed by any theory, any two theories would be equivalent, no theory

would be consistent, every possible inference rule would be sound, and so on.

39

In the von-Neuman-G�odel-Bernays version of set theory, these paradoxes are avoided

by replacing the principle of unrestricted set abstraction with the principle of restricted

set abstraction given above.

(<=> (member � (setofall � �))

(and (bounded �) ��=�))

With this principle, there are two reasons why something may be excluded from a

set (setofall � �). It may fail to be a member because it does not satisfy the de�ning

condition �, or it may be excluded because it is an unbounded object. Conditioning the

membership of objects in this set on their boundedness e�ectively eliminates the paradoxes.

40

Chapter 8

Functions and Relations

In KIF, we can describe speci�c functions and relations by naming them with function

constants and relation constants and then writing sentences in which those names occur in

functional or relational position. For most purposes, this is adequate; but in some cases it

is also useful to describe functions and relations more generally { to name their properties

(such as associativity and transitivity) and to write axioms relating these properties (pos-

sibly quantifying over the functions and relations possessing these properties). In order to

do this, we need to treat functions and relations as objects in our universe of discourse.

By de�nition, functions and relations are sets of lists of objects from our universe of

discourse. The immediately preceding chapters o�er a vocabulary for describing lists and

sets in general. However, functions and relations have enough special properties to warrant

additional vocabulary.

In what follows, we begin by presenting the KIF vocabulary for abstraction and ap-

plication of functions and relations. We then talk about the use of functions and relation

constants in argument position of terms. Finally, we present some supporting vocabulary.

Note that the introduction of functions and relations into our universe of discourse

comes with the threat of paradox, as with sets in general. In KIF, we sidestep such

paradoxes by de�ning the sets comprising our functions and relations in terms of the set

concepts introduced in the preceding chapter.

x8.1 Basic Vocabulary

As described in chapter 3, a relation is an arbitrary set of lists. A collection of objects

satis�es a relation if and only if the list of those objects is a member of this set.

(defrelation relation (?r) :=

(and (set ?r)

(forall (?x) (=> (member ?x ?r) (list ?x))))) (8.1)

Since KIF allows for n-ary relations, the lists in the set need not be of the same length.

For example, the < relation is de�ned on 2-lists, 3-lists, 4-lists, and so forth.

A function is a set of lists in which the items in every list except for the last determine

the last item, i.e. there cannot be two lists that agree on all but the last item and disagree

on the last item.

(defrelation function (?f) :=

(and (relation ?f)

(forall (?l ?m)

(=> (member ?l ?f)

(member ?m ?f)

(= (butlast ?l) (butlast ?m))

(= (last ?l) (last ?m)))))) (8.2)

41

As with relations in general, the lists of a function need not be of the same length,

to allow for functions of variable arity. For example, associative functions like + and �
functions can be applied to arbitrary numbers of arguments.

An important di�erence between our treatment of functions and the traditional treat-

ment is that functions need not contain lists for every possible combination of arguments.

If a function is unde�ned for a particular combination of objects (i.e. if its value is ?),
then we omit that list from the set. Thus, even though our universe of discourse is in�nite,

it is possible for a function to have a �nite number of lists.

x8.2 Function and Relation Constants

Since function constants and relation constants denote functions and relations and

since functions and relations are objects in our universe of discourse, it is natural to allow

function and relation constants to appear as as arguments in terms and sentences.

Unfortunately, in order to avoid paradoxes, it is sometimes essential for there to be

a di�erence between the interpretation of a function or relation constant and its semantic

value. We can sidestep these potential di�culties by writing axioms that de�ne function

and relation constants, used in argument position, in terms of the setof operator.

As described in chapter 4, the semantic value of a function constant � is the set of

lists of objects corresponding to the function denoted by �. The following axiom schema

expresses this property.

(= � (setofall (listof �1 ... �k �) (= (� �1 ... �k) �)) (8.3)

Similarly, the semantic value of a relation constant � is the set of lists of objects that

satisfy the relation denoted by �. Again, we have an axiom schema corresponding to this

property.

(= � (setofall (listof �1 ... �k) (� �1 ... �k))) (8.4)

The use of function and relation constants in argument position weakens the distinc-

tion between object constants on the one hand and function and relation constants on the

other.

The distinction between function and relation constants can also be weakened, since

functions are a special class of relations. Any position that requires a relation constant

can also be �lled by a function constant. When this happens, the function denoted by

the function constant is treated as a relation (which it is). For instance, in the following

sentence, the �rst occurrence of + plays the role of a relation constant, while in the second

occurrence, it plays the role of a function constant. (In both cases, + denotes the same

entity.)

(and (+ 2 3 5)

(= (+ 2 3 5) 10))

In KIF, all function constants are treated as relation constants, and all relation con-

stants (and hence all function constants) are treated as object constants. An object con-

stant is still prohibited from occurring as the �rst item of a term or a sentence, and a

relation constant that is not a function constant cannot occupy the �rst position in a

term.

42

The convenience a�orded by the ability to use function and relation constants as ar-

guments and to use function constants in relational position often causes concern over

grammatical ambiguity. The expression (+ 5 2 3) is both a term and a sentence. Fortu-

nately, this ambiguity is always resolved when such expressions occur within well-formed

databases. Any expression that occurs at top level cannot be a term. An expression

embedded in a non-operator expression must be a term. An expression embedded in an

operator expression can be either a term or a sentence, but in either case the type of the

expression is known from the operator's syntax.

x8.3 Concretion

If � denotes a relation, then the sentence (holds � �1 ... �k) is true if and only

if the list of objects denoted by �1,...,�k is a member of that relation.

(defrelation holds (?r @args) :=

(and (relation ?r) (member (listof @args) ?r))) (8.5)

If � denotes a function with a value for the objects denoted by �1,..., �k, then the term

(value � �1 ... �k) denotes the value of applying that function to the objects denoted

by �1,...,�k. Otherwise, the value is unde�ned.

(deffunction value (?f @args) :=

(if (and (function ?f)

(member ?l ?f)

(= (butlast ?l) (listof @args)))

(last ?l))) (8.6)

(deffunction apply (?f ?l) :=

(if (and (function ?f) (= ?l (listof @args)))

(value ?f @args))) (8.7)

(deffunction map (?f ?l) :=

(if (null ?l) (list)

(cons (value ?f (first ?l)) (map ?f (rest ?l))))) (8.8)

x8.4 Abstraction

As described in chapter 4, the semantic value of the term (lambda (�1 ... �k [!])

�) is the set of lists associated with the function that maps every list of objects \matching"

the variable list to the value of � when the variables in the variable list are assigned to the

objects in the list. We can capture this meaning with the following axiom schema.

(= (lambda (�1 ... �k [!]) �)

(setofall (listof �1 ... �k [!] �) (= � �))) (8.9)

The semantic value of the term (kappa (�1 ... �k [!]) �) is the set of lists asso-

ciated with the relation that holds of every list of objects \matching" the variable list for

43

which the sentence � is satis�ed. We can capture this meaning with the following axiom

schema.

(= (kappa (�1 ... �k [!]) �)

(setofall (listof �1 ... �k [!]) �))) (8.10)

x8.5 Additional Concepts

The universe of a relation is the set of all objects occurring in some list contained in

that relation.

(deffunction universe (?r) :=

(if (relation ?r)

(setofall ?x (exists (?l) (and (member ?l ?r)

(item ?x ?l)))))) (8.11)

A unary relation is a non-empty relation in which all lists have exactly one item.

(defrelation unary-relation (?r) :=

(and (not (empty ?r))

(forall (?l) (=> (member ?l ?r) (single ?l))))) (8.12)

A binary relation is a non-empty relation in which all lists have exactly two items. The

inverse of a binary relation is a binary relation with all tuples reversed. The composition

of a binary relation r1 and a binary relation r2 is a binary relation in which an object x is

related to an object z if and only if there is an object y such that x is related to y by r1
and y is related to z by r2.

(defrelation binary-relation (?r) :=

(and (not (empty ?r))

(forall (?l) (=> (member ?l ?r) (double ?l))))) (8.13)

(deffunction inverse (?r) :=

(if (binary-relation ?r)

(setofall (listof ?y ?x) (holds ?r ?x ?y)))) (8.14)

(deffunction composition (?r1 ?r2) :=

(if (and (binary-relation ?r1)

(binary-relation ?r2)

(setofall (listof ?x ?z)

(exists (?y)

(and (holds ?r1 ?x ?y)

(holds ?r2 ?y ?z))))))) (8.15)

(defrelation one-one (?r) :=

(and (binary-relation ?r)

(function ?r)

(function (inverse ?r)))) (8.16)

44

(defrelation many-one (?r) :=

(and (binary-relation ?r)

(function ?r))) (8.17)

(defrelation one-many (?r) :=

(and (binary-relation ?r)

(function (inverse ?r)))) (8.18)

(defrelation many-many (?r) :=

(and (binary-relation ?r)

(not (function ?r))

(not (function (inverse ?r))))) (8.19)

A unary function is a function with a single argument and a single value. Hence, it is

also a binary relation.

(defrelation unary-function (?f) :=

(and (function ?f)

(binary-relation ?f))) (8.20)

A binary function is a function with two arguments and one value. Hence, it is a

relation with three arguments.

(defrelation binary-function (?f) :=

(and (function ?f)

(not (empty ?f))

(forall (?l) (=> (member ?l ?f) (triple ?l))))) (8.21)

45

Chapter 9

Metaknowledge

x9.1 Naming Expressions

In formalizing knowledge about knowledge, we use a conceptualization in which ex-

pressions are treated as objects in the universe of discourse and in which there are functions

and relations appropriate to these objects. In our conceptualization, we treat atoms as

primitive objects (i.e. having no subparts). We conceptualize complex expressions (i.e.

non-atoms) as lists of subexpressions (either atoms or other complex expressions). In

particular, every complex expression is viewed as a list of its immediate subexpressions.

For example, we conceptualize the sentence (not (p (+ a b c) d)) as a list con-

sisting of the operator not and the sentence (p (+ a b c) d). This sentence is treated

as a list consisting of the relation constant p and the terms (+ a b c) and d. The �rst

of these terms is a list consisting of the function constant + and the object constants a, b,

and c.

For Lisp programmers, this conceptualization is relatively obvious, but it departs

from the usual conceptualization of formal languages taken in the mathematical theory of

logic. It has the disadvantage that we cannot describe certain details of syntax such as

parenthesization and spacing (unless we augment the conceptualization to include string

representations of expressions as well). However, it is far more convenient for expressing

properties of knowledge and inference than string-based conceptualizations.

In order to assert properties of expressions in the language, we need a way of referring

to those expressions. There are two ways of doing this in KIF.

One way is to use the quote operator in front of an expression. From the section on

semantics, we know that a quotation denotes the expression embedded within the term.

Therefore, to refer to the symbol john, we use the term 'john or, equivalently, (quote

john). To refer to the expression (p a b), we use the term '(p a b) or, equivalently,

(quote (p a b)).

With a way of referring to expressions, we can assert their properties. For example,

the following sentence ascribes to the individual named john the belief that the moon is

made of a particular kind of blue cheese.

(believes john '(material moon stilton))

Note that, by nesting quotes within quotes, we can talk about quoted expressions. In

fact, we can write towers of sentences of arbitrary heights, in which the sentences at each

level talk about the sentences at the lower levels.

Since expressions are �rst-order objects, we can quantify over them, thereby asserting

properties of whole classes of sentences. For example, we could say that Mary believes

everything that John believes. This fact together with the preceding fact allows us to

conclude that Mary also believes the moon to be made of blue cheese.

(=> (believes john ?p) (believes mary ?p))

46

The second way of referring to expressions is KIF is to use the listof function. For

example, we can denote a complex expression like (p a b) by a term of the form (listof

'p 'a 'b), as well as '(p a b).

The advantage of the listof representation over the quote representation is that

it allows us to quantify over parts of expressions. For example, let us say that Lisa is

more skeptical than Mary. She agrees with John, but only on the composition of things.

The �rst sentence below asserts this fact without speci�cally mentioning moon or stilton.

Thus, if we were to later discover that John thought the sun to be made of chili peppers,

then Lisa would be constrained to believe this as well.

(=> (believes john (listof 'material ?x ?y))

(believes lisa (listof 'material ?x ?y)))

While the use of listof allows us to describe the structure of expressions in arbitrary

detail, it is somewhat awkward. For example, the term (listof 'material ?x ?y) is

somewhat awkward. Fortunately, we can eliminate this di�culty using backquote and

comma. Rather than using the listof function constant as described above, we write the

expression preceded by the backquote character ` and add a comma character , in front

of any subexpression that is not to be taken literally. For example, we would rewrite the

preceding sentence as follows.

(=> (believes john `(material ,?x ,?y))

(believes lisa `(material ,?x ,?y)))

This approach is particularly nice in that it parallels the treatment of quoting and

unquoting in Common Lisp. However, a warning is in order. All Common Lisps translate

quoted expressions into lists with quote as the �rst element, e.g. '(f a) translates into

(quote (f a)). However, not all Common Lisps are consistent in the handling of back-

quote. Some Lisps translate backquoted expressions into internal forms involving listof,

e.g. `(f ,?x) translates into (listof 'f ?x). Some use cons, e.g. (cons 'f (cons ?x

nil)). Some use neither or a mixture. This does not prohibit our using the approach in

KIF, but it means that we cannot rely on all Lisp readers to produce the internal form we

want.

x9.2 Formalizing Syntax

In order to facilitate the encoding of knowledge about KIF, the language includes type

relations for the various syntactic categories de�ned in chapter 2.

For every individual variable �, there is an axiom asserting that it is indeed an indi-

vidual variable. Each such axiom is a de�ning axiom for the indvar relation.

(indvar (quote �)) (9.1)

For every sequence variable !, there is an axiom asserting that it is a sequence variable.

Each such axiom is a de�ning axiom for the seqvar relation.

(seqvar (quote !)) (9.2)

(defrelation termop (?x) :=

47

(member ?x (setof 'quote 'if 'cond 'the 'setof

'kappa 'lambda))) (9.3)

(defrelation sentop (?x) :=

(member ?x (setof 'not 'and 'or '=> '<= '<=> 'forall 'exists))) (9.4)

(defrelation ruleop (?x) := (member ?x (setof '=>> '<<=))) (9.5)

(defrelation defop (?x) :=

(member ?x (setof 'defobject 'deffunction 'defrelation ':=

':=> ':axiom ':conservative-axiom))) (9.6)

For every constant �, there is an axiom asserting that it is a constant. Each such

axiom is a de�ning axiom for the constant relation. The category of each constant is

determined from its de�nition and/or the uses of the constant in a knowledge base.

(defrelation constant (constant (quote σ))) (9.7)

From these basic vocabulary items, we de�ne variables, operators, words, and expres-

sions.

(defrelation variable (?x) := (or (indvar ?x) (seqvar ?x))) (9.8)

(defrelation operator (?x) :=

(or (termop ?x) (sentop ?x) (ruleop ?x) (defop ?x))) (9.9)

(defrelation word (?x) :=

(or (variable ?x) (operator ?x) (constant ?x))) (9.10)

(defrelation expression (?x) :=

(or (word ?x)

(and (list ?x)

(forall (?y) (=> (item ?y ?x) (expression ?y)))))) (9.11)

The sentence (term �) is true if and only if the object denoted by � is a term, i.e. it

is either a constant, a variable, functional term, a list term, a set term, a quoted term, a

logical term, or a quanti�ed term.

(defrelation term (?x) :=

(or (indvar ?x) (objconst ?x) (funconst ?x) (relconst ?x)

(funterm ?x) (listterm ?x) (setterm ?x) (quoterm ?x)

(logterm ?x) (quanterm ?x))) (9.12)

(defrelation funterm (?x) :=

(exists (?f ?tlist)

(and (funconst ?f)

(list ?tlist)

(=> (item ?t ?tlist) (term ?t))

48

(= ?x (cons ?f ?tlist))))) (9.13)

(defrelation listterm (?x) :=

(exists ?tlist

(and (list ?tlist)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons 'listof ?tlist))))) (9.14)

(defrelation setterm (?x) :=

(exists ?tlist

(and (list ?tlist)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons 'setof ?tlist))))) (9.15)

(defrelation (?x) :=

(exists (?e)

(and (expression ?e)

(= ?x `(quote ,?e))))) (9.16)

(defrelation logterm (?x) :=

(or (exists (?p1 ?t1)

(and (sentence ?p1) (term ?t1) (= ?x `(if ,?p1 ,?t1))))

(exists (?p1 ?t1 ?t2)

(and (sentence ?p1)

(term ?t1)

(term ?t2)

(= ?x `(if ,?p1 ,?t1 ,?t2))))

(exists ?clist

(and (list ?clist)

(=> (item ?c ?clist)

(exists (?p ?t)

(and (sentence ?p) (term ?t)

(= ?c (listof ?p ?t)))))

(= ?x (cons 'cond ?clist)))))) (9.17)

(defrelation quanterm (?x) :=

(or (exists (?t ?p)

(and (term ?t) (sentence ?p)

(= ?x (listof 'the ?t ?p))))

(exists (?t ?p)

(and (term ?t) (sentence ?p)

(= ?x (listof 'setof ?t ?p))))

(exists (?vlist ?p)

(and (list ?vlist) (sentence ?p)

(>= (length ?vlist) 1)

49

(=> (item ?v ?vlistp) (indvar ?v))

(= ?x (listof 'kappa ?vlistp ?p))))

(exists (?vlist ?sv ?p)

(and (list ?vlist) (seqvar ?sv) (sentence ?p)

(=> (item ?v ?vlist) (indvar ?v))

(= ?x (listof 'kappa (append ?vlist (listof ?sv)) ?p))))

(exists (?vlist ?t)

(and (list ?vlist) (term ?t)

(>= (length ?vlist) 1)

(=> (item ?v ?vlistp) (indvar ?v))

(= ?x (listof 'lambda ?vlistp ?t))))

(exists (?vlist ?sv ?t)

(and (list ?vlist) (seqvar ?sv) (sentence ?t)

(=> (item ?v ?vlist) (indvar ?v))

(= ?x (listof 'lambda

(append ?vlist (listof ?sv))

?t)))))) (9.18)

The sentence (sentence �) is true if and only if the object denoted by � is a sentence,

i.e. it is either a logical constant, a relational sentence, a logical sentence, or a quanti�ed

sentence.

(defrelation sentence (?x) :=

(or (logconst ?x) (relsent ?x) (equation ?x)

(inequality ?x) (logsent ?x) (quantsent ?x))) (9.19)

(defrelation relsent (?x) :=

(exists (?r ?tlist)

(and (or (relconst ?r) (funconst ?r)) (list ?tlist)

(>= (length ?tlist) 1)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons ?r ?tlist))))) (9.20)

(defrelation equation (?x) :=

(exists (?t1 ?t2)

(and (term ?t1) (term ?t2)

(= ?x `(= ,?t1 ,?t2))))) (9.21)

(defrelation inequality (?x) :=

(exists (?t1 ?t2)

(and (term ?t1) (term ?t2)

(= ?x `(/= ,?t1 ,?t2))))) (9.22)

(defrelation logsent (?x) :=

(or (negation ?x) (conjunction ?x) (disjunction ?x)

(implication ?x) (reverse-implication ?x)

50

(equivalence ?x))) (9.23)

(defrelation negation (?x) :=

(exists (?p)

(and (sentence ?p)

(= ?x `(not ,?p))))) (9.24)

(defrelation conjunction (?x) :=

(exists ?plist

(and (list ?plist)

(>= (length ?plist) 1)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons 'and ?plist))))) (9.25)

(defrelation disjunction (?x) :=

(exists ?plist

(and (list ?plist)

(>= (length ?plist) 1)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons 'or ?plist))))) (9.26)

(defrelation implication (?x) :=

(exists (?plist)

(and (list ?plist)

(>= (length ?plist) 2)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons '=> ?plist))))) (9.27)

(defrelation reverse-implication (?x) :=

(exists (?plist)

(and (list ?plist)

(>= (length ?plist) 2)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons '<= ?plist))))) (9.28)

(defrelation equivalence (?x) :=

(exists (?p1 ?p2)

(and (sentence ?p1)

(sentence ?p2)

(= ?x `(<=> ,?p1 ,?p2))))) (9.29)

(defrelation quantsent (?x) :=

(or (exists (?v ?p)

(and (indvar ?v) (sentence ?p)

(or (= ?x (listof 'forall ?v ?p))

51

(= ?x (listof 'exists ?v ?p)))))

(exists (?vlist ?p)

(and (list ?vlist) (sentence ?p)

(>= (length ?vlist) 1)

(=> (item ?v ?vlist) (indvar ?v))

(or (= ?x (listof 'forall ?vlist ?p))

(= ?x (listof 'exists ?vlist ?p))))))) (9.30)

x9.3 Changing Levels of Denotation

The vocabulary introduced in the preceding subsection allows us to encode properties

of expressions in and of themselves. In this section, we add some vocabulary that allows

us to change levels of denotation, i.e. to relate expressions about expressions with the

expressions they denote.

The term (denotation �) denotes the object denoted by the object denoted by � . A

quotation denotes the quoted expression; the denotation of any other object is ?.
The term (name �) denotes the standard name for the object denoted by the term

� . The standard name for an expression � is (quote �); the standard name for a non-

expression is at the discretion of the user. (Note that there are only a countable number

of terms in KIF, but there can be models with uncountable cardinality; consequently, it is

not always possible for every object in the universe of discourse to have a unique name.)

The �nal level-crossing vocabulary item is the relation constant true. For example, we

can say that a sentence of the form (=> (p ?x) (q ?x)) is true by writing the following

sentence.

(true '(=> (p ?x) (q ?x)))

This may seem of limited utility, since we can just write the sentence denoted by the

argument as a sentence in its own right. The advantage of the metanotation becomes

clear when we need to quantify over sentences, as in the encoding of axiom schemas. For

example, we can say that every sentence of the form (=> � �) is true with the following

sentence.

(=> (sentence ?p) (true `(=> ,?p ,?p)))

Semantically, we would like to say that a sentence of the form (true '�) is true if

and only if the sentence � is true. In other words, for any interpretation and variable

assignment, the truth value tiv((true '�)) is the same as the truth value tiv(�). In other

words, for every truth function tiv, true is our language's name for tiv.

Unfortunately, this causes serious problems. Equating a truth function with the mean-

ing it ascribes to true quickly leads to paradoxes. The English sentence \This sentence is

false." illustrates the paradox. We can write this sentence in KIF as shown below. The

sentence, in e�ect, asserts its own negation.

(true (subst (name `(subst (name x) `x `(true ,x)))

`x

`(not (true (subst (name x) `x `(not (true ,x)))))))

52

For any truth function tiv that maps true to itself, we get a contradiction. If tiv of

this sentence is true, then by the rules for assignment of the logical operators contained in

the sentence, we see that tiv must make the sentence false. If tiv assigns the value false,

then, again by the rules for assignment of the logical operators, we see that it must assign

it the value true. In either case, we get a contradication.

Fortunately, we can circumvent such paradoxes by slightly modifying the de�nition

of true. The treatment here follows that of Kripke, Gilmore, and Perlis. Although the

approach is a little complicated, it is nice in that the intuitive interpretation of true is in

all important cases exactly what we would guess, yet paradoxes are completely avoided.

(<=> (true �) �
�) (9.31)

Given a sentence �, we de�ne �� to be the sentence obtained from � as follows. If the

sentence is logical, then all occurrences of not are pushed inside other operators. If the

sentence is (not (true �)), the �� is (true (listof 'not �)).

Since the truth of a sentence (true �) is determined by the truth value of ��, not �,

the potential for paradoxes is eliminated. For most sentences, �� and � are the same. For

apparently paradoxical sentences, the two di�er and so no contradiction arises. (See Perlis

for the description of a model for databases containing this axiom schema.)

53

Chapter 10

Nonmonotonicity

Many knowlege representation and reasoning systems are capable of drawing conclu-

sions based on the absence of knowedge from a database. This is nonmonotonic reasoning.

The addition of new sentences to the database may be cause for the system to retract

earlier conclusions.

In some systems, the exact policy for deriving nonmonotonic conclusions is built into

the system. In other systems, the policy can be modi�ed by its user, though rarely within

the system's knowledge representation language (e.g. by selecting which predicates to

circumscribe). Since KIF is a knowledge representation language and not a system, it is

necessary to provide means for its user to express his nomonotonic reasoning policy within

the language itself.

We use default rules for this purpose. For instance, the following default rule expresses

that an object can be assumed to y if this object is known to be a bird and it is consistent

to assume that it ies.

(<<= (flies ?x) (bird ?x) (consis (flies ?x)))

The use of consis is the only source of nonmonotonicity in KIF. Accordingly, a

rule without justi�cations will be called monotonic. This particularly simple case will be

discussed �rst.

x10.1 Monotonic Rules

A monotonic rule is an expression of the following form or its reverse (using =>>,

where �, �1; : : : ; �n are sentences.

(<<= � �1 : : : �n);

Such an expression should be distinguished from an implication like the following.

(<= � �1 : : : �n)

Athough sentences can be monotonic rules, monotonic rules are not sentences; they

are similar to inference rules, familiar from elementary logic. If, for instance, � consists

of some sentences �0 and one rule (<<= �), where � and are sentences without free

variables, then the set of sentences entailed by � is the smallest set of sentences which (i)

contains �0, (ii) is closed under logical entailment, and (iii) contains provided that it

contains �. It is not generally true that this set contains the implication (<= �).

The rationale for using monotonic rules in knowledge representation, instead of im-

plications, is twofold. On the one hand, the \directed" character of rules can simplify

the task of developing e�cient inference procedures. On the other hand, in some cases,

replacing <<= by <= would be semantically unacceptable. For instance, the rules

(<<= (status-known ?x) (citizen ?x))

54

(<<= (status-known ?x) (not (citizen ?x)))

allow us to infer (status-known Joe) only if one of the sentences

(citizen Joe), (not (citizen Joe))

can be inferred. Replacing the rules by implications would make (status-known ?x)

identically true.

x10.2 Logic Programs

A pure Prolog rule

�:-�1; : : : ; �n

where �; �1; : : : ; �n are atoms, can be viewed as a syntactic variant of the monotonic rule

(<<= � �1 : : : �n)

except for two important details. First, the declarative semantics of Prolog applies the

unique names assumption to its ground terms. If, for example, the program contains no

function constants, then this assumption can be expressed by the sentences

(not (= �1 �2))

for all distinct object constants �1, �2 in the language of the program. Second, this

semantics applies the closed world assumption to each relation. For a relation constant �,

this assumption can be expressed by the following rule.

(<<= (not (� @l)) (consis (not (� @l))))

A pure Prolog program can be translated into KIF by appending to it (i) the sentences

expressing the unique names assumption, and (ii) the default rules expressing the closed

world assumption.

This method can be easily extended to programs with negation as failure. A negative

subgoal not� is represented in KIF by the premise (consis (not �)). (Adding consis

is necessary because, in KIF, not represents classical negation, rather than negation as

failure.)

x10.3 Circumscribing Abnormality

Extending a set of sentences by the closed world assumption for some relation constant

�, expressed by a default rule as shown above, has the same e�ect as circumscribing �

(with all object, function and relation constants varied). In particular, circumscribing

abnormality can be expressed by the default rule

(<<= (not (ab ?aspect ?x)) (consis (not (ab ?aspect ?x))))

Consider, for instance, the nonmonotonic database that contains, in addition to this

standard default, two facts.

55

(bird tweety)

(<= (flies ?x) (bird ?x) (not (ab aspect1 ?x)))

Birds y unless they are abnormal in aspect1). This database nonmonotonically

entails the conclusion that everything is not abnormal, including tweety:

(not (ab ?x))

From this, we can conclude that tweety ies.

Suppose, on the other hand, that our database includes also the fact that tweety is

abnormal in aspect1:

(ab aspect1 Tweety)

In this case, we can no longer infer that tweety is not abnormal, and, therefore, we

cannot conclude that tweety is a ier. Note, however, that we have not asserted that

tweety cannot y; we have only prevented the default rule from taking e�ect in this case.

56

Chapter 11

De�nitions

KIF includes a set of de�nition operators for declaring the category and de�ning ax-

ioms (e.g. \Triangles have 3 sides.") for constants. Such analytic de�nitions are intended

for use in specifying representation and domain ontologies, and are in contrast to met-

alinguistic substitutional de�nitions that specify new object level syntax in a macro-like

fashion.* KIF de�nitions can be complete in that they specify an expression that is equiv-

alent to the constant, or partial in that they specify a de�ning axiom that restricts the

possible denotations of the constant. Partial de�nitions can be either unrestricted or con-

servative extensions to the language. Conservative de�nitions are restricted in that adding

the de�ning axioms they specify to any given collection of sentences not containing the

constant being de�ned does not logically entail any additional sentences not containing

the constant being de�ned. [Enderton 72].

An analytic de�nition associates with the constant being de�ned a de�ning axiom.

Intuitively, the meaning of a de�nition is that its de�ning axiom is true and that its

de�ning axiom is an analytic truth. Analytic truths are considered to be those sentences

that are logically entailed from de�ning axioms. For example, term subsumption in the

KL-ONE family of representation languages is an analytic truth in that it is determined

solely on the basis of term de�nitions. The notions of de�ning axiom and analytic truth

are formally de�ned as follows.

Given a knowledge base �, the sentence (defining-axiom '� '�) means that there

is in � an analytic de�nition of constant � which speci�es sentence � as a de�ning axiom

of constant �. Moreover, de�ning axioms are true. That is, the following axiom schema

holds:

(=> (defining-axiom '� '�) �)

Given a knowledge base �, the sentence (analytic-truth '�) means that the sen-

tence � is logically entailed by the de�ning axioms of the de�nitions in knowledge base

�.

x11.1 Complete De�nitions

Complete de�nitions specify an equivalent term or sentence for the constant being

de�ned as described below. If a constant has a complete de�nition in a knowledge base,

then no other de�nition for that constant may occur in the knowledge base. Complete

de�nitions are guaranteed to be conservative extensions of the language.

The following table shows the de�ning axiom speci�ed by each form of complete

de�nition:

* KIF 3.0 does not provide facilities for substitutional de�nitions. Consideration is being

given to including them in later versions of the language.

57

De�nition De�ning Axiom

(defobject � := �) (= � �)

(deffunction � (�1 ... �n [!]) := �) (= � (lambda (�1 ... �n [!]) �))

(defrelation � (�1 ... �n [!]) := �) (= � (kappa (�1 ... �n [!]) �))

Object constants are de�ned using the defobject operator. In the complete de�ni-

tion of an object constant, the �rst argument, �, is the constant being de�ned, and the

argument, � , following the := keyword, is a term. For example, the following de�nition

de�nes the constant origin to be the list (0,0,0).

(defobject origin := (listof 0 0 0))

The de�ning axiom speci�ed by this de�nition of origin is:

(= origin (listof 0 0 0))

Function constants are de�ned using the deffunction operator. In the complete

de�nition of a function constant, the �rst argument, �, is the constant being de�ned, the

second argument is a list of individual variables with an optional �nal sequence variable

specifying the arguments of the function, and the argument, � , following the := keyword is

a term. For example, the following de�nition de�nes the function paternal-grandfather

in terms of the father function.

(deffunction paternal-grandfather (?x) := (father (father ?x)))

The de�ning axiom speci�ed by this de�nition of paternal-grandfather is:

(= paternal-grandfather (lambda (?x) (father (father ?x))))

Relation constants are de�ned using the defrelation operator. In the complete

de�nition of a relation constant, the �rst argument, �, is the constant being de�ned, the

second argument is a list of individual variables with an optional �nal sequence variable

specifying the arguments of the relation; and the argument, �, following the := keyword,

is a sentence. For example, the following sentence de�nes a bachelor to be an unmarried

man.

(defrelation bachelor (?x) := (and (man ?x) (not (married ?x))))

The de�ning axiom speci�ed by this de�nition of bachelor is:

(= bachelor (kappa (?x) (and (man ?x) (not (married ?x)))))

x11.2 Partial De�nitions

A constant can have multiple partial de�nitions, each of which restricts the possible

denotations of the constant. All the de�nitions of a constant must declare the constant to

be the same category; i.e., they must all use the same operator { defobject, deffunc-

tion, or defrelation. The de�ning axioms speci�ed by partial de�nitions can be either

unrestricted or optionally required to be conservative extensions to the language.

58

Unrestricted Partial De�nitions

Unrestricted partial de�nitions can specify any sentence as a de�ning axiom, as de-

scribed below. The following table shows the de�ning axiom speci�ed by each form of

unrestricted partial de�nition:

De�nition De�ning Axiom

(defobject � �1 ... �n) (and �1 ... �n)

(deffunction � �1 ... �n) (and �1 ... �n)

(defrelation � �1 ... �n) (and �1 ... �n)

(defrelation � (�1 ... �n) (and (=> (member ?x �) (= (length ?x) n))

:=> �1 :axiom �2) (=> (� �1 ... �n) �1)

�2)

(defrelation � (�1 ... �n !) (and (=> (member ?x �) (>= (length ?x) n))

:=> �1 :axiom �2) (=> (� �1 ... �n !) �1)

�2)

In an unrestricted partial de�nition of an object constant, the �rst argument, �, is

the constant being de�ned, and the remaining arguments, �1 ... �n, are sentences. For

example, the following de�nition de�nes the constant id to be a left and right identity for

the binary function f.

(defobject id (= (f ?x id) ?x) (= (f id ?x) ?x))

The de�ning axiom speci�ed by this de�nition of id (which is just the

conjunction of the second and third arguments in the de�nition) is unrestricted in

that it may contradict other partial de�nitions of id and f may not have a left and right

identity.

In an unrestricted partial de�nition of a function constant, the �rst argument, �,

is the constant being de�ned and the remaining arguments, �1 ... �n, are sentences. For

example, the following de�nition de�nes f to be a function which has a value that is greater

than 1 for all numbers.

(deffunction f (=> (number ?y) (> (f ?y) 1)))

The de�ning axiom speci�ed by this de�nition of f is just the implication that is the

second argument in the de�nition.

There are two basic forms of unrestricted partial de�nitions for relations. Both forms

allow inclusion of an arbitrary sentence to be a de�ning axiom for the constant being

de�ned. The second form additionally provides for the speci�cation of necessary conditions

for the relation to hold. The second form has two variants, depending on whether a

sequence variable is included in the function's argument list.

In the �rst form of unrestricted partial de�nition of a relation constant, the �rst

argument, �, is the constant being de�ned and the remaining arguments, �1 ... �n, are

59

sentences. For example, the following de�nition de�nes R to be a relation that holds for

all single arguments that are positive numbers.

(defrelation R (=> (> ?z 0) (R ?z)))

The de�ning axiom speci�ed by this de�nition of R is just the implication that is the

second argument in the de�nition.

In the second form of unrestricted partial de�nition of a relation constant, the �rst

argument, �, is the constant being de�ned, the second argument is a list of individual

variables specifying the arguments of the relation, and the arguments, �1 and �2, following

the :=> and :axiom keywords, are sentences. The form has two variants, depending on

whether the argument list includes a sequence variable. The following is an example of

this form of de�nition in which above is de�ned to be a binary transitive relation that

holds only for "located objects".

(defrelation above (?b1 ?b2)

:=> (and (located-object ?b1) (located-object ?b2))

:axiom (transitive above))

The de�ning axiom speci�ed by this de�nition of above is:

(and (=> (member ?x above) (= (length ?x) 2))

(=> (above ?b1 ?b2)

(and (located-object ?b1) (located-object ?b2)))

(transitive above))

Conservative Partial De�nitions

Conservative partial de�nitions specify de�ning axioms that are conservative exten-

sions of the language. A de�ning axiom is a conservative extension if adding it to any

given collection of sentences not containing the constant being de�ned does not logically

entail any additional sentences not containing the constant being de�ned. The de�ning

axioms speci�ed by complete de�nitions and the de�ning axioms produced directly from

some forms of partial de�nitions are necessarily conservative extensions. However, the ar-

bitrary sentences that can be included in partial de�nitions are not in general conservative

extensions of the language and therefore must be transformed into a conditional form of

de�ning axiom that is guaranteed to be conservative. If a knowledge base contains con-

servative partial de�nitions containing arbitrary sentences for a given constant, then those

de�nitions specify a single conditional de�ning axiom for that constant as described below.

The following table shows the de�ning axiom(s) speci�ed by each form of conservative

partial de�nition:

60

De�nition De�ning Axiom

(defobject �) (objconst (quote �))

(defobject � :conservative-axiom �) The conditional de�ning axiom for �

(deffunction �) (funconst (quote �))

(deffunction � :conservative-axiom �) The conditional de�ning axiom for �

(defrelation �) (relconst (quote �))

(defrelation � :conservative-axiom �) The conditional de�ning axiom for �

(defrelation � (�1 ... �n) :=> �1) (and (=> (member ?x �)

(= (length ?x) n))

(=> (� �1 ... �n) �1))

(defrelation � (�1 ... �n !) :=> �1) (and (=> (member ?x �)

(>= (length ?x) n))

(=> (� �1 ... �n !) �1))

(defrelation � (�1 ... �n) (and (=> (member ?x �)

:=> �1 :conservative-axiom �2) (= (length ?x) n))

(=> (� �1 ... �n) �1))

The conditional de�ning axiom for �

(defrelation � (�1 ... �n !) (and (=> (member ?x �)

:=> �1 :conservative-axiom �2) (>= (length ?x) n))

(=> (� �1 ... �n !) �1))

The conditional de�ning axiom for �

There are two forms of conservative partial de�nitions for objects. In the �rst form,

the argument, �, is the constant being de�ned, and the de�nition simply declares that the

constant denotes an object. In the second form, the �rst argument, �, is the constant being

de�ned, and the argument, �, following the :conservative-axiom keyword is a sentence.

The second form of de�nition provides a sentence to be included in the conditional de�ning

axiom for �, as described below.

There are two forms of conservative partial de�nitions for functions. In the �rst form,

the argument, �, is the constant being de�ned, and the de�nition simply declares that the

constant denotes a function. In the second form, the �rst argument, �, is the constant being

de�ned and the argument, �, following the :conservative-axiom keyword is a sentence.

The second form of de�nition provides a sentence to be included in the conditional de�ning

axiom for �, as described below.

There are three basic forms of conservative partial de�nitions for relations. In the �rst

form, the argument, �, is the constant being de�ned, and the de�nition simply declares

61

that the constant denotes a relation. In the second form, the �rst argument, �, is the

constant being de�ned and the argument, �, following the :conservative-axiom keyword

is a sentence. The second form of de�nition provides a sentence to be included in the

conditional de�ning axiom for � as described below.

The third form of conservative partial de�nition of a relation constant provides for

the speci�cation of necessary conditions for the relation to hold and optionally provides

an arbitrary sentence to be included in the constant's conditional de�ning axiom. The

third form has four variants, depending on whether the optional sentence is included and

whether a sequence variable is included in the function's argument list.

In the third form of conservative partial de�nition of a relation constant, the �rst

argument, �, is the constant being de�ned; the second argument is a list of individual

variables with an optional �nal sequence variable, !, specifying the arguments of the

relation; �1, in the keyword-argument pair, :=> �1, is a sentence; and �2, in the optional

�nal keyword-argument pair, :conservative-axiom �2, is a sentence. For example, the

following de�nition de�nes a person to necessarily be a mammal.

(defrelation person (?x) :=> (mammal ?x))

The de�ning axiom produced by this de�nition of person is:

(and (=> (member ?x person) (= (length ?x) 1))

(=> (person ?x) (mammal ?x)))

The sentences following the keyword :conservative-axiom in all of the partial de�-

nitions for a given constant are used to form a single conservative de�ning axiom for that

constant. The de�ning axiom essentially states that if an entity exists in the domain of

discourse having all the properties ascribed to the constant by its de�nitions, then the

constant denotes such an entity and the sentences in the constant's de�nitions following

the keyword :conservative-axiom are true. That de�ning axiom is formed as follows.

For a given knowledge base � and a given constant �, let �1,...,�i be the sentences fol-

lowing the keyword :conservative-axiom in partial de�nitions of � in �, and �i+1,...,�n
be the de�ning axioms otherwise speci�ed in partial de�nitions of � in �. The sentences

�1,...,�i specify the following conservative de�ning axiom:

(=> (exists ?x �1(�!?x) ... �n(�!?x))

(and �1 ... �i)),

where ?x is an individual variable that does not occur in any �j, and for each j =

1,...,n, �j(�!?x) is �j with the following substitutions:

� Each occurrence of � as a term is replaced by ?x.

� Each occurrence of (� <args>) as a function term is replaced by (value ?x <args>).

� Each occurrence of (� <args>) as a relational sentence is replaced by (holds ?x

<args>).

This form of de�ning axiom cannot introduce an inconsistency into a knowledge base

since any inconsistency will occur in the antecedent of the implication, thus making the

antecedent false and blocking the entailment of the consequent. Also, this form of de�ning

axiom cannot introduce a new domain fact about other constants (e.g., (color Clyde

62

grey)), since such a domain fact will occur in the antecedent of the de�ning axiom and

will therefore block the implication of the consequent if it is not already true.

Note that, in general, a constant can have in�nitely many partial de�nitions (meta-

linguistically speci�ed by a de�nition schema). However, if any of the partial de�nitions

of a constant contain a sentence following the keyword :conservative-axiom, then the

constant must have only a �nite number of de�nitions. Otherwise, the conditional de�ning

axiom for that constant would be an in�nitely long sentence, which is not allowed in KIF.

As an example of conservative partial de�nitions containing arbitrary sentences, con-

sider the following conservative version of the de�nition given above of id, a left and right

identity for f.

(defobject id :conservative-axiom (= (f ?x id) ?x))

(defobject id :conservative-axiom (= (f id ?x) ?x))

Assuming there are no other de�nitions of id in the knowledge base, these two partial

de�nitions produce a single de�ning axiom for id as follows:

(=> (exists ?y (and (= (f ?x ?y) ?x) (= (f ?y ?x) ?x)))

(and (= (f ?x id) ?x) (= (f id ?x) ?x)))

This axiom states that if there exists a left and right identity for f, then id is that

identity.

The following table summarizes all the forms of KIF de�nitions and the de�ning

axioms speci�ed by each.

63

De�nition De�ning Axiom

(defobject � := �) (= � �)

(defobject � �1 ... �n) (and �1 ... �n)

(defobject �) (objconst (quote �))

(defobject � :conservative-axiom �) The conditional de�ning axiom for �

(deffunction � (�1 ... �n [!]) := �) (= � (lambda (�1 ... �n [!]) �))

(deffunction � �1 ... �n) (and �1 ... �n)

(deffunction �) (funconst (quote �))

(deffunction � :conservative-axiom �) The conditional de�ning axiom for �

(defrelation � (�1 ... �n [!]) := �) (= � (kappa (�1 ... �n [!]) �))

(defrelation � �1 ... �n) (and �1 ... �n)

(defrelation �) (relconst (quote �))

(defrelation � :conservative-axiom �) The conditional de�ning axiom for �

(defrelation � (�1 ... �n) (and (=> (member ?x �) (= (length ?x) n))

:=> �1 [:axiom �2]) (=> (� �1 ... �n) �1))

[�2])

(defrelation � (�1 ... �n !) (and (=> (member ?x �) (>= (length ?x) n))

:=> �1 [:axiom �2]) (=> (� �1 ... �n !) �1))

[�2])

(defrelation � (�1 ... �n) (and (=> (member ?x �) (= (length ?x) n))

:=> �1 [:conservative-axiom �2]) (=> (� �1 ... �n) �1))

[The conditional de�ning axiom for �]

(defrelation � (�1 ... �n !) (and (=> (member ?x �) (>= (length ?x) n))

:=> �1 [:conservative-axiom �2]) (=> (� �1 ... �n !) �1))

[The conditional de�ning axiom for �]

64

Chapter A

Abstract Algebra

This appendix contains an ontology for the basic concepts in abstract algebra. The

�rst section gives properties of binary functions. The second section does the same for

binary relations. In the third section, these properties are used in de�ning the a variety of

common algebraic structures.

xA.1 Binary Operations

(defrelation binop (?f ?s) :=

(and (binary-function ?f)

(subset (universe ?f) ?s))) (A.1)

(defrelation associative (?f ?s) :=

(forall (?x ?y ?z)

(=> (member ?x ?s) (member ?y ?s) (member ?z ?s)

(= (value ?f ?x (value ?f ?y ?z))

(value ?f (value ?f ?x ?y) ?z))))) (A.2)

(defrelation commutative (?f ?s) :=

(forall (?x ?y)

(=> (member ?x ?s) (member ?y ?s)

(= (value ?f ?x ?y) (value ?f ?y ?x))))) (A.3)

(defrelation invertible (?f ?o ?s) :=

(forall (?x)

(=> (memberp ?x ?s)

(exists (?y)

(and (member ?y ?s)

(= (value ?x ?y) ?o) (= (value ?y ?x) ?o)))))) (A.4)

(defrelation distributes (?f ?g ?s) :=

(and (binop ?f ?s) (binop ?g ?s)

(forall (?x ?y ?z)

(=> (member ?x ?s) (member ?y ?s) (member ?z ?s)

(= (value ?f (value ?g ?x ?y) ?z)

(value ?g (value ?f ?x ?z)

(value ?f ?y ?z))))))) (A.5)

xA.2 Binary Relations

(defrelation binrel (?r ?s) :=

(and (binary-relation ?r)

65

(subset (universe ?r) ?s))) (A.6)

(defrelation reflexive (?r ?s) :=

(and (binrel ?r ?s)

(forall ?x (=> (member ?x ?s)

(holds ?r ?x ?x))))) (A.7)

(defrelation irreflexive (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x)

(=> (member ?x ?s) (not (holds ?r ?x ?x)))))) (A.8)

(defrelation symmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y) (=> (holds ?r ?x ?y) (holds ?r ?y ?x))))) (A.9)

(defrelation asymmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y) (=> (holds ?r ?x ?y))

(not (holds ?r ?y ?x)))))) (A.10)

(defrelation antisymmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y)

(=> (holds ?r ?x ?y) (holds ?r ?y ?x) (= ?x ?y))))) (A.11)

(defrelation trichotomizes (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y)

(=> (member ?x ?s) (member ?y ?s)

(or (holds ?r ?x ?y)

(= ?x ?y)

(holds ?r ?y ?x)))))) (A.12)

(defrelation transitive (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y ?z)

(=> (holds ?r ?x ?y) (holds ?r ?y ?z)

(holds ?r ?x ?z))))) (A.13)

xA.3 Algebraic Structures

(defrelation semigroup (?s ?f ?o) :=

(and (binop ?f ?s)

66

(associative ?f ?s)

(identity ?o ?f ?s))) (A.14)

(defrelation abelian-semigroup (?s ?f ?o) :=

(and (semigroup ?s ?f ?o)

(commutative ?f ?s))) (A.15)

(defrelation group (?s ?f ?o) :=

(and (binop ?f ?s)

(associative ?f ?s)

(identity ?o ?f ?s)

(invertible ?f ?o ?s))) (A.16)

(defrelation abelian-group (?s ?f ?o) :=

(and (group ?s ?f ?o)

(commutative ?f ?s))) (A.17)

(defrelation ring (?s ?f ?o ?g ?i) :=

(and (abelian-group ?s ?f ?o)

(semigroup ?s ?g ?i)

(distributes ?g ?f ?s))) (A.18)

(defrelation commutative-ring (?s ?f ?o ?g ?i) :=

(and (abelian-group ?s ?f ?o)

(abelian-semigroup ?s ?g ?i)

(distributes ?g ?f ?s))) (A.19)

(defrelation integral-domain (?s ?f ?o ?g ?i) :=

(and (commutative-ring ?s ?f ?o ?g ?i)

(operation ?g (difference ?s (setof ?o))))) (A.20)

(defrelation division-ring (?s ?f ?o ?g ?i) :=

(and (ring ?s ?f ?o ?g ?i)

(binop ?g (difference ?s (setof ?o)))

(invertible ?g (difference ?s (setof ?o))))) (A.21)

(defrelation field (?s ?f ?o ?g ?i) :=

(and (division-ring ?s ?f ?o ?g ?i)

(commutative ?f ?s))) (A.22)

(defrelation partial-order (?s ?r) :=

(and (irreflexive ?r ?s)

(asymmetric ?r ?s)

(transitive ?r ?s))) (A.23)

67

(defrelation linear-order (?s ?r) :=

(and (irreflexive ?r ?s)

(asymmetric ?r ?s)

(transitive ?r ?s)

(trichotomizes ?r ?s))) (A.24)

68

