COMPSCI 366 S1 C 2006
 Foundations of Artificial Intelligence

—Qualitative Reasoning-

Hans W. Guesgen
Computer Science Department

Limitations of Other Formalisms

- In some areas it is difficult to solve problems using general theories or rules.
- Therefore, alternative techniques are necessary, which often involve qualitative reasoning.

Line Labeling

Boundary line: $>$

Concave interior line:
-
Convex interior line: +

Possible Junctions

Labeled Junctions

The Waltz Algorithm

1. Put all junctions that occur in the drawing on to a stack.
2. While the stack is not empty do:
(a) Let J be the top element of the stack.
(b) Pop J from the stack.
(c) If J is visited for the first time, initialize J with all labelings for this type of junction.
(d) If J has been visited before, compare J 's labelings with the labelings of each neighboring junction and delete those of J 's labelings that are not consistent with at least one neighboring labeling.
(e) If J 's labelings have been changed in step $2 c$ or 2 d , push the neighboring junctions of J on to the stack (unless already there).

Naive Physics

- Based on the intuition about physical phenomena.
- May readily produce the qualitative answers needed in a situation.
- Can directly operate on qualitative input, which would make detailed numeric calculations pointless.
- Is computationally less expensive than quantitative reasoning.

Example: Temperature on a Qualitative Scale

```
F: frozen \(\left(x<0^{\circ} \mathrm{C}\right)\)
f: freezing \(\left(x=0^{\circ} \mathrm{C}\right)\)
C: chilled \(\left(0^{\circ} \mathrm{C}<x<R\right)\)
R: room temperature \(\left(18^{\circ} \mathrm{C}<x<25^{\circ} \mathrm{C}\right)\)
W: warm \((R<x<H)\)
H: \(\quad\) hot \(\left(40^{\circ} \mathrm{C}<x<100^{\circ} \mathrm{C}\right)\)
B: boiling \(\left(x=100^{\circ} \mathrm{C}\right)\)
```

Qualitative Temperature Control

	Put in freezer	Put in fridge	Leave out	Heat on stove
F	F	$\mathrm{f} \rightarrow \mathrm{C}$	$\mathrm{f} \rightarrow \mathrm{C} \rightarrow \mathrm{R}$	$\mathrm{f} \rightarrow \mathrm{C} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$ $\mathrm{W} \rightarrow \mathrm{H} \rightarrow \mathrm{B}$
f	F	C	$\mathrm{C} \rightarrow \mathrm{R}$	$\mathrm{C} \rightarrow \mathrm{R} \rightarrow \mathrm{W} \rightarrow$ $\mathrm{H} \rightarrow \mathrm{B}$
C	$\mathrm{f} \rightarrow \mathrm{F}$	C	R	$\mathrm{R} \rightarrow \mathrm{W} \rightarrow \mathrm{H} \rightarrow$ B
R	$\mathrm{C} \rightarrow \mathrm{f} \rightarrow \mathrm{F}$	C	R	$\mathrm{W} \rightarrow \mathrm{H} \rightarrow \mathrm{B}$
W	$\mathrm{R} \rightarrow \mathrm{C} \rightarrow \mathrm{f} \rightarrow \mathrm{F}$	$\mathrm{R} \rightarrow \mathrm{C}$	R	$\mathrm{H} \rightarrow \mathrm{B}$
H	$\mathrm{W} \rightarrow \mathrm{R} \rightarrow \mathrm{C} \rightarrow$ $\mathrm{f} \rightarrow \mathrm{F}$	$\mathrm{W} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$	$\mathrm{W} \rightarrow \mathrm{R}$	B
B	$\mathrm{H} \rightarrow \mathrm{W} \rightarrow \mathrm{R} \rightarrow$ $\mathrm{C} \rightarrow \mathrm{f} \rightarrow \mathrm{F}$	$\mathrm{H} \rightarrow \mathrm{W} \rightarrow \mathrm{R} \rightarrow \mathrm{C}$	$\mathrm{H} \rightarrow \mathrm{W} \rightarrow \mathrm{R}$	B

Qualitative Addition

+	empty	partly full	full
empty	empty	partly full	full
partly full	partly full	partly full, full, or full	full $^{+}$
full	full	full $^{+}$	full $^{+}$

Temporal Reasoning

- Time is most commonly conceptualized as a numeric attribute of events.
- Humans reason about time even when precise numeric representations of time are not available.
- This is often accomplished by using the ordering information associated with events and time intervals.

Relations between Time Intervals

Allen's Composition Table (incomplete)

Relation between t_{1} and t_{2} Relation between t_{2}					
	$<$	>	m	mi	
<	<	?	<	<, m, o, s, d	
>	?	>	$>, \mathrm{mi}, \mathrm{oi}, \mathrm{d}, \mathrm{f}$	$>$	
m	<	$>$, mi, oi, si, di	<	$=, \mathrm{f}, \mathrm{fi}$	
mi	$<, \mathrm{m}, \mathrm{o}, \mathrm{di}, \mathrm{fi}$	$>$	$=, \mathrm{s}, \mathrm{si}$	>	
:	:	:	:	!	

