COMPSCI 366 S1 C 2006
 Foundations of Artificial Intelligence

—Knowledge Representation in Logic-

Hans W. Guesgen
Computer Science Department

Propositional Logic

Advantages:

- It is simple to deal with.
- There is a decision procedure for it.

Propositional Semantics

P	Q	$\neg \mathrm{P}$	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \rightarrow \mathrm{Q}$	$\mathrm{P} \leftrightarrow \mathrm{Q}$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Propositional Semantics (cont'd)

- $P \rightarrow Q$ is called a conditional and $Q \rightarrow P$ its converse.
- $\neg \mathrm{Q} \rightarrow \neg \mathrm{P}$ is called contrapositive.
- $P \leftrightarrow Q$ holds if and only if $P \rightarrow Q$ and its converse both hold.
- The contrapositive of $P \rightarrow Q$ holds if and only if $P \rightarrow Q$ holds.
- $\mathrm{P} \vee \neg \mathrm{P}$ is called a tautology.
- $\mathrm{P} \wedge \neg \mathrm{P}$ is a contradiction. An expression that is not a contradiction is satisfiable.

Example

Facts	Proposition
It is raining.	RAINING
It is sunny.	SUNNY
If it is raining,	RAINING \rightarrow
then it is not sunny.	$\neg S U N N Y$

Rules of Inference

Modus Ponens:

If it is snowing then school will be cancelled, and I also know it is snowing.

If I know it is snowing I can truthfully say that it is snowing or I have long hair.

Rules of Inference (cont'd)

Resolution:

$\begin{aligned} \text { Assume: } & \mathrm{P} \vee \mathrm{Q} \\ \text { And: } & \neg \mathrm{P} \vee \mathrm{Z} \\ \text { Then: } & \mathrm{Q} \vee \mathrm{Z}\end{aligned}$
It is snowing or it is raining. It is not snowing or it is cold. So it is raining or it is cold.

A Shortcoming

Example:

Facts	Proposition
Socrates is a man.	SOCRATESMAN
Plato is a man.	PLATOMAN
All men are mortal.	MORTALMAN

Observation:

- This does not capture the relationship between the sentences.
- More powerful logic is needed.

(First-Order) Predicate Logic

\forall, \exists, variables

Positive aspects:

- Real-world facts are represented as statements written as well-formed formulas (wff's).
- These statements may contain variables and quantification.

Negative aspect:

- Predicate logic is only semidecidable (halting problem).

Example

- Marcus was a man.
man(Marcus)
- Marcus was a Pompeian.

Pompeian(Marcus)

- All Pompeians were Romans.
$\forall x: \operatorname{Pompeian}(x) \rightarrow \operatorname{Roman}(x)$
- Caesar was a ruler. ruler (Caesar)

Example (cont'd)

- All Romans were loyal to Caesar or hated him.
$\forall x: \operatorname{Roman}(x) \rightarrow \operatorname{loyalto}(x$, Caesar $) \vee$ hate $(x$, Caesar $)$
- All Romans were either loyal to Caesar or hated him.
$\forall x: \operatorname{Roman}(x) \rightarrow$
$[($ loyalto $(x$, Caesar $) \vee$ hate $(x$, Caesar $)) \wedge$
$\neg($ loyalto $(x$, Caesar $) \wedge$ hate $(x$, Caesar $))]$
- Everyone is loyal to someone.
$\forall x: \exists y$: loyalto (x, y)

Example (cont'd)

- People only try to assassinate rulers they are not loyal to. $\forall x: \forall y: \operatorname{person}(x) \wedge \operatorname{ruler}(y) \wedge \operatorname{tryassassinate}(x, y) \rightarrow$ $\neg l o y a l t o(x, y)$
- Marcus tried to assassinate Caesar. tryassassinate(Marcus, Caesar)
- There exist precisely two individuals that are parents of Marcus. $\exists x: \exists y: \neg \operatorname{sameperson}(x, y) \wedge \operatorname{parent}(x, \operatorname{Marcus}) \wedge \operatorname{parent}(y, M a r c u s) \wedge$ $\forall z: \operatorname{parent}(z, M a r c u s) \rightarrow(\operatorname{sameperson}(z, x) \vee \operatorname{sameperson}(z, y))$

Was Marcus Loyal to Caesar?

```
            \negloyalto(Marcus, Caesar)
            \uparrow
person(Marcus) ^ ruler (Caesar ) ^tryassassinate(Marcus, Caesar )
    \uparrow
    person(Marcus) ^ tryassassinate(Marcus, Caesar)
    person(Marcus)
```


Additional wff necessary:

person(Marcus)

Observations

- Proving means searching an AND-OR graph.
- Many English sentences are ambiguous:

The spy saw the cop with binoculars.

- Often there is a choice of how to represent a sentence.
- The set of wff's is likely to be incomplete because commonsense knowledge is often lacking from them.
- It is not obvious which statements to deduce:
\neg loyalto(Marcus, Caesar), loyalto(Marcus, Caesar)

