COMPSCI 366 S1 C 2006 Foundations of Artificial Intelligence —Knowledge Representation in Logic—

Hans W. Guesgen

Computer Science Department

Propositional Logic

Advantages:

- It is simple to deal with.
- There is a decision procedure for it.

Propositional Semantics

Propositional Semantics (cont'd)

- $\mathsf{P} \to \mathsf{Q}$ is called a conditional and $\mathsf{Q} \to \mathsf{P}$ its converse.
- $\neg Q \rightarrow \neg P$ is called contrapositive.
- $\mathsf{P} \leftrightarrow \mathsf{Q}$ holds if and only if $\mathsf{P} \to \mathsf{Q}$ and its converse both hold.
- The contrapositive of $\mathsf{P}\to\mathsf{Q}$ holds if and only if $\mathsf{P}\to\mathsf{Q}$ holds.
- $P \lor \neg P$ is called a tautology.
- P $\land \neg$ P is a contradiction. An expression that is not a contradiction is satisfiable.

Example

Facts	Proposition
It is raining.	RAINING
lt is sunny.	SUNNY
lf it is raining, then it is not sunny.	$\begin{vmatrix} RAINING \rightarrow \\ \neg SUNNY \end{vmatrix}$

Rules of Inference

Modus Ponens:

 $\begin{array}{ccc} \text{Assume:} & P \rightarrow Q \\ \text{And:} & P \\ \hline \text{Then:} & Q \end{array}$

If it is snowing then school will be cancelled, and I also know it is snowing.

Disjunctive Syllogism:

Assume: PThen: $P \lor Q$ If I know it is snowing I can truthfully say that it is snowing or I have long hair.

Rules of Inference (cont'd)

Resolution:

Assume: $P \lor Q$ And: $\neg P \lor Z$ Then: $Q \lor Z$

It is snowing or it is raining. It is not snowing or it is cold. So it is raining or it is cold.

A Shortcoming

Example:

Facts	Proposition
Socrates is a man.	SOCRATESMAN
Plato is a man.	PLATOMAN
All men are mortal.	MORTALMAN

Observation:

- This does not capture the relationship between the sentences.
- More powerful logic is needed.

(First-Order) Predicate Logic

 \forall, \exists , variables

Positive aspects:

- Real-world facts are represented as statements written as well-formed formulas (wff's).
- These statements may contain variables and quantification.

Negative aspect:

• Predicate logic is only semidecidable (halting problem).

Example

- Marcus was a man. man(Marcus)
- Marcus was a Pompeian. Pompeian(Marcus)
- All Pompeians were Romans. $\forall x : Pompeian(x) \rightarrow Roman(x)$
- Caesar was a ruler. ruler(Caesar)

Example (cont'd)

- All Romans were loyal to Caesar or hated him. $\forall x : Roman(x) \rightarrow loyalto(x, Caesar) \lor hate(x, Caesar)$
- All Romans were either loyal to Caesar or hated him. $\forall x : Roman(x) \rightarrow$ $[(loyalto(x, Caesar) \lor hate(x, Caesar)) \land$ $\neg(loyalto(x, Caesar) \land hate(x, Caesar))]$
- Everyone is loyal to someone. $\forall x : \exists y : loyalto(x, y)$

Example (cont'd)

- People only try to assassinate rulers they are not loyal to. $\forall x : \forall y : person(x) \land ruler(y) \land tryassassinate(x, y) \rightarrow$ $\neg loyalto(x, y)$
- Marcus tried to assassinate Caesar. tryassassinate(Marcus, Caesar)
- There exist precisely two individuals that are parents of Marcus.
 ∃x: ∃y: ¬sameperson(x, y) ∧ parent(x, Marcus) ∧ parent(y, Marcus) ∧
 ∀z: parent(z, Marcus) → (sameperson(z, x) ∨ sameperson(z, y))

Was Marcus Loyal to Caesar?

$$\neg loyalto(Marcus, Caesar)$$

 \uparrow
 $person(Marcus) \land ruler(Caesar) \land tryassassinate(Marcus, Caesar)$
 \uparrow
 $person(Marcus) \land tryassassinate(Marcus, Caesar)$
 \uparrow
 $person(Marcus)$

Additional wff necessary:

person(Marcus)

Observations

- Proving means searching an AND-OR graph.
- Many English sentences are ambiguous: *The spy saw the cop with binoculars.*
- Often there is a choice of how to represent a sentence.
- The set of wff's is likely to be incomplete because commonsense knowledge is often lacking from them.
- It is not obvious which statements to deduce:
 ¬loyalto(Marcus, Caesar), loyalto(Marcus, Caesar)