THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2006 Campus: City

COMPSCI.366

The Foundations of Artificial Intelligence

(Time allowed: 45 minutes)

This test is out of **100** marks.

Attempt **ALL** questions.

Write your answers in the space provided in this booklet. There is space at the back for answers that overflow the allotted space.

The use of calculators is **NOT** permitted.

Surname (Family Name):	
First Name(s):	
UoA ID Number:	
Login Name (UPI):	

Question	Mark	Marks Available
1		8
2		12
3		9
4		6
5		8
6		2
7		5
8		8
9		6
10		4
11		10
12		4
13		18
Total		100

For each of the following English sentences, choose the first-order predicate calculus formula that best describes the sentence.

[8 marks]

There is a solution for every problem.

- 1. $\exists x \exists y : Problem(x) \land Solution(x,y)$
- 2. $\forall x \exists y : Problem(x) \land Solution(x,y)$
- 3. $\exists y \forall x$: $Problem(x) \land Solution(x,y)$
- 4. $\forall y \exists x : Problem(x) \land Solution(x,y)$
- 5. $\exists x \forall y : Problem(x) \land Solution(x,y)$
- 6. $\forall x \forall y$: $Problem(x) \land Solution(x,y)$

2.
$$\forall x \exists y : Problem(x) \land Solution(x,y)$$

Only students who have answered all questions should leave the room.

- 1. $\forall x$: $Student(x) \land Questions_answered(x) \rightarrow Leave_room(x)$
- 2. $\forall x$: Questions_answered(x) \land Leave_room(x) \rightarrow Student(x)
- 3. $\forall x$: $Student(x) \land Leave_room(x) \rightarrow Questions_answered(x)$
- 4. $\forall x: Leave_room(x) \rightarrow Student(x) \land Questions_answered(x)$

3.
$$Student(x) \land Leave_room(x) \rightarrow Questions_answered(x)$$

Students like either coffee or tea.

- 1. $\forall x$: $Student(x) \rightarrow Likes_coffee(x) \lor Likes_tea(x)$
- 2. $\forall x: Likes_coffee(x) \lor Likes_tea(x) \rightarrow Student(x)$
- 3. $\forall x$: [Student(x) \rightarrow Likes_coffee(x)] \vee [Student(x) \rightarrow Likes_tea(x)]
- 4. $\forall x$: $Student(x) \rightarrow [Likes_coffee(x) \land \neg Likes_tea(x)] \lor [\neg Likes_coffee(x) \land Likes_tea(x)]$
- 4. $\forall x$: $Student(x) \rightarrow [Likes_coffee(x) \land \neg Likes_tea(x)] \lor [\neg Likes_coffee(x) \land Likes_tea(x)]$

Unify the following sets of literals or indicate if this is not possible. P and Q are predicates, f and g are functions, a and b are constants, and x and y are variables. [12 marks]

${P(x), Q(a)}$	
{FAIL	}
$\{P(x,y), P(a,x)\}$	
$\{a/x, a/y\}$	<i>v</i> }
${Q(a,y), Q(x,f(y))}$	
{FAIL	}
$\{P(f(g(y))), P(x)\}$	
f(g(y))/x	x
$\{Q(a), Q(g(y))\}$	
{FAIL	}
$\{P(b,y), P(x,g(x))\}$	
$\{b/x, g(b)\}$	/y}

¹ There was an error in the test, which states that x and z are variables, rather than x and y.

Convert the following formulas into clause form. [9 marks]

 $\forall x \forall y \forall z$: $[P(x) \land Q(y)] \lor R(z)$

$$P(x) \vee R(z_1), Q(y) \vee R(z_2)$$

 $\forall x \exists y \forall z : P(x) \land Q(y) \rightarrow R(z)$

$$\neg P(x) \lor \neg Q(f(x)) \lor R(z)$$

 $\exists x: P(x) \land [\exists y: Q(y)] \rightarrow [\exists y: R(y)]$

$$\neg P(a) \lor \neg Q(y) \lor R(f(y))$$

Given the following set of propositional formulas, prove *P* by resolution.² [6 marks]

$$Q$$

$$\neg T$$

$$P \lor R$$

$$\neg Q \lor S$$

$$\neg R \lor \neg S \lor T$$

_

² There was an error in the test, which had T rather than $\neg T$ in the set of clauses.

Given the standard min/max operations for fuzzy logic, compute the following fuzzy sets. [8 marks]

$$\tilde{A} = \{(a, 0.5), (b, 0.7), (c, 0.4)\}$$

Complement of \tilde{A} :

$$\tilde{A}^c = \{(a, 0.5), (b, 0.3), (c, 0.6)\}\$$

$$\tilde{A}_1 = \{(a, 0.4), (b, 0.6), (c, 0.3)\}\$$
 $\tilde{A}_2 = \{(a, 0.8), (b, 0.2), (c, 0.5)\}\$

Intersection of \tilde{A}_1 and \tilde{A}_2 :

$$\tilde{A}_1 \cap \tilde{A}_2 = \{(a, 0.4), (b, 0.2), (c, 0.3)\}$$

$$\tilde{A}_1 = \{(a, 0.1), (b, 0.9), (c, 0.7)\}\$$
 $\tilde{A}_2 = \{(a, 0.4), (b, 0.5), (c, 0.8)\}\$

Union of \tilde{A}_1 and \tilde{A}_2 :

$$\tilde{A}_1 \cup \tilde{A}_2 = \{(a, 0.4), (b, 0.9), (c, 0.8)\}$$

Compute the 0.5-level set of the fuzzy set $\tilde{A} = \{(a, 0.3), (b, 0.7), (c, 0.4), (d, 0.8)\}.$ [2 marks]

$$A_{0.5} = \{b, d\}$$

Question 7

Show one consistent labelling for the following polyhedron drawing (as it could have resulted from Waltz filtering). Use the label + for convex lines, – for concave line, and < for boundary lines.

[5 marks]

In the search tree below, the G node is a goal node, the rest of the nodes are not goal nodes.

- (1) How many nodes would be created by the breadth-first search algorithm?
- (2) How many nodes would be created by the iterative-deepening search algorithm?
- (3) List the nodes created by the breadth-first algorithm in their order of creation.
- (4) List the nodes created by the iterative-deepening algorithm in their order of creation. [8 marks]

- 1. 13 nodes (or 7 if search stops at G)
- 2. 11 nodes.
- 3. abcdefG (hijklm)
- 4. a | a b c | a b d e c f G.

Question 9

1) What is the difference between a *genetic algorithm* and a *random search algorithm*? [2 marks]

A GA is only partly random, mutation is usually low <5% and selection of the fittest has a random component. A random search algorithm is 100% random.

2) What is the difference between a <i>genetic algorithm</i> and a <i>greedy hill-climbing algorithm</i> ? [2 marks]
A hill climbing algorithm can get trapped in local maxima, whereas random mutations can allow a GA to escape being trapped.
3) Genetic algorithms can be seen as a combination of <i>local</i> and <i>global</i> search. If so, which of cross-over and mutations provides the local search and which the global one? [2 marks]
Cross over = local search
Mutation = global search
Question 10
What is the common characteristic of all <i>stochastic search</i> algorithms? Describe in a short sentence. [4 marks]
They all use some (usually a small %) random search element.

1) List 2 behaviours that multi-agent systems should exhibit?

[2 marks]		
Any of: cooperation, coordination, communication, negotiation, independence, autonomous actionetc		
2) For the following games decide if they are mostly <i>deterministic</i> or <i>non-deterministic</i> . [4 marks]		
Checkersdeterministic		
Rugbynon- deterministic		
Chess Deterministic		
Quakenon-deterministic (definitely in multi-player and probably vs. computer as well)		
3) For the following games decided if the are mostly <i>discrete</i> or <i>continuous</i> . [4 marks]		
Checkersdiscrete		
Rugbycontinuous		
Chessdiscrete		
Quakecontinuous		

Briefly describe the difference between a *first-order intentional system* and a *second-order intentional system*.

[2 marks]

A 1^{st} order system has beliefs and intentions a 2^{nd} order system has beliefs about beliefs and intentiions

2) Why is it useful to describe multi-agent systems as having intentional notions? [2 marks]

Intentional notions provide abstraction – we can reason/program at a more abstract level.

Question 13

Define the facts for the following STRIPS actions.

```
1) stack(x,y)[3 marks]
```

name Stack(x, y)

```
pre Clear(y) \wedge Holding(x)
del Clear(y) \wedge Holding(x)
```

add $ArmEmpty \wedge On(x, y)$

2) unstack(x,y)[3 marks]

```
name UnStack(x, y)
```

pre $On(x, y) \wedge Clear(x) \wedge ArmEmpty$

del $On(x, y) \wedge ArmEmpty$ add $Holding(x) \wedge Clear(y)$

3) pickup(x) [3 marks]

name PickUp(x)

pre $Clear(x) \wedge OnTable(x) \wedge ArmEmpty$

del $OnTable(x) \land ArmEmpty$

add Holding(x)

4) putdown(x) [3 marks]

name *PutDown(x)*

pre Holding(x)

del Holding(x)

add $Clear(x) \wedge OnTable(x) \wedge ArmEmpty$

5) If the current world state can be described by the following STRIPS facts.		
	clear(A) on(A,B) onTable(B) onTable(C) armEmpty	
Describe the world state after the following sequence of STRIPS actions		
[6 marks]	unStack(A,B) Stack(B,C) pickUp(B) Stack(A,C)	
clear(A) on(A,C) onTable(B) onTable(C) armEmpty This assumes that in order to complete Stack(A,C) B must be put down, STRIPS will do this if the precondition of an action is not met it will see if any action will enable the preconditions to be met.		