THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2006
Campus: City
COMPSCI. 366

The Foundations of Artificial Intelligence

(Time allowed: 45 minutes)
This test is out of $\mathbf{1 0 0}$ marks.
Attempt ALL questions.
Write your answers in the space provided in this booklet. There is space at the back for answers that overflow the allotted space.
The use of calculators is NOT permitted.

Surname (Family Name):	
First Name(s):	
UoA ID Number:	
Login Name (UPI):	

Question	Mark	Marks Available
1		8
2		12
3		9
4		6
5		8
6		2
7		5
8		8
9		6
10		10
11		4
12		18
13		100
Total		

Question 1

For each of the following English sentences, choose the first-order predicate calculus formula that best describes the sentence.
[8 marks]
There is a solution for every problem.

1. $\exists x \exists y$: $\operatorname{Problem}(x) \wedge \operatorname{Solution}(x, y)$
2. $\forall x \exists y: \operatorname{Problem}(x) \wedge \operatorname{Solution}(x, y)$
3. $\exists y \forall x: \operatorname{Problem}(x) \wedge \operatorname{Solution}(x, y)$
4. $\forall y \exists x: \operatorname{Problem}(x) \wedge \operatorname{Solution}(x, y)$
5. $\exists x \forall y: \operatorname{Problem}(x) \wedge \operatorname{Solution}(x, y)$
6. $\forall x \forall y$: $\operatorname{Problem}(x) \wedge$ Solution (x, y)

$$
\text { 2. } \forall x \exists y: \operatorname{Problem}(x) \wedge \text { Solution }(x, y)
$$

Only students who have answered all questions should leave the room.

1. $\forall x: \operatorname{Student}(x) \wedge$ Questions_answered $(x) \rightarrow$ Leave_room (x)
2. $\forall x:$ Questions_answered $(x) \wedge$ Leave_room $(x) \rightarrow \operatorname{Student}(x)$
3. $\forall x$: Student $(x) \wedge$ Leave_room $(x) \rightarrow$ Questions_answered (x)
4. $\forall x:$ Leave_room $(x) \rightarrow \operatorname{Student}(x) \wedge Q u e s t i o n s _a n s w e r e d(x)$
5. Student $(x) \wedge$ Leave_room $(x) \rightarrow$ Questions_answered (x)

Students like either coffee or tea.

1. $\forall x: \operatorname{Student}(x) \rightarrow$ Likes_coffee $(x) \vee$ Likes_tea (x)
2. $\forall x$: Likes_coffee $(x) \vee$ Likes_tea $(x) \rightarrow$ Student (x)
3. $\forall x:[\operatorname{Student}(x) \rightarrow$ Likes_coffee $(x)] \vee[\operatorname{Student}(x) \rightarrow$ Likes_tea $(x)]$
4. $\forall x:$ Student $(x) \rightarrow$ Likes_coffee $(x) \wedge \neg$ Likes_tea $(x)] \vee[\neg$ Likes_coffee $(x) \wedge$ Likes_tea $(x)]$
5. $\forall x: \operatorname{Student}(x) \rightarrow[$ Likes_coffee $(x) \wedge \neg$ Likes_tea $(x)] \vee[\neg$ Likes_coffee $(x) \wedge$ Likes_tea $(x)]$

Question 2

Unify the following sets of literals or indicate if this is not possible. P and Q are predicates, f and g are functions, a and b are constants, and x and y are variables. ${ }^{1}$
[12 marks]
$\{P(x), Q(a)\}$

\{FAIL\}

$$
\{P(x, y), P(a, x)\}
$$

$$
\{a / x, a / y\}
$$

$\{Q(a, y), Q(x, f(y))\}$

\{FAIL\}

$\{P(f(g(y))), P(x)\}$
$f(g(y)) / x$
$\{\mathrm{Q}(\mathrm{a}), \mathrm{Q}(\mathrm{g}(\mathrm{y}))\}$
\{FAIL\}
$\{\mathrm{P}(\mathrm{b}, \mathrm{y}), \mathrm{P}(\mathrm{x}, \mathrm{g}(\mathrm{x}))\}$

$$
\{b / x, g(b) / y\}
$$

[^0]
Question 3

Convert the following formulas into clause form.
[9 marks]
$\forall x \forall y \forall z:[P(x) \wedge Q(y)] \vee R(z)$

$$
P(x) \vee R\left(z_{1}\right), Q(y) \vee R\left(z_{2}\right)
$$

$\forall x \exists y \forall z: P(x) \wedge Q(y) \rightarrow R(z)$

$$
\neg P(x) \vee \neg Q(f(x)) \vee R(z)
$$

$\exists x: P(x) \wedge[\exists y: Q(y)] \rightarrow[\exists y: R(y)]$

$$
\neg P(a) \vee \neg Q(y) \vee R(f(y))
$$

Question 4

Given the following set of propositional formulas, prove P by resolution. ${ }^{2}$ [6 marks]

$$
\begin{gathered}
Q \\
\neg T \\
P \vee R \\
\neg Q \vee S \\
\neg R \vee \neg S \vee T
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{cl}
\neg P & P \vee R \\
\backslash & \\
& / \\
R & \neg R \vee \neg S \vee T
\end{array} \\
& \text { । / } \\
& \neg S \vee T \quad \neg T \\
& \text { \ / } \\
& \neg S \quad \neg Q \vee S \\
& \neg Q \quad Q
\end{aligned}
$$

[^1]
Question 5

Given the standard min/max operations for fuzzy logic, compute the following fuzzy sets. [8 marks]
$\tilde{A}=\{(a, 0.5),(b, 0.7),(c, 0.4)\}$

Complement of \tilde{A} :
$\tilde{A}^{c}=\{(a, 0.5),(b, 0.3),(c, 0.6)\}$
$\tilde{A}_{1}=\{(a, 0.4),(b, 0.6),(c, 0.3)\} \quad \tilde{A}_{2}=\{(a, 0.8),(b, 0.2),(c, 0.5)\}$

Intersection of \tilde{A}_{1} and \tilde{A}_{2} :
$\tilde{A}_{1} \cap \tilde{A}_{2}=\{(a, 0.4),(b, 0.2),(c, 0.3)\}$
$\tilde{A}_{1}=\{(a, 0.1),(b, 0.9),(c, 0.7)\} \quad \tilde{A}_{2}=\{(a, 0.4),(b, 0.5),(c, 0.8)\}$

Union of \tilde{A}_{1} and \tilde{A}_{2} :
$\tilde{A}_{1} \cup \tilde{A}_{2}=\{(a, 0.4),(b, 0.9),(c, 0.8)\}$

Question 6

Compute the 0.5 -level set of the fuzzy set $\tilde{A}=\{(a, 0.3),(b, 0.7),(c, 0.4),(\mathrm{d}, 0.8)\}$.
[2 marks]

$$
A_{0.5}=\{b, d\}
$$

Question 7

Show one consistent labelling for the following polyhedron drawing (as it could have resulted from Waltz filtering). Use the label + for convex lines, - for concave line, and $<$ for boundary lines.
[5 marks]

Question 8

In the search tree below, the G node is a goal node, the rest of the nodes are not goal nodes.
(1) How many nodes would be created by the breadth-first search algorithm?
(2) How many nodes would be created by the iterative-deepening search algorithm?
(3) List the nodes created by the breadth-first algorithm in their order of creation.
(4) List the nodes created by the iterative-deepening algorithm in their order of creation.
[8 marks]

1. 13 nodes (or 7 if search stops at G)
2. 11 nodes.
3. abcdefG (hijklm)
4. $\mathrm{a} \mid \mathrm{abc\mid abdecfG}$.

Question 9

1) What is the difference between a genetic algorithm and a random search algorithm?
[2 marks]

A GA is only partly random, mutation is usually low $<5 \%$ and selection of the fittest has a random component. A random search algorithm is 100% random.
2) What is the difference between a genetic algorithm and a greedy hill-climbing algorithm? [2 marks]

A hill climbing algorithm can get trapped in local maxima, whereas random mutations can allow a GA to escape being trapped.
3) Genetic algorithms can be seen as a combination of local and global search. If so, which of cross-over and mutations provides the local search and which the global one?
[2 marks]

Cross over $=$ local search

Mutation $=$ global search

Question 10

What is the common characteristic of all stochastic search algorithms? Describe in a short sentence.
[4 marks]

They all use some (usually a small \%) random search element.

Question 11

1) List 2 behaviours that multi-agent systems should exhibit? [2 marks]

Any of:
cooperation, coordination, communication, negotiation, independence, autonomous action. etc
2) For the following games decide if they are mostly deterministic or non-deterministic.
[4 marks]

Checkers. deterministic

Rugby. \qquad non- deterministic

Chess \qquad Deterministic

Quake. \qquad non-deterministic (definitely in multi-player and probably vs. computer as well)
3) For the following games decided if the are mostly discrete or continuous.
[4 marks]

Checkers.........discrete
Rugby \qquad continuous

Chess \qquad .discrete

Quake. \qquad continuous

Question 12

Briefly describe the difference between a first-order intentional system and a second-order intentional system.
[2 marks]

A $1^{\text {st }}$ order system has beliefs and intentions a $2^{\text {nd }}$ order system has beliefs about beliefs and intentiions
2) Why is it useful to describe multi-agent systems as having intentional notions?
[2 marks]

Intentional notions provide abstraction - we can reason/program at a more abstract level.

Question 13

Define the facts for the following STRIPS actions.

1) $\operatorname{stack}(x, y)$
[3 marks]
name $\operatorname{Stack}(x, y)$
pre Clear $(y) \wedge$ Holding (x)
del Clear $(y) \wedge$ Holding (x)
add ArmEmpty $\wedge \operatorname{On}(x, y)$
2) unstack(x,y)
[3 marks]
name $\operatorname{UnStack}(x, y)$
```
pre On(x,y)^Clear(x) ^ ArmEmpty
del On (x,y) ^ ArmEmpty
add Holding(x) ^Clear(y)
```

3) pickup(x)
[3 marks]
name PickUp(x)
pre Clear $(x) \wedge$ OnTable(x) \wedge ArmEmpty
del OnTable(x) \wedge ArmEmpty
add Holding(x)
4) putdown(x)
[3 marks]
name PutDown(x)
```
pre Holding(x)
del Holding(x)
add Clear(x) ^OnTable(x) ^ ArmEmpty
```

5) If the current world state can be described by the following STRIPS facts.

$$
\begin{aligned}
& \text { clear(A) } \\
& \text { on(A,B) } \\
& \text { onTable(B) } \\
& \text { onTable(C) } \\
& \text { armEmpty }
\end{aligned}
$$

Describe the world state after the following sequence of STRIPS actions

> unStack(A,B)
> Stack(B,C)
> pickUp(B)
> Stack(A,C)
[6 marks]

```
clear(A)
on(A,C)
onTable(B)
onTable(C)
armEmpty
```

This assumes that in order to complete $\operatorname{Stack}(\mathrm{A}, \mathrm{C})$ B must be put down, STRIPS will do this if the precondition of an action is not met it will see if any action will enable the preconditions to be met.

[^0]: ${ }^{1}$ There was an error in the test, which states that x and z are variables, rather than x and y.

[^1]: ${ }^{2}$ There was an error in the test, which had T rather than $\neg T$ in the set of clauses.

