
COMPSCI 366

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2004
Campus: City

COMPUTER SCIENCE

Foundations of Artificial Intelligence

(Time allowed:)

NOTE: Attempt all questions.
Put the answers in the boxes below the questions.

MARKS

SECTION A: PREDICATE CALCULUS (out of 35)

SECTION B: PROLOG (out of 15)

SECTION C: SEARCH (out of 20)

SECTION D: PLANNING (out of 30)

TOTAL: (out of 100)

SURNAME:

FORENAME(S):

STUDENT ID:

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

2 COMPSCI 366

Section A: Predicate Calculus

1. Draw the venn diagram of M(x) and M(y) if x ` y.

[2 marks]

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

3 COMPSCI 366

2. Are the following sentences satisfiable, unsatisfiable or valid?

a. A → ¬(A → B)

b. A ∨ (A → B)
c. A ∨ ¬A

d. A ∧ ¬A

e. A ∧ ¬B

[5 marks]

a. satisfiable
b. valid
c. valid
d. unsatisfiable
e. satisfiable

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

4 COMPSCI 366

3. What are the English sentences these formulas represent?

a. ∀x likes(X, icecream) → likes(X, brocolli)
b. ∀x likes(X, icecream)∧ likes(X, brocolli)
c. ∃x likes(X, icecream) → likes(X, brocolli)
d. ∃x likes(X, icecream)∧ likes(X, brocolli)
e. ∀x∃ y likes(x, y)
f. ∃x∀y likes(x, y)

[12 marks]

a. Anyone who likes ice cream also likes brocolli.
b. Everyone likes ice cream and brocolli.
c. Someone doesn’t like ice cream or does like brocolli.
d. Someone likes ice cream and brocolli.
e. Everyone likes someone.
f. Someone likes everyone.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

5 COMPSCI 366

4. Give the predicate calculus for these sentences using the predicates: cat(x), furry(x), animal(x),
dog(x), frog(x), and slimy(x).

All cats are furry.
Some frogs are slimy.
If an animal is furry then it is a cat or a dog.

[6 marks]

∀x cat(x) → furry(x)
∃x frog(x) ∧ furry(x)
∀x animal(x) ∧ furry(x) → cat(x) ∨ dog(x)

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

6 COMPSCI 366

5. Write a definition for sister-in-law using only married(x,y), brother-of(x,y), and sister-of(x,y).
[4 marks]

∀x, y∃z sister − in − law(x, y) ↔ (brother − of(x, z) ∧ married(z, y)) ∨

(married(x, z) ∧ sister − of(z, y)

6. Unify the following formulas

a. p(x) p(y)
b. p(x) p(f(y))
c. p(x) d(y)
d. p(x) p(a)
e. p(x) p(f(a))
f. p(a) p(f(x))

[6 marks]

a. x/y
b. x/f(y)
c. failed
d. x/a
e. x/f(a)
f. failed

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

7 COMPSCI 366

Section B: Prolog

7. Translate the logic expression into the appropriate Prolog code. Use the same predicates for the
Prolog code as appears in the logic expression.

human(Socrates) ∧ human(P lato) ∧ ∀xhuman(x) → mortal(x)

[4 marks]

human(socrates).
human(plato).
mortal(X) :- human(X).

8. Translate the Prolog code into the appropriate predicate calculus expression. Use the same predi-
cates for the logic expression as appears in the Prolog code.

wealthy(X) :- inherited(X, money).
wealthy(X) :- won(X, Y), typeOf(Y, lottery).

[2 marks]

∀x∃y (inherited(x, Money) ∨ won(x, y) ∧ typeOf(y, Lottery)) → weathy(x)

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

8 COMPSCI 366

9. Translate the Prolog code into the appropriate predicate calculus expression. Use the same predi-
cates for the logic expression as appears in the Prolog code.

popular(X) :- won(X, lotto).
idle(X) :- won(X, lotto).

[2 marks]

∀x won(x, Lotto) → popular(x) ∧ idle(x)

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

9 COMPSCI 366

10. Given the following Prolog code:

a(X) :- p(X).
a(X) :- q(X).
p(X) :- r(X), s(X).
q(X) :- t(X), u(X).
r(1). r(2). s(2). t(2). t(3). t(4). u(2). u(4).

What answer/s will you get if you give Prolog the query ”a(A)” and repeatedly ask for more
answers? Put down all the Prolog responses (e.g., bindings, etc.) in the space below (if responses
are repeated then state how often they are repeated). [3 marks]

A=2;A=2;A=4

11. Given the following Prolog code:

a(X) :- p(X).
a(X) :- q(X).
p(X) :- not(r(X)), s(X).
q(X) :- t(X), not(u(X)).
r(1). s(2). t(2). t(3). t(4). u(2). u(4).

What answer/s will you get if you give Prolog the query ”a(A)” and repeatedly ask for more
answers? Put down all the Prolog responses (e.g., bindings, etc.) in the space below (if responses
are repeated then state how often they are repeated). [3 marks]

A=3

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

10 COMPSCI 366

12. Given the following Prolog code:

a(X) :- p(X).
a(X) :- q(X).
p(X) :- r(X), !, s(X).
q(X) :- t(X), u(X).
r(1). r(5). s(5). t(2). t(3). t(4). u(2). u(4).

What answer/s will you get if you give Prolog the query ”a(A)” and repeatedly ask for more
answers? Put down all the Prolog responses (e.g., bindings, etc.) in the space below (if responses
are repeated then state how often they are repeated). [1 mark]

A=2;A=4

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

11 COMPSCI 366

Section C: Search

13. In the search tree below, the G node is a goal node, the rest of the nodes are not goal nodes.
(1) How many nodes would be created by the breadth-first search algorithm?
(2) How many nodes would be created by the iterative-deepening search algorithm?
(3) List the nodes created by the breadth-first algorithm in their order of creation.
(4) List the nodes created by the iterative-deepening algorithm in their order of creation.

....a....
/ \

b c
/ \ / \

d e f G
/ \ / \ / \

h i j k l m

Figure 1: Search Tree

[8 marks]

(1) 13 nodes. (2) 11 nodes. (3) a b c d e f G h i j k l m. (4) a a b c a b d e c f G.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

12 COMPSCI 366

14. The A* search algorithm uses f-values to order its traversal of the search tree.
(1) Intuitively, what does a node’s f-value represent?
(2) How does it compute this value?
(3) What must be true of the components of this computation to guarantee that the algorithm finds
the optimal path to a goal node? [12 marks]

(1) It represents an estimate of the cost of the shortest path from the initial state to a
goal node going through this node.
(2) It is the sum of the length of shortest path from the initial state to this node plus an
estimate of the shortest path from this node to a goal node.
(3) The cost of the path from the initial node to this node must be the minimal cost
path from the initial state to that node and the estimate must not be greater than the
true cost of the minimum-cost path from that node to any goal node.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

13 COMPSCI 366

Section D: Planning

15. States represent what the agent/planner knows about the world. There are two main approaches to
representing what we know about the state of the world. One is called the Closed World Assumption
(CWA), the other is called the Open World Assumption (OWA).
(1) Why do we make these types of assumptions?
(2) What is the main difference between these assumptions?
(3) For each of the two assumptions, what is implicitly represented about the state?
(4) For each of the two assumptions, what is explicitly represented about the state?

[4 marks]

(1) They cut down on the number of literals we need to explicitly store in order to
specify a state.
(2) The difference between these assumptions is whether or not we assume the planner
knows the truth value of every literal, i.e., whether the planner is omniscient. CWA
assumes the planner does know the truth value of every literal (both positive and neg-
ative). OWA does not assume the planner knows the truth value of every literal.
(3) CWA - false conditions are implicitly represented, OWA - unknown conditions are
implicitly represented.
(4) CWA - true conditions about the world are explicitly represented, OWA - known
conditions about the world are explicitly represented.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

14 COMPSCI 366

16. Goals (and operator preconditions) represent what states the agent/planner desires to bring about
in the world. There are two main types of conditions that can occur in a goal expression. One type
is object-level conditions and the other type is meta-level conditions.
(1) What is the difference between these?
(2) Why do we sometimes need to have meta-level preconditions?
(3) Give an example of a meta-level condition we might find in the precondition of a blocksWorld’s
operator.

[4 marks]

(1) Object-level conditions describe something that’s testable in a state, and meta-level
conds describe something that is not testable about states.
(2) To ensure that the operators perform ”legal” actions in the world (e.g., cannot put
a block on top of itself).
(3) neq(Block, Destination).

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

15 COMPSCI 366

17. The effects of an operator represent how the application of an operator changes the world. Effects
can contain both positive and negative object-level literals.
(1) What do positive object-level effect literals say about how the operator affects the world?
(2) What do negative object-level effect literals say about how the operator affects the world?
(3) Give an example of a negative object-level condition we might find in the effects of a blocksWorld’s
operator. [4 marks]

(1) They are added to the world description.
(2) The are deleted from the world description.
(3) not(clear(B))

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

16 COMPSCI 366

18. Planners need to generate successor plans from a given plan.
(1) Describe how the successors are generated in a progressive planner.
(2) Describe how the successors are generated in a regressive planner. [4 marks]

(1) Given a plan, there is an associated progressed state and given that state the planner
calculates all applicable operators, i.e., all operator instantiations where all precondi-
tions are satisfied by the progressed state. The successor plans are all those plans
which have the given plan plus one of the applicable operators (placed just before the
finish pseudo-operator step).
(2) Given a plan, there is an associated set of regressed goals and given that set the
planner calculates all relevant operators, i.e., all operator instantiations where at least
one of their effects satisfy a regressed goal. The successor plans are all those plans
which have the given plan plus one of the relevant operators (placed just after the start
pseudo-operator step).

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

17 COMPSCI 366

19. Planners need to determine when a plan solves a given problem. Assuming that our plans have
start and finish psuedo-steps.
(1) Describe how, in a progressive planner, the plans are tested for being a solution to the given
problem.
(2) Describe how, in a regressive planner, the plans are tested for being a solution to the given
problem.

[4 marks]

(1) In a progressive planner, a plan is tested for being a solution by checking whether
the plan’s associated progressed state satisfies all of the preconditions of the finish
pseudo-step.
(2) In a regressive planner, a plan is tested for being a solution by checking whether the
plan’s associated set of regressed goals is satisfied by the effects of the start pseudo-
step.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

18 COMPSCI 366

20. Often, domain actions need to have meta-level preconditions. In our discussions of planners, there
has only been one type of meta-level precondition mentioned.
(1) How would progressive planners handle the testing of that type of meta-level precondition?
Can it always be tested? Why or why not?
(2) How would regressive planners handle the testing of that type of meta-level precondition? Can
it always be tested? Why or why not?

[4 marks]

(1) Progressive planners test neq/2 meta-level preconditions by checking whether its
two arguments have the same value. The neq/2 meta-level preconditions can always be
tested when checking to see if the operator is applicable. This is because all of the vari-
ables that appear in the neq/2 meta-level preconditions also appear in that operator’s
object-level preconditions and for an operator to be applicable, all of the object-level
preconditions must unify with the fully instantiated progressed state causing all of
those variable to become fully instantiated.
(2) Regressive planners must check whether both variables have been instantiated or
have been unified with each other (i.e., they must instantiate to the same value). If the
former then the values can be checked. If the latter then regardless of their eventual
value this condition must fail. Otherwise, the neq/2 meta-level precondition cannot be
tested at that time to see whether that relevant operator needs to be ruled out. Unlike
with the progression planner, not all of the variables need to be bound when checking
whether an operator is relevant. This is because not all of the operator’s effects need
to unify with the set of regressed goals for the operator to be considered relevant. This
means that even if all of the regressed goals are fully instantiated, it is still possible for
some of the variables appearing in the effects to remain uninstantiated. If the variables
are uninstantiated then it is not always possible to test for inequality (i.e., neq/2) of the
variables. For example, given neq(X,Y), where X and Y are uninstantiated, how can
the planner know whether X and Y will eventually be instantiated to the same value or
not? It can’t!

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

19 COMPSCI 366

21. The start and finish pseudo steps were introduced in partially-ordered plans so that the problem’s
initial situation and top-level goals could be handled the same way as were operator preconditions
and effects. For the most part this works, however, there is one important time when a pseudo-step
cannot be handled just like an ordinary operator-step.
(1) For which pseudo-step is this true?
(2) When is it true?
(3) Why is it true?

[6 marks]

There turned out to be two answers for this question. I had only thought of the first,
but both are worth full marks (provided you answer them fully and correctly).
First answer
(1) The start pseudo-step.
(2) When it will produce a negative condition to be used by a later step via a causal
link.
(3) This is true because unlike real steps, negative conditions are not represented in the
effects of the start pseudo-step. The effects of the start pseudo-step represent a state
description (using the Closed World Assumption) and consequently only positive con-
ditions are explicitly represented while the effects of real steps represent a state update
description and consequently the negative conditions represent positive conditions to
be removed from the current state description.
Second answer
(1) Both pseudo-steps.
(2) When one of its causal links is potentially clobbered by another step.
(3) This is true because potential clobberers of causal links that only involve real steps
can be ordered before the causal link’s producer or after the causal link’s consumer.
However, when a causal link involves a pseudo-step at least one of these alternatives
is eliminated.

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

20 COMPSCI 366

Scratch sheet

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

21 COMPSCI 366

Scratch sheet

CONTINUED

QUESTION/ANSWER SHEET

Surname:

Forename(s):

22 COMPSCI 366

Scratch sheet

