
Operating Systems Lecture 31 page

Where the bugs are

Where the bugs are in Linux (other OSs may be
worse ☺).
•Graphic from http://linuxbugs.coverity.com/linuxbugs.htm

Reasons:
•Device drivers are written by many people.
•Less experience, less knowledge, less checks, kernel

code is read and checked by many more people.
•We would like a way to reduce the impact of bugs in

device drivers on the rest of the system.

1 Operating Systems Lecture 31 page

Providing device drivers

Compiled as part of the kernel.

Loadable (and unloadable) sections of kernel
level code.
•The way Linux and Windows do it.

User level service providers
•There may need to be a stub driver at kernel level.
•Can be done with memory-mapped devices by allocating

the corresponding real memory addresses to the driver
process.

•This is safer because the interactions with the rest of the
OS are constrained to specific interfaces.

•In x86 processors, processes can request permission to
use particular IO ports and if granted can use them
from user mode.

2

Operating Systems Lecture 31 page

Linux Kernel Modules
Sections of kernel code that can be compiled,

loaded, and unloaded independently of the rest
of the kernel.

A kernel module may typically implement a
device driver, a file system, or a networking
protocol.

The module interface allows third parties to write
and distribute, on their own terms, device
drivers or file systems that could not be
distributed under the GPL. (Some people
strongly disagree with this idea and think it is
illegal.)

Kernel modules allow a Linux system to be set up
with a standard, minimal kernel, without any
extra device drivers built in.

Three components to Linux module support:
•module management
•driver registration
•conflict resolution

3 Operating Systems Lecture 31 page

Module Management

The module requestor loads modules; it also regularly queries the
kernel to see whether a dynamically loaded module is still in use,
and will unload it when it is no longer actively needed.

When the kernel is compiled some symbols (functions, variables) are
exported into an internal symbol table.
•These symbols can then be referenced by modules via the

linking process.
•e.g. /proc/kallsyms
•c0100000 T _text•c0100000 T startup_32•c01000b0 T startup_32_smp•c0100130 t checkCPUtype•c01001b1 t is486•c01001b8 t is386•c0100225 t check_x87•c0100260 T setup_pda•c0100282 t setup_idt•c010029f t rp_sidt•c0100322 t early_divide_err•c0100328 t early_illegal_opcode•c0100331 t early_protection_fault•c0100338 t early_page_fault•c010033f t early_fault•...

Module loading
The module is scanned for references to kernel symbols, these are

located in the symbol table.
•If a symbol can’t be found the module is not loaded.

A continuous area of virtual kernel memory is requested.

The module is moved to its location.

The module itself provides more symbol-table entries to the kernel.
•These may be used by other modules.

4

Operating Systems Lecture 31 page

Module Design

•

• image from http://www.tldp.org/LDP/tlk/modules/
modules.html

5 Operating Systems Lecture 31 page

Driver Registration

When a module is loaded the kernel calls its
startup routine.
•This routine must register the module with the kernel.

Allows modules to tell the rest of the kernel
that a new driver has become available.

The kernel maintains tables of all known
drivers, and provides a set of routines to
allow drivers to be added to or removed
from these tables at any time.

Registration tables include the following items:
•Device drivers
•File systems
•Network protocols
•Binary formats – recognise and load new types of

executable files

6

Operating Systems Lecture 31 page

Conflict Resolution

The conflict resolution mechanism allows
different device drivers to reserve hardware
resources and to protect those resources from
accidental use by another driver

It aims to:
•Prevent modules from clashing over access to hardware

resources
•Prevent autoprobes from interfering with existing device

drivers
•Resolve conflicts with multiple drivers trying to access

the same hardware (they may be allowed to but not at
the same time)

The kernel maintains lists of allocated hardware
resources (interrupt lines, DMA channels
and I/O address space).
•Device drivers reserve resources with the database.
•If it can’t get a resource the driver may try alternatives or

simply fail and ask to be unloaded.

7 Operating Systems Lecture 31 page

User level driver

• Linux allows a suid root process to access IO ports –
ioperm. Then the process can drop back to the actual
user's uid and exec.

• Memory mapped IO also allows user processes to
access IO registers. The registers are mapped into the
ordinary address space. This process is allowed to
read and write these addresses.

• Interrupts are a problem. The driver has to somehow
respond to and request interrupts. Experimental
versions of Linux allow interrupts to be accessed via
the /proc file system. (Currently you can read /proc/
interrupts.)

• DMA uses interrupts but also requires memory
buffers (allocated as contiguous pages of physical
memory). There has to be a way of obtaining the bus
(usually physical) addresses for the DMA controller.

• Because of kernel/user transitions they can be slower
than kernel level.

8

Operating Systems Lecture 31 page

I/O Performance

Bad things
•Lots of context switches (interrupts, and passing I/O

through layers of device drivers or filters)
•Copying of data (from controllers to memory, from user

to kernel space and possibly between layers, from one
machine to another on a network)

Solutions
•PIO – Programmed I/O

•Busy waiting can be effective if we can be sure the
wait isn’t going to be long.

•This cuts down the number of context switches.
•Put I/O handling at the same level, e.g. move different

parts of the procedure into the kernel.
•This is what Solaris did with the telnet daemon and

Microsoft did with the graphics display system in
Windows NT 4.

•Not only does this cut down on context switches, it
also reduces the amount of data copying required.

•Transfer data in larger chunks.
•This can cut down on the number of interrupts (1

per chunk)
•Use DMA controllers or I/O processors to work in

parallel with the CPU.

9 Operating Systems Lecture 31 page

General services

We saw the block buffer cache that UNIX provides for
all of its block device drivers. This is only one of
several services the OS might provide to devices and
device drivers.

Buffers are used to deal with the differences in speed
between the processor and devices, and between
different devices.

• serial connections or modem connections to disk
• data produced by a process to disk

In both cases the buffer would be the size of a disk block
(or a multiple of this) to facilitate writing to disk.

Buffers are also used to package data into different
sized chunks for transfer between different
devices, especially over networks.

A disk write system call may copy the data from user
space to a kernel buffer in order to ensure copy
semantics. What is another solution to this problem?

Double buffering is used when data is being read and
written.

10

Operating Systems Lecture 31 page

Caching

Data which is currently being accessed is
cached in faster memory for efficiency
purposes. e.g.

• disk storage is cached by
• main memory which is cached by
• the CPU's secondary cache which is cached by
• the CPU's primary cache which may be cached by
• processor registers

A cache is like a buffer but holds a copy of
data, a buffer might hold the only existing
version of the data.

So the UNIX block buffer cache is both. It
buffers information and maintains it as a
cache.

11 Operating Systems Lecture 31 page

Spooling and device reservation

Used initially to provide a buffer on a fast
device for data on a slow device.  
Also used to stop the interleaving of data
from different sources on the same device.

Effectively sharing a non-sharable device over
several processes.

Commonly used for printing.
• A process opens output to the printer.
• The output is stored in a buffer (usually a file).
• A request to print this output is recorded by the printing

system.
• A thread or process maintains the queue of printing

Device reservation – allowing one process
exclusive access to the device at a time.

12

Operating Systems Lecture 31 page

Before next time

Read from the textbook
•10.2 Disk Structure

•10.4 Disk Scheduling

•10.5 Disk Management

•10.6 Swap-Space Management

13

