
Operating Systems Lecture 30 page

Device drivers

A device driver is software which connects the
OS I/O subsystem to the underlying
hardware of the device.

Devices vary in many dimensions:
•Character-stream or block or other
•Sequential or random-access
•Sharable or dedicated
•Speed of operation
•read-write, read only, or write only

I/O system calls encapsulate device behaviours
in generic classes (device independence
requires this).

Device-driver layer hides differences among
I/O controllers from kernel.

1 Operating Systems Lecture 30 page

What services?
The most popular OSs at the moment make devices look

very much like files (or streams).

open – make the device usable for a process

read – get input from the device

write – send output to the device

control – send any sort of special command to the device
•In UNIX this is ioctl (I/O control)
•In Windows DeviceIoControl().

close – sever the connection between the device and the
process

Some OSs allow drivers to have extra explicit entry
points (we could just use ioctl).
•e.g. Cancel all current requests.
•Clear any queues.
•Shut the device down
•Detach the device.
•Attach the device.

2

Operating Systems Lecture 30 page

Connections

There are close connections between device
drivers and the kernel (or at least other low-
level services).

Drivers need to be able to reserve memory
(including non-pageable memory), set up
interrupt handlers, have privileged access to
I/O instructions.

Drivers are loaded and initialized at different
times.
•On older systems this was always done once at OS boot

time.
•We want to be able to add and remove devices (and

hence drivers) as the system is running.
•There are sometimes complicated dependencies between

drivers.

Some drivers still need to be loaded at boot
time.

3 Operating Systems Lecture 30 page

How does the OS know?

How does the OS know what types of devices
are installed?

The OS installation process could check for a
variety of “standard” devices.
•This is referred to as autoprobing.
•A table is compiled of all attached devices. This table is

then used in system startup to check the presence of the
devices.

Administrators can edit configuration files with
details of attached devices.

These days, most hardware is designed to
explicitly and easily identify itself to the OS.
•When new hardware is detected the OS may have to

request a driver for the device.
•Or there may be a standard driver which will do.

4

Operating Systems Lecture 30 page

Conflicts
Computers (particularly PC compatibles) have

only a small number of I/O ports, DMA
channels and interrupt vectors.

Thus it is easy for devices to want to use the
same resources.

Bus interfaces help: SCSI, USB, Firewire
(IEEE 1394), Thunderbolt
•One set of resources is shared amongst several devices

(the limits of the bus controller or hub).

Plug and play
•No hardware addresses to set up.
•Configurable by software.
•Devices can identify themselves.
•Device drivers can be loaded.
•Resources are automatically allocated.
•Device is configured and started.
•Need to be able to stop devices (and pending requests)

and alter their resource requirements on the fly as new
devices are added.

5 Operating Systems Lecture 30 page

Finding the device

There has to be some way for programs to find
the name of the device.

A device driver could publish the device’s name
to a system-wide table.

In UNIX special files are created in the /dev
directory. They are marked as devices (c or
b) and have major (which device driver) and
minor (which device) device numbers. This
information is in the device’s inode.

crw-rw---- 1 root uucp 5, 64 Apr 14 2001 cua0
crw-rw---- 1 root uucp 5, 65 Apr 14 2001 cua1
brw-rw---- 1 robert floppy 2, 0 Apr 14 2001 fd0
brw-rw---- 1 root disk 3, 0 Apr 14 2001 had
brw-rw---- 1 root disk 3, 1 Apr 14 2001 hda1
crw-rw---- 1 root root 10, 0 Apr 14 2001

logimouse
crw------- 1 robert root 195, 0 Sep 12 19:31 nvidia0

6

Operating Systems Lecture 30 page

UNIX I/O structure

doesn’t use the
block buffer

cache,
can be used for
virtual memory

treated
separately

7 Operating Systems Lecture 30 page

Block devices

Disks, tapes. Can address a complete block
(e.g. 4096 bytes)

Block device driver may turn block numbers
into tracks and cylinders etc. But many block
devices work directly on block numbers.

Transfers are buffered through the block buffer
cache.

Block Buffer Cache
•Blocks are cached as they are read/written.
•A hashtable connects device and block numbers to

corresponding buffers.
•When a block is wanted from a device, the cache is

searched.
•If the block is found it is used, and no I/O transfer is

necessary.

Also have a raw mode which bypasses the
buffer cache.

8

Operating Systems Lecture 30 page

Character devices

Everything (except network devices) that
doesn’t use the block buffer cache:
•keyboards
•mice
•printers
•modems
•sound cards
•video cards
•etc

Raw and cooked tty input
•Cooked input makes changes to the data before it is

passed to the requesting program. e.g.
•deleting characters with backspace
•clearing the whole line

•Cooked tty mode is a “line discipline”.
•Raw input is passed on exactly as it is (almost) to the

program.

9 Operating Systems Lecture 30 page

Talking to the driver

I/O request block - IORB

A data structure which contains all the
information needed to complete the I/O
request.

• Constructed by the I/O system calls and
passed to the device drivers. e.g. Read
device block 42.

Called IRPs (I/O request packets) in Windows.

The driver might deal with IORBs immediately
•Some devices don’t block and completely finish before

returning to the caller – e.g. display video cards

or it might queue the requests until they can be
handled.
•Disk drivers would do this.

10

Operating Systems Lecture 30 page

Lifecycle

11 Operating Systems Lecture 30 page

Getting a character from the keyboard
A program (like a word processor) which wants every

character from the keyboard uses the keyboard device
in the raw mode.

It doesn’t want the device driver or kernel mucking
around by automatically editing lines (e.g. in response
to the backspace key) before passing the information
on.
•Almost certainly there is still a little system processing which

goes on, because of the need to keep some control e.g.
stopping the program in response to certain key combinations.

The program requests a character from the keyboard.

The keyboard device driver receives the request. The program
blocks because there is no data.

The user types a key. This generates an interrupt.

The interrupt handler (the top-half of the keyboard device
driver) gets the letter “X” say and passes it to the bottom-
half .

The bottom-half unblocks and returns the character to the
program.

12

Operating Systems Lecture 30 page

Levels of device drivers

A lot of drivers depend on other device drivers.

e.g. Devices attached to a SCSI bus depend on
the SCSI device driver.

So device drivers can be layered on top of each
other.

A call to a SCSI hard disk driver will send
requests to the disk via the SCSI driver.
•In Windows these layered drivers were referred to as

mini-port drivers.

Another type of low-level driver can be used to
allow high-level drivers access to the
hardware.
•e.g. the low-level parallel port driver is used by parallel

printer drivers to allocate exclusive access to the
parallel port. The printer driver then talks directly to the
printer via the port.

13 Operating Systems Lecture 30 page

Trees of devices

So device drivers can be represented as a
hierarchy (or tree) of drivers.

This means we can use the same mechanism to
add functionality to our devices.

A compression or encryption device driver
could be provided as a filter over the top of a
conventional driver. The underlying driver
doesn’t have to be aware of the extra layer.

14

Operating Systems Lecture 30 page

Before next time

Read from the textbook
•18.3 Kernel Modules
•13.7 Performance
•13.4 Kernel I/O Subsystem

15

