Big-Oh notation: few examples

Example 1: Prove that running time $\mathrm{T}(n)=n^{3}+20 n+1$ is $\mathrm{O}\left(n^{3}\right)$
Proof: by the Big-Oh definition, $\mathrm{T}(n)$ is $\mathrm{O}\left(n^{3}\right)$ if $\mathrm{T}(n) \leq c \cdot n^{3}$ for some $n \geq n_{0}$. Let us check this condition: if $n^{3}+20 n+1 \leq c \cdot n^{3}$ then $1+\frac{20}{n^{2}}+\frac{1}{n^{3}} \leq c$. Therefore, the Big-Oh condition holds for $\mathrm{n} \geq n_{0}=1$ and $\mathrm{c} \geq 22(=1+20+1)$. Larger values of n_{0} result in smaller factors c (e.g., for $n_{0}=10 c \geq 1.201$ and so on) but in any case the above statement is valid.

Example 2: Prove that running time $\mathrm{T}(n)=n^{3}+20 n+1$ is not $\mathrm{O}\left(n^{2}\right)$
Proof: by the Big-Oh definition, $\mathrm{T}(n)$ is $\mathrm{O}\left(n^{2}\right)$ if $\mathrm{T}(n) \leq c \cdot n^{2}$ for some $n \geq n_{0}$. Let us check this condition: if $n^{3}+20 n+1 \leq c \cdot n^{2}$ then $n+\frac{20}{n}+\frac{1}{n^{2}} \leq c$. Therefore, the Big-Oh condition cannot hold (the left side of the latter inequality is growing infinitely, so that there is no such constant factor c).

Example 3: Prove that running time $\mathrm{T}(n)=n^{3}+20 n+1$ is $\mathrm{O}\left(n^{4}\right)$
Proof: by the Big-Oh definition, $\mathrm{T}(n)$ is $\mathrm{O}\left(n^{4}\right)$ if $\mathrm{T}(n) \leq c \cdot n^{4}$ for some $n \geq n_{0}$. Let us check this condition: if $n^{3}+20 n+1 \leq c \cdot n^{4}$ then $\frac{1}{n}+\frac{20}{n^{3}}+\frac{1}{n^{4}} \leq c$. Therefore, the Big-Oh condition holds for $n \geq n_{0}=1$ and $c \geq 22(=1+20+1)$. Larger values of n_{0} result in smaller factors c (e.g., for $n_{0}=10 c \geq 0.10201$ and so on) but in any case the above statement is valid.

Example 4: Prove that running time $\mathrm{T}(n)=n^{3}+20 n$ is $\Omega\left(n^{2}\right)$
Proof: by the Big-Omega definition, $\mathrm{T}(n)$ is $\Omega\left(n^{2}\right)$ if $\mathrm{T}(n) \geq c \cdot n^{2}$ for some $n \geq n_{0}$. Let us check this condition: if $n^{3}+20 n \geq c \cdot n^{2}$ then $n+\frac{20}{n} \geq c$. The left side of this inequality has the minimum value of 8.94 for $n=\sqrt{20} \cong 4.47$ Therefore, the Big-Omega condition holds for $n \geq n_{0}=5$ and $c \leq 9$. Larger values of n_{0} result in larger factors c (e.g., for $n_{0}=10 c \leq 12.01$) but in any case the above statement is valid.

