
A

Fast Polygonization Method

for

Quasi-convolutionally

Smoothed Polyhedra

Burkhard Claus W�unsche

A thesis submitted in partial ful�llment of the requirements for the

degree of Master of Science in Computer Science

University of Auckland

September 24, 1996

Abstract

This thesis introduces Triage Polygonization, a new fast polygonization method for

quasi-convolutionally smoothed polyhedra. The polygonization method exploits the

property that quasi-convolutionally smoothed polyhedra usually have predominantly

planar surfaces with only edges and corners rounded.

A quasi-convolutionally smoothed polyhedron is represented implicitly as a den-
sity �eld iso-surface. Triage Polygonization subdivides the density �eld in a BSP-like

manner and classi�es the resulting cells as inside, outside, or intersected by the iso-
surface. Planar surface areas usually lie on the boundary of cells and are extracted
directly from the subdivided density �eld with minimal fragmentation. For cells

intersected by the iso-surface a more general polygonization is performed. For quasi-
convolutionally smoothed scenes with a small rounding radius Triage Polygonization

is 20{30 times faster and outputs only 1{2% of the polygons of the Marching Cubes
algorithm without compromising the approximation. The approach taken for Triage
Polygonization can be extended to related problems. Currently research is underway

to extend Triage Polygonization to handle truly convolutionally smoothed scenes.

i

Acknowledgments

The following people are sincerely thanked for their direct and indirect contributions

to this thesis:

� My Supervisor, Dr. Richard Lobb, who �rst proposed the topic for this thesis

and provided essential advice, guidance, and encouragement.

� My family for their support during my years in Auckland University.

� My girl-friend and friends for their encouragement, patience, and understand-

ing.

� Prof. Dr. Hans Hagen and Dr. Dieter Lasser from the University of Kaiser-

slautern for introducing me to the �elds of Computer Graphics and CAGD.

� Peter Dance for technical support.

� Dr. Hans G�usgen and Dr. Jeremy Gibbons for their help with several LaTEX

problems.

� Erika Albury and Peter Dansted for their proofreading e�orts.

� The sta� in the Computer Science Department for providing advice and needed
resources and making the workplace environment most pleasant.

iii

Contents

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Quasi-convolutional Smoothing : 1

1.2 Triage Polygonization : 2

1.3 Why \Triage" ? : 2

1.4 Guide to this Thesis : 3

2 The Object Model 5

2.1 CSG Objects : 5

2.2 Quasi-Convolutional Smoothing : 9

2.2.1 Blending Techniques : 9

2.2.2 Convolutional Smoothing : 10

2.2.3 Quasi-convolutional Smoothing : : : : : : : : : : : : : : : : 12

2.3 Restrictions and Extensions to the Object Model : : : : : : : : : : 14

2.4 Scene De�nition and Data Types : : : : : : : : : : : : : : : : : : : 16

2.5 Example Scenes : 17

3 Binary Space Partitioning and Boundary Representation 21

3.1 Introduction : 21

3.2 BSP Trees : 22

3.3 Lazy B-rep Algorithm : 26

3.3.1 Lazy BSP Tree Algorithm : : : : : : : : : : : : : : : : : : : 26

3.3.2 Lazy Set Operations : 28

3.3.3 Mathematical Derivation of the Lazy Union Operation : : : 29

3.3.4 Boundary Extraction : 32

3.4 Merging B-rep Algorithm : 36

3.5 Implementation : 38

3.5.1 Splitting a CSG Object : 39

v

vi Contents

3.5.2 Inserting a CSG Object into a BSP tree : : : : : : : : : : : 41

3.5.3 Surface Normals : 43

3.6 Complexity Analysis : 45

3.7 Results : 51

3.8 Conclusion : 57

4 Polygonization of Implicit Surfaces 59

4.1 Notations & De�nitions : 59

4.2 Literature Review : 60

4.2.1 Marching Cubes: A High Resolution 3D Surface Construction

Algorithm : 61

4.2.2 Data Structure for Soft Objects : : : : : : : : : : : : : : : : 63

4.2.3 Adaptive Polygonization of Implicitly De�ned Surfaces : : : 64

4.2.4 Polygonization of Implicit Surfaces : : : : : : : : : : : : : : 65

4.3 Analysis of Polygonization Algorithms : : : : : : : : : : : : : : : : 67

4.3.1 Space Subdivision : 67

4.3.2 Subspace Polygonization : 68

4.3.3 Ensuring Continuity : 68

4.4 Quality Criteria : 70

5 Triage Polygonization 71

5.1 Introduction : 71

5.2 Review & Motivation : 72

5.3 Polyhedral Subdivision of Space : 74

5.3.1 Introduction & Motivation : : : : : : : : : : : : : : : : : : : 74

5.3.2 Density Classi�cation : 76

5.3.3 Polyhedral Subdivision : 79

5.3.4 Tree Polygons : 84

5.4 Subspace Polygonization : 86

5.4.1 Motivation & De�nitions : 87

5.4.2 Precomputing Polygon Edges : : : : : : : : : : : : : : : : : 89

5.4.3 Forming Topological Polygons : : : : : : : : : : : : : : : : : 94

5.4.4 Triangulation of a Topological Polygon : : : : : : : : : : : : 96

5.4.5 Summary : 98

5.5 Re�nement of Face Intersections : 99

5.6 Local Density Fields : 104

5.7 Intersection of Two Half-spaces : 107

5.7.1 Convex Tessellation of a Topological Polygon : : : : : : : : : 109

5.8 Summary : 112

6 Implementation Details 115

6.1 Implementation of the Polyhedral Subdivision : : : : : : : : : : : : 116

6.2 Implementation of the Subspace Polygonization : : : : : : : : : : : 118

6.3 Root Search : 119

6.4 Gradient of a Density Field : 123

Contents vii

6.5 Continuity : 124

6.5.1 Face Continuity : 124

6.5.2 Edge Continuity : 125

6.5.3 Discontinuities : 126

6.5.4 Guaranteeing Continuity : 126

6.6 Model Extensions : 126

6.6.1 Clipping Planes : 127

6.6.2 Rounding Radius of a Half-space : : : : : : : : : : : : : : : 129

6.7 Numerical Stability : 130

6.7.1 DBSP Trees : 133

6.8 Polygonizing a Scene : 133

7 Results 135

7.1 Introduction : 135

7.2 Images of Polygonized Scenes : 135

7.3 Complexity Analysis : 138

7.3.1 Triage Polygonization : 139

7.3.2 Polygonization of a Scene : : : : : : : : : : : : : : : : : : : 140

7.4 Statistical Results : 140

7.4.1 Introduction : 140

7.4.2 Triage Polygonization : 141

7.4.3 Polyhedral Subdivision : 143

7.4.4 Extraction of Tree Polygons : : : : : : : : : : : : : : : : : : 146

7.4.5 Subspace Polygonization : 148

7.4.6 Summary : 151

7.5 Triage Polygonization vs. Common Polygonization Methods : : : : 151

7.5.1 Triage Polygonization vs. Marching Cubes : : : : : : : : : : 152

7.5.2 Comparison with Common Polygonization Methods : : : : : 157

7.5.3 Quality Criteria : 159

7.6 Conclusion : 160

7.6.1 Triage Polygonization : 160

7.6.2 Triage Polygonization vs. Marching Cubes : : : : : : : : : : 161

8 Conclusion 163

8.1 Thesis Overview : 163

8.2 Results : 164

8.2.1 Performance Analysis : 164

8.2.2 Comparison with the Marching Cubes Algorithm : : : : : : 165

8.2.3 Properties of Triage Polygonization : : : : : : : : : : : : : : 165

8.3 Future Work : 166

8.3.1 Application Improvements : : : : : : : : : : : : : : : : : : : 166

8.3.2 Extended Applications : 167

8.3.3 Parallelization : 167

8.4 Summary : 168

viii Contents

A Theorems 169

A.1 Series and Sequences : 169

A.2 Recurrence Relations : 170

A.3 Set Operations : 176

A.4 Analysis : 179

B Data Types & Library Functions 183

B.1 Data Types : 183

B.2 Library Functions : 185

C Glossary 187

D Color Images 189

Bibliography 197

List of Figures

2.1 A table as union a of �ve cuboids : : : : : : : : : : : : : : : : : : : 6

2.2 : 7

2.3 Not closed regular sets : 8

2.4 Standard set operations form non-regular sets : : : : : : : : : : : : 8

2.5 Convolutionally smoothed polygon : : : : : : : : : : : : : : : : : : 11

2.6 Primitive Objects are convex polyhedra : : : : : : : : : : : : : : : : 13

2.7 Density distribution for a smoothed half-space : : : : : : : : : : : : 13
2.8 Quasi-convolutional smoothing generates unbounded density values 15

2.9 Data types of scene de�nition : 16

2.10 Data type of a density �eld : 17

2.11 Algorithm to evaluate a density �eld : : : : : : : : : : : : : : : : : 18

3.1 Constructing a BSP tree : 23
3.2 A polyhedral object and the corresponding BSP tree : : : : : : : : 23

3.3 Data type of a BSP tree : 25

3.4 BSP partition for a regularized and a non-regularized object : : : : 25

3.5 Lazy b-rep algorithm : 26
3.6 A convex set and its BSP tree : 27

3.7 Lazy BSP tree algorithm : 27

3.8 Lazy union algorithm : 29

3.9 Inserting a CSG object into a cell : : : : : : : : : : : : : : : : : : : 30
3.10 Extracting the object boundary (�rst case) : : : : : : : : : : : : : : 33

3.11 Extracting the object boundary (second case) : : : : : : : : : : : : 34

3.12 Algorithm to extract a boundary BSP tree : : : : : : : : : : : : : : 35

3.13 Algorithm to insert faces in a BSP tree : : : : : : : : : : : : : : : : 35
3.14 Ine�cient algorithm for the union of two BSP trees : : : : : : : : : 36

3.15 Merged b-rep algorithm : 37

3.16 Merged BSP tree algorithm : 37

3.17 Algorithm to produce candidate faces : : : : : : : : : : : : : : : : : 38

3.18 Forming a BSP tree from a subset of its IN cells : : : : : : : : : : : 38

3.19 Splitting an object with a partitioning plane : : : : : : : : : : : : : 39

3.20 Algorithm to split intersection of two CSG objects : : : : : : : : : : 40

3.21 Algorithm to split a polyhedron : 41

ix

x List of Figures

3.22 Inserting a polyhedron into a cell : : : : : : : : : : : : : : : : : : : 42

3.23 Splitting a restricted polyhedron with a partitioning plane : : : : : 43

3.24 Algorithm to split a restricted polyhedron : : : : : : : : : : : : : : 44

3.25 Object boundary and surface normals of a CSG object : : : : : : : 45

3.26 BSP tree faces generated by lazy union : : : : : : : : : : : : : : : : 46

3.27 Worst case time complexity of a b-rep algorithm : : : : : : : : : : : 48

3.28 Execution time for the lazy b-rep algorithm : : : : : : : : : : : : : 52

3.29 A lower bound for the splitting factor : : : : : : : : : : : : : : : : 53

3.30 BSP tree statistics for the lazy b-rep algorithm : : : : : : : : : : : : 54

3.31 Simpli�ed description of the Hole Punch scene : : : : : : : : : : : : 56

4.1 Triangulated Cubes : 62

4.2 Seven di�erent cases for connecting intersection points : : : : : : : 64

4.3 Algorithm to order vertices : 66

4.4 Bloomenthal's tracking of polygon edges : : : : : : : : : : : : : : : 66

4.5 Transforming a polyhedral subdivision into a honeycomb : : : : : : 68

5.1 Quasi-convolutionally smoothed half-space : : : : : : : : : : : : : : 75

5.2 Intersection of two half-spaces : 76

5.3 Partitioning and classi�cation of a density �eld : : : : : : : : : : : 80

5.4 Data types of a DCSG object and a DBSP tree : : : : : : : : : : : 81

5.5 Forming a DCSG object : 82

5.6 Algorithm to form DCSG object : 83

5.7 Partitioning a density �eld : 83

5.8 Algorithm to transform a DCSG object into a DBSP tree : : : : : : 84

5.9 Algorithm for the union between a DBSP tree and a DCSG object : 85

5.10 Algorithm to extract tree polygons from a DBSP tree : : : : : : : : 86

5.11 Algorithm to insert faces into a DBSP tree : : : : : : : : : : : : : : 87

5.12 The three steps of the subspace polygonization : : : : : : : : : : : : 88

5.13 Subdivision of faces : 90

5.14 Algorithm to precompute polygon edges : : : : : : : : : : : : : : : 90

5.15 New data type for a DBSP tree : 91

5.16 Dividing a face into sections : 92

5.17 Resolving ambiguities with the centroid of a face : : : : : : : : : : : 93

5.18 Algorithm to form topological polygons for subspace polygonization 95

5.19 Algorithm for subspace polygonization : : : : : : : : : : : : : : : : 98

5.20 Re�nement of a polygon edge : 99

5.21 Shortening the linear search space for a re�nement point : : : : : : 101

5.22 Re�nement of a polygon edge : 102

5.23 Incorrect re�nement of two polygon edges on a face : : : : : : : : : 103

5.24 Correct re�nement of two polygon edges on a face : : : : : : : : : : 103

5.25 Quasi-convolutionally smoothed intersection of two half-spaces : : : 108

5.26 Convex hull forms subspace polygonization : : : : : : : : : : : : : : 108

5.27 Subspace polygonization as convex tessellation : : : : : : : : : : : : 109

5.28 Algorithm for convex tessellation of a topological polygon : : : : : : 111

List of Figures xi

5.29 Algorithm for Triage Polygonization : : : : : : : : : : : : : : : : : : 112

6.1 Unbounded partitioning planes in a DBSP tree : : : : : : : : : : : : 116

6.2 New data type of a DCSG object : : : : : : : : : : : : : : : : : : : 117

6.3 New algorithm to form a DCSG object : : : : : : : : : : : : : : : : 118

6.4 New algorithm to transform a DCSG object into a DBSP tree : : : 119

6.5 Algorithm for root search : 120

6.6 The root �nder yields di�erent results for collinear edges : : : : : : 122

6.7 Edge discontinuity : 125

6.8 Clipping a quasi-convolutionally smoothed object : : : : : : : : : : 127

6.9 Extending the subspace polygonization for clipping planes : : : : : 129

6.10 Scene description of a metal pin : 130

6.11 Using the 0:5 + � iso-surface for vertex classi�cation : : : : : : : : : 132

7.1 Base of a stapler : 137

7.2 Statistical results for Triage Polygonization : : : : : : : : : : : : : : 141
7.3 Distribution of execution time by subtasks of Triage Polygonization 143

7.4 Statistical results for the polyhedral subdivision : : : : : : : : : : : 144
7.5 Statistical results for density Classes : : : : : : : : : : : : : : : : : 144
7.6 Size distribution of the local density �elds for unclassi�ed cells : : : 145

7.7 Statistical results for the extraction of tree polygons : : : : : : : : : 147
7.8 Distribution of topological polygons by number of vertices : : : : : 148
7.9 Face splitting splits polygon edges : : : : : : : : : : : : : : : : : : : 149

7.10 Number of subspace polygons for intersected cell : : : : : : : : : : : 150
7.11 Statistical results for the subspace polygonization : : : : : : : : : : 151

7.12 Number of polygons (Triage Polygonization vs. Marching Cubes) : 153
7.13 Execution time (Triage Polygonization vs. Marching Cubes) : : : : 153
7.14 Performance di�erence (Triage Polygonization vs. Marching Cubes) 154

7.15 Size distribution of polygons : 155
7.16 Varying the rounding radius : 156

D.1 \Cube in Cube" scene : 191

D.2 \Hole Punch" scene : 192
D.3 \Stapler" scene : 193

D.4 \27 Blended Cubes" scene : 194
D.5 \CSG Example" scene : 195
D.6 \Variable Radius" scene : 196

List of Tables

2.1 Example Scenes : 19

3.1 BSP tree statistics for the lazy b-rep algorithm : : : : : : : : : : : : 52

3.2 BSP tree statistics for di�erent evaluation orders : : : : : : : : : : : 55

4.1 Number of patterns with less than 5 high vertices : : : : : : : : : : 63
4.2 Comparison of the reviewed polygonization algorithms : : : : : : : 69
4.3 Quality criteria of the reviewed polygonization algorithms : : : : : : 70

5.1 Multiplication of intervals : 78
5.2 Multiplication of density classes : 78

5.3 Addition of density classes : 79
5.4 Subtraction of density classes : 79
5.5 Multiplication of density �elds : 106

5.6 Addition of density �elds : 106
5.7 Subtraction of density �elds : 106

7.1 Percentage of polygons by number of vertices : : : : : : : : : : : : : 142
7.2 Number of tree polygons by number of vertices : : : : : : : : : : : : 147
7.3 Percentage of subspace polygons by number of vertices : : : : : : : 150

7.4 Statistical Results (Triage Polygonization vs Marching Cubes) : : : 157

7.5 Comparison of polygonization algorithms : : : : : : : : : : : : : : : 158
7.6 Quality criteria of polygonization algorithms : : : : : : : : : : : : : 160

xiii

C H A P T E R 1

Introduction

Polygonization is the process of approximating a surface by a set of polygons. Poly-

gons are an important geometric entity in Computer Graphics. Many algorithms
have been developed to manipulate and render polygons and polygonal scenes. The
available algorithms stretch from �nite element analysis, computer-aided manufac-

turing to image rendering. Furthermore todays graphic machines have many of these
algorithms hardware implemented. This makes polygonal scenes a popular choice

in Computer Graphics, especially if speed and simplicity are important.

This master thesis introduces �rst quasi-convolutional smoothing, a method to

model smoothed polyhedral scenes developed by Richard Lobb [Lob95]. We then
present a new polygonization scheme called Triage Polygonization. The method
was primarily designed for quasi-convolutionally smoothed polyhedral scenes but

currently research is underway to extend Triage Polygonization to related problems.

1.1 Quasi-convolutional Smoothing

Quasi-convolutional smoothing was developed from the observation that a large

proportion of computer graphics scenes are modeled with polyhedra. However, nat-
ural polyhedra usually have smoothed edges and corners connecting adjacent planes.

Many methods exist to replace sharp edges and corners with rounded surfaces. How-

ever, most prove computationally di�cult or are clumsy to handle. A solution to
this problem is quasi-convolutional smoothing.

Lobb [Lob95] restricts the scene description to polyhedra. Polyhedral objects

are represented by CSG-like structures with arithmetic operators as internal nodes
rather then set membership operators. An object is rounded by approximating the

process of true convolutionally �ltering. The smoothed object's surface is de�ned as

iso-surface in the resulting density �eld.

Quasi-convolutionally smoothed objects have some special properties. The most

1

2 Introduction

important is that they usually consist of large planar surfaces connected by relatively

small parts of smooth and curved surfaces.

In the original work by Richard Lobb these scenes are rendered by ray-tracing.

The results are good but may easily need several hours computation time. Especially

during the modeling process this is not acceptable. A solution is to polygonize the

scene. The existing polygonization algorithms, however, do not exploit the special

properties of a quasi-convolutionally smoothed scene and hence lead to fragmenta-

tion and an unnecessary long computation time.

1.2 Triage Polygonization

Triage Polygonization is a fast, high-quality polygonization method especially de-

signed for quasi-convolutionally smoothed objects. It �rst generates a special BSP-

like space subdivision of the object. Potential regions of curvature are identi�ed
and most planar regions of the rounded object are extracted in a subsequent step.
A subspace polygonization process polygonizes the remaining parts of the object

surface.

Triage Polygonization is fast, produces arbitrary convex polygons, and results in

only a small fragmentation of the surface. Triage Polygonization is guaranteed to
�nd rounded edges and corners of an objects. For small rounding radii the resulting
polygonizations are equivalent.

1.3 Why \Triage" ?

triage n. 1 the act of sorting according to quality. 2 the assignment
of degrees of urgency to decide the order of treatment of wounds,

illnesses, etc. [F f. trier: cf. try]

The concise Oxford dictionary of current English [All90]

\Triage Polygonization" is named after its two main principles: �rst note that Triage
Polygonization partitions the space into regions of three di�erent classes: regions

which lie outside the object, regions inside the object, and regions which contain
the surface of the object. The number \three" is reected in the syllable \tri" [tri-,

three or three times, L & Gk f. L tres, Gk treis three].

Secondly the word \triage" reects that Triage Polygonization subdivides the

surface into areas of di�erent qualities and \urgency". Planar surface patches are

polygonized immediately, whereas curved surface patches are polygonized in a later

subspace polygonization step.

1.4 Guide to this Thesis 3

1.4 Guide to this Thesis

This thesis is divided into three parts. The �rst part encompasses chapters 2{4 and

introduces concepts, data structures, and includes a literature review. The second

part presents Triage Polygonization in chapter 5 and select implementation details

in the following chapter. The third and �nal part of this thesis gives a performance

analysis of Triage Polygonization in chapter 7 and concludes with a summary of this

thesis and the achievements. For easier reading we give here a short preview of the

following chapters:

Chapter 2 introduces the concepts of CSG objects and quasi-convolutionally

smoothed polyhedra, the object model used in this thesis. The chapter concludes

with a presentation of the corresponding data structures and some example scenes

which we use for testing. A scene is composed from quasi-convolutionally smoothed

and unsmoothed polyhedra.

Chapter 3 introduces BSP trees. We also present two b-rep algorithms and ana-

lyze their time complexity. The reader familiar with the concept of BSP trees may

want to skip this chapter altogether. The �rst time reader can skip the complexity
analysis (section 3.6) and the mathematical derivations (subsection 3.3.3). The im-

plementation details (section 3.5) are only interesting for the actual implementation.

Chapter 4 gives an overview of existing polygonization methods. We present
four methods in detail and extract some common features from them. Some details

of the polygonization methods occur in similar form in Triage Polygonization. The
�rst time reader might skip the overview of existing polygonization methods (subsec-

tions 4.2.1 { 4.2.4). We recommend however reading the analysis of polygonization
methods (section 4.3) and the list of quality criteria (section 4.4) because they form
the motivation for Triage Polygonization.

Chapter 5 presents Triage Polygonization. Some re�nements contained in sec-
tions 5.5 { 5.7 are interesting but maybe cumbersome to read. It is not essential to

understand every detail in these sections.

Chapter 6 gives some implementation details. We describe numerical problems
and their solution and deal with the aspect of continuity of the polygonized surface.

Also two extensions to the object model are presented. Though interesting these
issues are not important for the understanding of Triage Polygonization and the �rst

time reader can leave them out.

Chapter 7 gives statistical results and analyzes the performance of the algorithm.
Some results are only important for a deeper understanding of the di�erent steps

of Triage Polygonization. The complexity analysis builds on results obtained for

b-reps (see sections 3.6 { 3.7) and might be hard to understand without reading the

latter sections. The reader with short time on hand can immediately proceed to the

conclusion where the main results are summarized.

Chapter 8 summarizes Triage Polygonization and the results we obtained. We

suggest some improvements and mention areas of future research.

This thesis contains many mathematical details and proofs. Though they prove

useful for an exact understanding of some concepts used in this thesis they are often

4 Introduction

cumbersome to read. Most of the ideas are also intuitively clear. The reader might

want to read the theorems in appendix A but can skip the proofs, which provide

little additional insight.

Appendix B summarizes the data structures introduced in this thesis. It also

de�nes some library functions frequently used in the algorithms given.

Appendix C contains a brief glossary and appendix D gives color images of some

example scenes.

C H A P T E R 2

The Object Model

This thesis presents a new polygonization method called Triage Polygonization. The

method is speci�cally designed for quasi-convolutionally smoothed objects. We refer
to the data structure for quasi-convolutionally smoothed polyhedra as the object

model. Basic knowledge of the object model is necessary to understand Triage Poly-
gonization.

This chapter introduces the object model by �rst presenting a polyhedral model
de�ned as a CSG object. Many computer graphic scenes are modeled with polyhe-
dra. However, natural polyhedra usually have rounded edges and corners. Richard

Lobb [Lob95] suggests as solution a global rounding method called quasi-convolu-
tional smoothing. The smoothing process transforms the polyhedral object to an

arithmetic tree representing a density �eld. The surface of the smoothed object is
given as an iso-surface of the density �eld.

The �rst section of this chapter introduces the concept of CSG objects. The
quasi-convolutional smoothing process is presented next. We then mention restric-
tions and extensions to the object model. The chapter concludes with the general

scene description, the data types used, and a presentation of some example scenes
used as test data.

2.1 CSG Objects

Constructive Solid Geometry (CSG) objects are a popular model in CAD/CAM

technology. They are represented as trees whose internal nodes represent set opera-

tions and whose leaves represent primitive solids. The object is de�ned by applying

the set operations recursively to the child objects.

Example 2.1 Figure 2.1 shows a table modeled as union of a table top and four

legs. The top and legs are cuboids and are de�ned as primitive objects.

5

6 The Object Model

∪

Figure 2.1. A table as union a of �ve cuboids.

In our object model the primitive objects are convex polyhedra. In the following

paragraphs we introduce a sound mathematical concept for CSG objects which is
necessary for understanding the algorithms presented later.

First realize that not all subsets of IR3 are acceptable idealizations for the shape

of physical (real world) objects. Requicha has proposed a set of properties and
conditions that characterize the notion of \real-world solidity" [Req80].

He observed that a physical solid is homogeneously three dimensional; that is,
every part of it has a volume. A solid object has no dangling vertices, faces, or
edges, and no in�nitely thin holes or cracks; it has a bounded volume and occupies a

�nite portion of space. The boundary of a solid object is a 2-manifold and separates
its inside from its outside. Requicha proposes regularized sets (r-sets) as suitable

models for solids.

For a set A denote its boundary by @A, its (open) interior by int(A), its closure
by A, and its complement by Ac.

De�nition 2.1 (R-Set) An r-set is a bounded, closed regular, semi-analytic set

(see appendix C for de�nitions).

The closed regularity reects the property that the boundary of an object sepa-

rates its inside from its environment. For example the objects in �gure 2.3 are not
closed regular because of the dangling edges and hence are not r-sets. Half-spaces

are not valid r-sets because they are not bounded. Fractal objects are excluded from

r-sets because they are not semi-analytic.

The intuitive mathematical operators for combining r-sets into more complex

objects are the standard set operations union, intersection, set di�erence and com-

plement. However the result of applying a standard set operation to two r-sets may

not be an r-set.

2.1 CSG Objects 7

Figure 2.2. .

8 The Object Model

Figure 2.3. Not closed regular sets.

Example 2.2 Figure 2.4 shows two rectangles sharing an edge. Their intersection

is the shared edge which is not closed regular and hence not an r-set.

Modi�ed versions of these operators, that preserve closed regularity and semi-

analyticity are given by regularized set operations [Req80, TR80].

De�nition 2.2 (Regularized Set Operations) The regularized union ([?), reg-

ularized intersection (\?), regularized set di�erence (n
?
) of two sets X and Y , and

the regularized complement (c?) of a set X are de�ned as

X[?Y = int(X [Y)

X\?Y = int(X \ Y)

Xn
?
Y = int(X n Y)

Xc? = int(Xc)

Note that

int(X) � X = X [@X (2.1)

and

@(int(X)) = @(int(X)) � @X (2.2)

Hence a regularized set is only a subset of the union with its boundary and the

boundary of a regularized set is only a subset of its original boundary. With these

mathematical basics and noting that we choose convex polyhedra as primitive objects
a CSG object is de�ned in de�nition 2.3.

=∩

Figure 2.4. Standard set operations form non-regular sets.

2.2 Quasi-Convolutional Smoothing 9

De�nition 2.3 (CSG objecta) A set X is a CSG object if

X = P

where P is a convex polyhedron, or

X = Y�?Z; (�? 2 f[?;\?; n
?
g)

where Y and Z are CSG objects

aThis de�nition is restricted to our application. The general de�nition allows a greater
variety of set operations and primitive objects.

In the following chapters, if not noted di�erently, we change freely between the

expressions \set", \regularized set" and \CSG object".

The object model at this stage is a polyhedral CSG object. The following section
explains how the model is globally smoothed.

2.2 Quasi-Convolutional Smoothing

The previous section introduced the initial object model as a polyhedral CSG object.
This section extends a CSG object with a rounding attribute and shows how to de�ne
a quasi-convolutionally smoothed object.

We will �rst give an overview of popular general smoothing methods. Their
inherent complexity is overcome by a scheme called convolutional smoothing. From

this we derive quasi-convolutional smoothing. The quasi-convolutionally smoothed
objects represent the object model used in this thesis.

2.2.1 Blending Techniques

Natural objects usually have rounded edges and corners. If a polyhedral natural

object is modeled it is often found that its rounded surfaces are functionally not
important for the model. In CAD/CAM technology these surfaces are called blends.

The principle di�culty is to shape and position blends so as to achieve tangency to

primary (unrounded) surfaces.
Blends can be de�ned as implicit or parametric surfaces. Implicit blends are

usually given as algebraic surfaces. In general they are easier to derive but o�er less
shape control than parametric blends. Also the rendering of an implicitly de�ned

surface proves more complex. Parametric blends are usually given as free-form

surfaces. They o�er various design parameters, but are usually harder to de�ne. A
polynomial parametric surface is of a higher degree than the corresponding algebraic

surface.

10 The Object Model

Blending methods are either local or global. A local blending method is restricted

to a bounded area, usually a single edge or corner. In contrast a global blending

method smoothes a whole object at once. Blending methods can be grouped into

three concepts.

The most general concept is surface blending, which creates a new piece of surface

by smoothly joining two existing surfaces. Algebraic surface blends are described in

[HH87, Kos91, War89, MS85, Sed85]. Koparkar designs a parametric blend between

two parametrically de�ned surfaces [Kop91a, Kop91b]. Chiyokura et al. devise free-

form surfaces to interpolate over irregular meshes [CTKH91].

Volumetric blending is based on a solid model (usually represented as CSG object

or b-rep). The blending operation is just one operation of the modeler. Rockwood

and Owen [RO87] establish a pattern to devise implicitly described blending surfaces

in solid modeling and describe super elliptic blends. Middleditch and Sears [MS85]

use spherical blends. V�arady et al. de�ne parametric blending for a b-rep modeler.

Rossignac and Requicha [RR84] extend the CSG concept by constant radius blends

de�ned in terms of o�set solids.

Polyhedral blending involves generating free-form surfaces from polyhedra. This
reduces complex calculations and improves reliability. Catmull and Clark [CC78]
describe a recursive subdivision scheme. The method has been extended by vari-

ous authors to local rounding operations for integrated solid modeling. Chiyokura
[Chi87] replaces edges by Gregory patches, whose tangent planes are continuous
on the bounds of the meshes generated. Beeker [Bee86] uses Bernstein patches,

whereas Fj�allstr�om [Fj�a86] uses a generalization of the Brown square [BBK78]. Fi-
nally Hoschek and Hartmann [HH91] introduce implicit blends which can be inter-

preted as Gn�1 functional splines.

All methods described above perform local blending and allow a variety of design
parameters. Though this is preferable for the designer, it makes the method hard

to understand and requires user interaction. Additionally the above methods are
all computationally expensive. A good overview of blending methods is given by
Woodwark [Woo87].

An alternative approach is described by Blinn [Bli82]. He smoothly blends ar-
ticulated models by using implicit functions de�ned by the summation of point
potentials. Wyvill et al. [WMW86b, WMW86a, WWM87] and Bloomenthal et al.

[Blo88, BW90, BS91] extend the approach to potentials of skeletons and present
fast rendering schemes. These models are generally known as Soft Objects or Blobby

Models (see also [Mur91]). The blending method is local and does not perform

optimally for smoothed polyhedral objects.

A simple global blending method is described in the next subsection.

2.2.2 Convolutional Smoothing

The previous subsection gave an overview of popular local blending methods. We

mentioned that they are hard to understand, and often require user interaction.

2.2 Quasi-Convolutional Smoothing 11

Furthermore they have practical limitations when more than three surfaces inuence

the shape of the blend at any given point. Colburn [Col90] states that this limitation

is related to the model complexity. He presents a solution by introducing a spherical

test volume with a radius equal to the desired blend radius. The surface of the

smoothed object is de�ned as all points such that when a sphere of the speci�ed

radius is positioned at the point, exactly half of the volume of the sphere is inside

the polyhedron and half is outside. Figure 2.5 shows a polygon and its smoothed

version in two dimensions.

Polygon

Convolutionally smoothed polygon

Smoothing filter

Figure 2.5. Convolutionally smoothed polygon.

Note that now the shape of the blend at any given point is only inuenced by
the portion of the unblended model that falls inside the sphere.

The process can be understood as a low pass �ltering with a spherical �lter of

radius r and is mathematically expressed by a convolution.

De�nition 2.4 (Convolutional Smoothing) Given a smoothing �lter of radius

r, a set (object) Obj � IR3, and a density �eld �Obj : IR3 ! f0; 1g such that the

density has a value of 1 inside the set Obj and a value of 0 outside it, de�ne a

density �eld �̂rObj as

�̂rObj(x; y; z) =
1

4�r3

Z Z Z
�Obj(u; v; w) h(x� u; y � v; z � w) du dv dw (2.3)

where the integral is over all space, and

h(x; y; z) =

(
0 x2 + y2 + z2 < r2

1 otherwise

The convolutionally smoothed object dObjr is then de�ned as

dObjr = fp 2 IR3 j �̂rObj(p) � 0:5g (2.4)

and its surface is all points (x; y; z) 2 R3 for which

�̂rObj(x; y; z) = 0:5 (2.5)

12 The Object Model

In this de�nition the function h : IR3 ! f0; 1g represents the spherical �lter of

radius r. The factor before the integral normalizes the result of the convolution. If

the spherical �lter is completely inside the object the right hand side of equation 2.3

equals one.

Though the smoothing process is easy to understand and mathematically simple,

it is computationally expensive to solve equation 2.5. To render or to polygonize the

smoothed object a large number of solutions must be found. Also for a non-convex

object the surface of the smoothed volume can lie outside the volume. This makes

it di�cult to know where to search for solutions of equation 2.5.

Lobb addresses these problems with an approximation to convolutional smooth-

ing called quasi-convolutional smoothing. The method is presented in the following

section.

2.2.3 Quasi-convolutional Smoothing

The preceding subsection presented convolutional smoothing as a simple solution to
the global blending problem. The solution to equation 2.5, though, proves compu-
tationally complicated because of the convolution integral.

Lobb [Lob95] introduces quasi-convolutional smoothing as a computationally
easy approximation. Recall that the object model is a CSG object with convex

polyhedral primitives and a rounding attribute specifying a global rounding radius
r. Lobb represents convex polyhedra by (bounded) intersections of half-spaces (see

�gure 2.6).

He then de�nes the smoothed object similarly to Colburn's description but re-

places the density �eld �̂rObj of the convolutionally smoothed CSG object dObjr with
an approximation �rObj. Instead of convolving the CSG object Obj with a spherical

�lter Lobb replaces the set operations union, intersection, and set di�erence by the
arithmetic operations addition, multiplication, and subtraction. He then convolves
only the half-spaces with a spherical �lter of radius r.

The density �eld of a smoothed half-space Hr can be described exactly by com-

putation of the convolution integral with the density �eld �H . The result of the

convolution is equivalent to the volume of a sphere intersected with a half-space, for
which the answer is

�rH(p) =

8><
>:

0 � � 1

1 � � �1
(1� �)2 � (2 + �)=4 otherwise

(2.6)

where � =
d

r

and d is the distance of point p to the half-space H. Figure 2.7 shows the resulting

density distribution.

2.2 Quasi-Convolutional Smoothing 13

INTERSECTION

CSG ObjectCSG Object

...

...

Figure 2.6. Primitive objects are convex polyhedra which are represented as intersections

of half-spaces.

-1.5 -1 -0.5 0.5 1 1.5
x

0.5

1

density

Figure 2.7. Density distribution for a smoothed half-space.

14 The Object Model

We can now de�ne a quasi-convolutionally smoothed object as:

De�nition 2.5 (Quasi-convolutional smoothing) Given a smoothing �lter of

radius r, a CSG object Obj � IR3 with intersections of half-spaces as primitives

(i.e., convex polyhedra), and density �elds �H : IR3 ! f0; 1g such that the density

has a value of 1 inside a half-space H and a value of 0 outside it, de�ne a density

�eld �rObj as

�rH(x) =

8><
>:

0 � � 1

1 � � �1

(1� �)2(2 + �)=4 otherwise

(2.7)

�rA[B(x) = �rA(x) + �rB(x) (2.8)

�rA\B(x) = �rA(x) � �
r
B(x) (2.9)

�rAnB(x) = �rA(x)� �rB(x) (2.10)

where � = d=r, d =< x;~nH > is the distance of point x to the plane of the half-

space H, ~nH is H's surface normal, < :; : > is the dot product (inner product) of

two vectors, and A and B are CSG objects.

Then the quasi-convolutionally smoothed object Objr is de�ned as

Objr = fx 2 IR3 j �rObj(x) � 0:5g

and its surface is all points x 2 R3 for which

�rObj(x) = 0:5

Since the integral is a linear operator the approximation �rObj is identical to �̂
r
Obj

for the union and set di�erence operation. For the intersection operation, though,

the density �eld �rObj of a truly convolutionally smoothed object is generally di�erent
from �̂rObj. We only mention that the density �eld is also correct for a quasi-convolu-
tionally smoothed intersection of two orthogonal half-spaces. For a further discussion

on the properties of quasi-convolutional smoothing see the original paper [Lob95].

2.3 Restrictions and Extensions to the Object Model

In this section we mention restrictions and extensions of the object model. We

introduced the object model as a CSG object with polyhedral primitives and a

global rounding attribute. In the original paper Lobb assumes bounded primitives.

For simplicity we do the same.

An important restriction is that for a smoothed CSG object Obj all density
values of the density �eld �rObj must lie in the intervall [0; 1]. A necessary condition

2.3 Restrictions and Extensions to the Object Model 15

for this is that all unions are disjoint and that for the set di�erence A n B of two

sets A and B the condition A � B is valid.

Note that above conditions are not su�cient to guarantee density values in the

interval [0; 1]. Even if all density values for the unsmoothed object are between 0

and 1, the smoothed object may have arbitrary high/low density values.

P1: 0.25 density P2: 2.0 density

Figure 2.8. Quasi-convolutional smoothing generates unbounded density values.

Example 2.3 This e�ect is seen in �gure 2.8, where a square is de�ned as the
union of eight disjoint triangles. If the square is quasi-convolutionally smoothed,
the density value at the square's centre is the sum of the density values at the

corresponding vertices of the eight smoothed triangles (see equation 2.8). Assuming
the rounding radius is su�ciently small, each vertex is formed as the intersection of

two half-spaces. Equation 2.9 shows that the density value for a triangle vertex is
0.25. This results in a density value of 2 at the square's centre.

We also assume that the object is smooth. This is not as trivial as it sounds, since

it is possible to construct a smoothed object which has arbitrary many intersections
with a straight line. Also it is not clear that the variation diminishing property holds.

However, since the density �eld is an arithmetic tree with smooth leaf functions, the
maximum gradient of the density �eld at any point is bounded. The density �eld

ful�lls a Lipschitz property.

A �nal assumption is that the rounding radius of a quasi-convolutionally smooth-

ed polyhedron is in general small to the size of the object. Then the object's surface
is predominantly planar and most of the curved surfaces of the quasi-convolutionally

smoothed object are simple, i.e., either rounded edges or corners. These properties
are crucial for the e�ciency of Triage Polygonization.

In the current form the modeling capabilities for our object model are quite

restricted. Here we give a preview of two extensions which we have implemented for
our polygonization method (see section 6.6). First recall that a polyhedral primitive

is represented as an intersection of half-spaces. In de�nition 2.5 we smooth a CSG

object by smoothing all half-spaces of its primitive objects with spherical �lters of

16 The Object Model

identical radius. Subsection 6.6.2 suggests that it can be desirable to apply �lter

with di�erent radii to di�erent half-spaces. Some of the resulting e�ects are also

described in [Lob95]. Modeling capabilities are further improved by the introduction

of clipping planes (see subsection 6.6.1). They allow the design of objects with both

rounded and sharp corners and edges.

2.4 Scene De�nition and Data Types

The preceding sections presented the object model used in this thesis. All that

remains is to de�ne the scene and to introduce the data types used.

The type descriptions are given in the language Clean [PvE93, PvE95] and are

all summarized in appendix B. The syntax is similar to modern functional languages

such as Haskell [HJP+92] or Miranda [Tur85], but with a few explanatory comments

it should be understandable for the inexperienced reader, too.

:: Scene :== CSGObject

:: Radius :== REAL

:: Plane :== (Vector,REAL) // (normal,distance)

:: CSGObject

= Union CSGObject CSGObject

| Intersection CSGObject CSGObject

| SetDifference CSGObject CSGObject

| Rounded Radius CSGObject

| Primitive PolyhedralPrimitive

:: PolyhedralPrimitive

= Intersection [HalfSpace]

:: HalfSpace :== Plane

Figure 2.9. Data types of scene de�nition.

The scene description is given in �gure 2.9. The type de�nitions, which are

indicated by a double colon, specify that a scene is just a CSG object with polyhedral

or rounded primitives. We assume that a rounded object does not consist of other
rounded objects1. A polyhedral primitive is given as the intersection of a list of

half-spaces. A half-space is de�ned by a plane with an outwards pointing normal.

1The actual implementation allows a rounded object as a child object of a rounded object.
The interpretation is that in the CSG tree the rounding attribute of a child object overrides any
rounding attribute higher up de�ned in the tree. This extension to the object model is presented
in section 6.6.2.

2.5 Example Scenes 17

A polyhedral primitive is given internally as a list of its boundary faces:

:: PolyhedralPrimitive = Polyhedron [Face]

and a face is a polygon2 de�ned as a list of points:

:: Face :== Polygon

:: Polygon :== [Point]

Applying quasi-convolutional smoothing with a spherical �lter of radius r trans-

forms a CSG object with rounding attribute into an arithmetic tree representing a

density �eld. The corresponding data type is shown in �gure 2.10.

:: DensityField = Sum DensityField DensityField

| Product DensityField DensityField

| Difference DensityField DensityField

| DensityFieldOfHalfSpace Radius HalfSpace

Figure 2.10. Data type of a density �eld.

A density �eld is either the sum, product or di�erence of two density �elds or is

the density �eld of a half-space convolutionally smoothed with a speci�ed radius.
With the help of equation 2.7 the density �eld can be evaluated in an arbitrary

point. Figure 2.11 shows the functional code for the density evaluation in Clean

syntax. We use this notation partly because the prototype implementation is in
Clean, but mainly because it o�ers a much more compact and precise de�nition

than normal pseudocode.
The function Density takes as input a point and a density �eld and returns a real

value representing the density value in the given point. The function is de�ned by a
set of rules, exactly one of which should \pattern match" any particular invocation.
For example, if the arithmetic tree de�ning the density �eld is constructed as the

sum of two density �elds then the function Density returns the sum of the density
values of the given point in both density �elds.

We use the Clean syntax for all algorithms except for high-level algorithms.

From time to time we use library functions which have no equivalent in imperative
languages. The library functions are explained in appendix B.

2.5 Example Scenes

This section briey describes a few example scenes we refer to throughout the thesis

as a basis for discussion. Also they are used in chapter 3 and chapter 7 as test data

for a b-rep algorithm and Triage Polygonization, respectively.

2In the implementation we add the face plane to the data structure. This increases numeric
stability if testing two faces for coplanarity.

18 The Object Model

Density :: Point DensityField -> Real

Density p (Sum field1 field2)

= (Density p field1) + (Density p field2)

Density p (Product field1 field2)

= (Density p field1) * (Density p field2)

Density p (Difference field1 field2)

= (Density p field1) - (Density p field2)

Density p (DensityFieldOfHalfSpace r plane)

| distance > r = 0.0

| distance < -r = 1.0

| otherwise = truncatedSphereVolume

where

distance = DistanceOfPointFromPlane p plane

truncatedSphereVolume = (1� �)2 � (2 + �)=4

� = distance / r

Figure 2.11. Algorithm to evaluate a density �eld.

Cube A unit cube smoothed with a spherical �lter of radius 0.1 represents a simple
test object for quasi-convolutional smoothing.

Cube In Cube A simple case for a complex object combining a rounded and an
unrounded object. The rounded object is given as a set di�erence of a big

cube and a small cube and is pictured in �gure D.1. The full scene has a small
unrounded cube inside the hole of the rounded object. This scene proved useful
for debugging.

Stapler Complex real world object with many clipping planes. Figure D.3 shows a
color image of the scene.

CSG Example Shows the e�ects of applying set operations and rounding opera-
tions in di�erent order. Figure D.5 shows a color image of the scene.

Variable Radius Shows the e�ects of increasing the rounding radius for a smooth-
ed object. A color image of the scene is given in �gure D.6.

Hole Punch Very complex real world object which uses all set operations and
applies smoothing to non-primitive objects. Some objects (the metal pins) are

smoothed with varying rounding radii. The �gure D.2 shows a color image of

the scene.

Many Stapler 24 Stapler form our most complex example scene.

n3 Blended Cubes Rounded union of n3 cubes such that the cubes are blended

together. A color image of 33 blended cubes is shown in �gure D.4.

2.5 Example Scenes 19

The \n3 Blended Cubes" scene, if not smoothed, is just an array of cubes and is

in this case referred to as \n3 cubes".

To evaluate the complexity of the later presented algorithms it is useful to have

some statistical information about the example scenes. Table 2.1 gives for each

scene the number of primitive objects, half-spaces, clipping planes and set operations

necessary to construct the scene.

Scene # objects # half- # clipping # ([?) # (\?) # (n
?
)

spaces planes

Cube 1 6 0 0 0 0

Cube In Cube 3 18 0 1 0 1

Stapler 7 47 6 6 0 0

CSG Example 12 72 1 7 0 4

Variable Radius 12 72 0 5 0 6

Hole Punch 33 203 32 28 2 2

Many Staplers 168 1128 144 167 0 0

n3 Blended Cubes n3 6n3 0 n3 � 1 0 0

Table 2.1. Example Scenes.

C H A P T E R 3

Binary Space Partitioning and

Boundary Representation

This chapter introduces the concept of Binary Space Partitioning (BSP) trees and
presents two boundary representation (b-rep) algorithms based on the data structure

of BSP trees. The b-rep of a polyhedral CSG object represents a polygonization of
the object surface.

3.1 Introduction

We are interested in the boundary representation of a CSG object, because the object
model for Triage Polygonization is a rounded CSG object. Since by assumption the
rounding radius is small in comparison to the object the unrounded CSG object

represents a �rst approximation to the rounded object. This implies the following
lemma:

Lemma 3.1 The b-rep of an unrounded CSG object approximates the polygonization

of a rounded CSG object.

Lemma 3.1 forms the motivation for Triage Polygonization introduced in chapter 5.
The concepts of binary space partitioning and boundary extraction are essential for

the polygonization. The b-rep algorithm is also used to improve the e�ciency of

Triage Polygonization in the actual implementation (section 6.1).

Input of a b-rep algorithms is a polyhedral CSG object. The b-rep is represented

explicitly as an augmented BSP tree. The �rst b-rep algorithm is called the lazy

b-rep algorithm because the faces representing the object boundary are extracted

only in a post-processing step. The second algorithm extracts the object boundary

by merging BSP trees and is called the merged b-rep algorithm.

21

22 Binary Space Partitioning and Boundary Representation

After presenting the b-rep algorithms some implementation details common to

both algorithms follow. The chapter concludes with a complexity analysis and a

presentation of the results achieved with our implementation of the algorithms.

3.2 BSP Trees

Historically the methodology underlying b-reps is that of the direct representation

of the topology of a surface. The topological approach requires the decomposition

of a 3-space polytope (may be generalized for d-space) into all dimensions 3,2,1,0,

i.e., into polytopes, faces, edges, and points. Then the b-rep explicitly encodes the

connectivity/incidence among these components.

This representation, while widely used, possesses a number of inherent limitations

as is pointed out in [NAT90]. For example sets whose boundary is unbounded can

not be represented. Algorithmically performing set operations with b-reps requires
explicit detection of the coincidence of all combinations of the variously dimensioned

elements (e.g., face-face, face-edge, edge-vertex) along with some appropriate action
for each [RV85].

Also e�ciency considerations demand some kind of spatial search structure. Typ-

ically an axis-aligned spatial decomposition is chosen. This, however, does not trans-
form with the representation and must be reconstructed after each transformation.

An increasingly popular alternative is the binary space partitioning (BSP) tree

[SBGS69, SSS74, FKB80, Nay81] . The fundamental methodology underlying BSP
trees is spatial partitioning. Hyper-planes are used to recursively subdivide d-space

to create a disjoint set of d-dimensional cells. Each cell is then designated as either
interior or exterior to the set. The boundary need not be represented explicitly as
it is derivable from the cells.

In this thesis we use only BSP trees in three dimensions. The hyper-planes
forming the spatial partitioning are then ordinary planes. The best way to explain
a BSP tree is through the process that constructs one, as illustrated in �gure 3.1.

One begins with a region of space R, chooses some plane h that intersects R, and
then uses h to induce a binary partitioning of R. If Hin and Hout denote the inside

and outside open half-spaces of h two new regions are derived:

Rin = R \Hin

Rout = R \Hout

Each of these unpartitioned children can in turn be partitioned, and so on, to
produce a binary tree of regions. We make the convention that Rin and Rout always

are the left and right child (IN tree and OUT tree), respectively, of the current node.

Each polyhedral object can be represented as a union of regions of a BSP tree.
The regions inside and outside the object are called IN cells and OUT cells, respec-

tively. Figure 3.2 shows a polyhedral object and a possible BSP tree representation.

3.2 BSP Trees 23

h2

h1h1

Rin Rout

Rin,in Rin,out

Rout

h1

Rin

Rout Rout
h1

Rin,in
Rin,out

h2

Figure 3.1. Constructing a BSP tree.

in
in

in

in

in

in

in in

out out

out

out

out

out

out

out

out out

out out

a) b)

out

Figure 3.2. A polyhedral object (a) and the corresponding BSP tree (b).

24 Binary Space Partitioning and Boundary Representation

Since BSP trees ignore the topological properties of a set no distinction is made

between convex and non-convex sets. Thus the entire representational domain is

treated uniformly, providing a considerable improvement in the simplicity of the

algorithm. In addition, the spatial search structure is intrinsic to the representation

and so transforms with it. Also note that a BSP tree solves the hidden surface

problem. The linearity of both planes and viewing rays means that if a ray intersects

a plane it does so at only one point. Hence the ray is divided into a near and far

section. This permits inducing a visibility priority ordering on the three subspaces

formed by the plane: near half-space, plane, and far half-space. Given a BSP tree � ,

determining this ordering at every node of the tree in a recursive manner provides a

total ordering of the elements of the region partitioned by � (e.g., [SSS74, Nay81]).

For computational reasons it is often desired to represent the boundary of an

object explicitly in the BSP tree structure. This is achieved by augmenting each

BSP node with the boundary faces lying in its plane (e.g., [SBGS69, FKB80]). We

allow instead to augment a BSP node with an arbitrary set of faces lying in its plane.

This is done for computational reasons and becomes clear in the following section.

With these remarks a BSP tree is de�ned formally as

De�nition 3.1 BSP tree

A BSP tree �(A), de�ning an object A, is recursively de�ned as

�(A) = (h; facesh; �(Ah;in); �(Ah;out)) j IN j OUT

where

h is a partitioning plane,

facesh is a set of faces lying in the partitioning plane h,

Ah;in and Ah;out are the parts of object A lying inside and outside

the partitioning plane h, respectively,

�(Ah;in) and �(Ah;out) are the IN tree and OUT tree, respectively,

IN and OUT represent an IN cell and an OUT cell, respectively.

We denote with faces(�(A)) the set of all faces augmenting the BSP tree �(A).

De�nition 3.2 Boundary BSP tree

A BSP tree �(A) contains explicitly the boundary representation of an object A if

faces(�(A)) = @A. In this case the BSP tree is called a \boundary BSP tree" and

is denoted by �(A).

The latter interpretation of the BSP structure corresponds to the classical one
[NAT90] that a BSP tree represents a set of boundary points with neighborhood

information. In our case the neighborhood information is given by classifying the

BSP cells into IN and OUT. So it corresponds to the direct representation of b-reps

3.2 BSP Trees 25

:: LeafClass = IN | OUT

:: BSPTree = BSPNode Plane [Face] BSPTree BSPTree | BSPLeaf LeafClass

Figure 3.3. Data type of a BSP tree.

[RV85]. The data structure for a BSP tree in Clean reects directly de�nition 3.1

and is given in �gure 3.3.

In the following sections we introduce two b-rep algorithms. The derivation will

show that it is easier to construct a BSP tree for a non-regularized object than for a

regularized object. This does not seem to be of much help because with section 2.1

a CSG object is always de�ned as a regularized object. However, with equations 2.1

and 2.2 we know

8A8�(Anon�regularized)9�(Aregularized) : �(Aregularized) = �(Anon�regularized) (3.1)

i.e., for every polyhedral CSG object A there is always a BSP tree �(Aregularized)

equal to the BSP tree �(Anon�regularized) of the corresponding not-regularized object
A. This result allows us to compute the b-rep of a CSG object A with a BSP tree

for the corresponding non-regularized object.
Figure 3.4 shows the BSP partition for an object A before and after regulariza-

tion. Clearly, the BSP partition for Anon�regularized is valid for Aregularized ,too. Note

though, that the opposite is not true, since there is no partitioning plane for the
dangling face.

inout

out

out

out

out

inout

out

out

out

a)

b)

Figure 3.4. BSP partition for a non-regularized (a) and a regularized object (b).

26 Binary Space Partitioning and Boundary Representation

3.3 Lazy B-rep Algorithm

This section introduces a b-rep algorithm popular in contemporary literature. The

following b-rep algorithm was �rst introduced by Thibault and Naylor [TN87]. The

central idea is to separate the problem of computing the boundary of an object

and the problem of transforming a CSG object into a BSP tree. In the original

paper the boundary is represented implicitly in the BSP tree. It can be extracted

in a post-processing step. However, implementational advantages (see note 2 on

page 45) suggest representing the b-rep explicitly in the BSP tree.

We �rst compute a BSP tree �(A) representing a CSG object A. During com-

putation a superset faces(�(A)) of the object's boundary @A is produced. The

superset forms a candidate set from which the boundary representation is extracted

in a post-processing step.

The algorithm transforming the CSG object A into a BSP tree �(A) is called

the lazy BSP tree algorithm. The lazy BSP tree algorithm together with the post-

processing step of extracting the actual boundary faces yields a boundary BSP tree
explicitly containing the b-rep. The resulting algorithm is called the lazy b-rep

algorithm and is summarized in �gure 3.5

BRep lazy :: CSGObject -> BSPTree

BRep lazy csgObject = (BoundaryBSPTree o BSPTree lazy) csgObject

Figure 3.5. Lazy b-rep algorithm.

The function BSPTree lazy, introduced in the next section and given in �gure 3.7,
implements the lazy BSP tree algorithm. The post-processing step of extracting the

object boundary is implemented by the function BoundaryBSPTree, which is derived
in section 3.3.4 and de�ned in �gure 3.12. The �nal BSP tree contains explicitly

the boundary faces and is hence a boundary BSP tree. The symbol \�" denotes
functional composition.

3.3.1 Lazy BSP Tree Algorithm

The lazy BSP tree for a CSG object A, denoted by �lazy(A), is a BSP tree such that

faces(�lazy(A)) � @A. The corresponding lazy BSP tree algorithm is developed by

induction and makes use of equation 3.1. This means the lazy BSP tree algorithm
constructs a BSP tree for a non-regularized version of the CSG object A. The

resulting BSP tree is always a valid (but usually not minimal) BSP tree for the
regularized CSG object A.

The induction basis is given for the primitive objects of a CSG object, which are

convex polyhedra, each represented by a list of faces. A BSP tree for a primitive

object is therefore given by the BSP tree for a convex polyhedron, which is a linear

3.3 Lazy B-rep Algorithm 27

tree formed by the face planes of the polyhedron (see �gure 3.6). Each BSP node

of the linear tree is augmented with the face of the polyhedron lying on the corre-

sponding partitioning plane. The resulting BSP tree ful�lls �lazy(P) = �(P), i.e., it

is a boundary BSP tree (see de�nition 3.2).

in
out

out

out

out

out

out
out

out
out

outin

Figure 3.6. A convex set and its BSP tree.

For the induction step assume it is known how to compute a BSP tree �lazy for a

CSG object A such that faces(�lazy(A)) � @A. Suppose we are given a non-primitive
CSG object A1�

?A2 (� 2 f[;\; ng). To compute �lazy(A1�
?A2) insert the CSG

object A2 into the BSP tree �lazy(A1) according to the corresponding set operation

�. The insertion operation can be considered as a (non-regularized) set operation
between a BSP tree and a CSG object yielding a BSP tree. We call the operation
a lazy set operation because it does not yield a regularized object and denote it by

the subscript \lazy". The lazy set operations must ful�ll faces(�lazy(A1)�lazyA2) �
@(A1�

?A2) and are described in the next subsection. Figure 3.7 summarizes the

lazy BSP tree algorithm.

BSPTree lazy :: CSGObject -> BSPTree

BSPTree lazy (Union obj1 obj2) = Union lazy (BSPTree lazy obj1) obj2

BSPTree lazy (Intersection obj1 obj2) = Intersection lazy (BSPTree lazy obj1) obj2

BSPTree lazy (SetDifference obj1 obj2) = SetDiff lazy (BSPTree lazy obj1) obj2

BSPTree lazy (Primitive (Polyhedron faces)) = LinearBSPTree faces

LinearBSPTree :: [Face] -> BSPTree

LinearBSPTree [face:faces]

= BSPNode (PlaneOf face) (LinearBSPTree faces) (BSPLeaf OUT)

LinearBSPTree [] = BSPLeaf IN

Figure 3.7. Lazy BSP tree algorithm.

28 Binary Space Partitioning and Boundary Representation

3.3.2 Lazy Set Operations

It remains to de�ne the lazy set operations. We present only the lazy union oper-

ator [lazy referred to as Union lazy in �gure 3.7. The lazy intersection and lazy set

di�erence are de�ned similarly. This subsection introduces the lazy union opera-

tion rather informally. For a better understanding the next subsection presents a

mathematical derivation, which can be skipped at a �rst reading.

For any two polyhedral CSG objects A and B the lazy union operator must yield

a BSP tree �lazy(A[
?B) = �lazy(A) [lazy B. Two conditions are su�cient:

1. �lazy(A[
?B) is a BSP tree for A [B

2. faces(�lazy(A[
?B)) � @(A[?B)

To ful�ll these conditions we develop the algorithm for the lazy union operation

in two steps. First build a BSP tree �lazy(A[
?B) by inserting the CSG object B into

the BSP tree �lazy(A). Then augment the BSP tree �lazy(A[
?B) with a superset of

@(A[?B).
We de�ne the insertion of B into the BSP tree �lazy(A) by induction on the BSP

tree structure. For the base case assume �lazy(A) is a cell and B lies completely inside

the cell. If �lazy(A) is an IN cell, i.e., completely inside the represented object, then
the union with object B does not change the classi�cation of the cell. Conversely,

if �lazy(A) is an OUT cell, i.e., completely outside the represented object, then the
union with object B is given by the BSP tree representing B.

For the induction step take a BSP node with partitioning plane h and child trees

�lazy(Ah;in) and �lazy(Ah;out). Splitting the CSG object B on the partitioning plane h
yields the two CSG objects Bh;in and Bh;out. The resulting parts are inserted in the
corresponding child BSP trees on either side of the partitioning plane by recursively

applying the lazy union operation:

�lazy(Ah;in[
?Bh;in) = �lazy(Ah;in) [lazy Bh;in

�lazy(Ah;out[
?Bh;out) = �lazy(Ah;out) [lazy Bh;out

Forming a new tree with �lazy(Ah;in[
?Bh;in) and �lazy(Ah;out[

?Bh;out) as the IN

and OUT tree, respectively, yields the desired result �lazy(A[
?B) = �lazy(A)[lazy B.

It remains to �nd a superset faces(�lazy(A[
?B)) of @(A[?B). Such a superset is

given by taking all faces of the lazy BSP tree for object A, denoted faces(�lazy(A)),
and all faces of all primitive polyhedra of object B. The set has the desired property

because faces(�lazy(A)) � @A by de�nition of a lazy BSP tree and because the
boundary of a CSG object is a subset of the boundary of all its primitives. Figure 3.8

gives the complete algorithm for the lazy union operation in functional code.

The algorithm is simpli�ed by computing the superset of the boundary faces
during the BSP tree construction. This is achieved by guaranteeing condition 2 (on

page 28) for each partitioning plane h separately. Condition 2 is rewritten as

3.3 Lazy B-rep Algorithm 29

Union lazy :: BSPTree CSGObject -> BSPTree

Union lazy (BSPNode plane facesOnPlane inTree outTree) csgObj

= BSPNode plane newFacesOnPlane newInTree newOutTree

where

newInTree = Union lazy inTree inCSG

newOutTree = Union lazy outTree outCSG

(inCSG,outCSG) = SplitCSGObj plane csgObj

objectFacesOnPlane = Intersection plane csgObj

newFacesOnPlane = facesOnPlane ++ objectFacesOnPlane

Union lazy (BSPLeaf IN) csgObj = BSPLeaf IN

Union lazy (BSPLeaf OUT) csgObj = BSPTree lazy csgObj

Figure 3.8. Lazy union of a BSP tree and a CSG object.

20. 8h : facesh(�lazy(A[
?B)) � @(A[?B) \ h

where facesh(�lazy(A[
?B)) denotes the faces of the BSP tree �lazy(A[

?B) which lie
on the partitioning plane h. The faces are given by the faces of the BSP tree �lazy(A)

lying on the partitioning plane h and by all boundary faces of the primitive objects
of the CSG object B lying on the partitioning plane h.

The lazy union algorithm in �gure 3.8 refers to the faces of the BSP tree on the

partitioning plane as facesOnPlane and to the boundary faces of the primitive objects
of the CSG object, which lie on the partitioning plane, as objectFacesOnPlane. In the

actual implementation the latter set of faces is e�ciently determined during splitting
the CSG object B with the partitioning plane h (see subsection 3.5.1).

Example 3.1 Figure 3.9 shows the union of a BSP Tree with a CSG object (a
polyhedron). After inserting the polyhedron in the tree only that portion of its

boundary shown in bold remains. These boundary faces are inserted in the OUT cell
and subdivide it as shown. The algorithmic details of the subdivision are discussed

in subsection 3.5.2.

3.3.3 Mathematical Derivation of the Lazy Union Operation

The lazy union operator introduced in the previous subsection can be be derived
formally by observing that both BSP trees and CSG objects represent mathematical

sets. Since this subsection is a little bit cumbersome to read we recommend to skip
it at �rst reading.

Let A and B be two sets with domain
, and h a plane with inside and outside

half-spaces Hin and Hout, respectively. Let Ah;in and Ah;out give the intersection of

30 Binary Space Partitioning and Boundary Representation

out out out

in

Polyhedron

Figure 3.9. Inserting a CSG object into an OUT cell according to an union operation.

the set A with the half-spaces Hin and Hout, respectively, and analogously for Bh;in

and Bh;out. The symbol _[denotes a disjoint union. Standard algebra1 yields

A [B = (A [B) \ (Hin _[Hout)

= ((A [B) \Hin) _[((A [B) \Hout)

= ((A \Hin) [(B \Hin)) _[((A \Hout) [(B \Hout))

= (Ah;in [Bh;in) _[(Ah;out [Bh;out) (3.2)

and

; [B = B (3.3)

 [B =
 (3.4)

Equations 3.2 { 3.4 can be combined as

A [B =

8><
>:

 if A =

B if A = ;

(Ah;in [Bh;in) _[(Ah;out [Bh;out) if A = Ah;in _[Ah;out

(3.5)

where

Bh;in = B \Hin

Bh;out = B \Hout

The recursive de�nition of the union operation in equation 3.5 provides a basis
for the lazy union operation. Before giving a more detailed explanation we want to

compute a superset of the boundary of A[?B. Again A denotes a set and faces(A)

is a superset of its boundary.

1Equality with respect to a set of Lebesgue measure zero.

3.3 Lazy B-rep Algorithm 31

Assume the set B is de�ned by applying set operations to a set of basic sets P

(e.g., B is a CSG object) and note that

@(B1 �B2) � @B1 [@B2 (� 2 f[;\; ng)

Let B1 and B2 be components of B and de�ne a function @all recursively by

@all(B1 �B2) = @allB1 [@allB2 (� 2 f[;\; ng)

@allP = @P

Then @allB is the set of all boundaries of all basic sets from which B is composed.

We obtain

@(A[?B) � @A [@B

� faces(A) [@allB

and for an arbitrary plane h

@(A[?B) \ h � (faces(A) \ h) [(@allB \ h) (3.6)

Now let any set A be equivalent to the corresponding BSP tree �lazy(A), i.e.,

A � �lazy(A)

Ah;in � �lazy(Ah;in)

Ah;out � �lazy(Ah;out)

; � OUT

 � IN

and replace faces(A)\ h with facesh(�(A)). Especially note that because of above

equivalence and equation 3.1

A [B � �lazy(A [B) � �lazy(A[
?B)

Then equation 3.5 and 3.6 can be combined to form the following recursive algorithm:

Algorithm 3.1 (Lazy union algorithm)

�lazy(A)[lazyB =

8><
>:

IN if �lazy(A) = IN

�lazy(B) if �lazy(A) = OUT

�lazy(A[
?B) if �lazy(A) = (h; facesh; �lazy(Ah;in); �lazy(Ah;out))

where
�lazy(A[

?B) = (h; facesh [(@allB \ h); �in; �out)

�in = �lazy(Ah;in) [lazy Bh;in

�out = �lazy(Ah;out) [lazy Bh;out

Bh;in = B \Hin

Bh;out = B \Hout

This is exactly the lazy union algorithm given in �gure 3.8. Especially @allB \ h

denotes all faces of the primitive polyhedra of CSG object B which lie on the par-
titioning plane h.

32 Binary Space Partitioning and Boundary Representation

3.3.4 Boundary Extraction

To complete the lazy b-rep algorithm in �gure 3.5 it remains to de�ne the function

BoundaryBSPTree. Assume as input a BSP tree �lazy(A) augmented with a superset

faces(�lazy(A)) of the boundary @A. As result of the boundary extraction we want

a BSP tree �(A) augmented with the boundary faces of object A, i.e., a boundary

BSP tree.

Observe that the boundary of a regularized set (a \real world solid") separates

its inside from its outside. Hence a face is part of the object boundary, if and only

if, it separates IN cells from OUT cells. Subsection 3.5.3 shows that we can ensure

additionally that any face of faces(�lazy(A)) which is a boundary face of A has an

outward pointing normal. With these preconditions the following Lemma gives the

solution to the problem of boundary extraction:

Lemma 3.2 Let A be a polyhedral CSG object, �lazy(A) the corresponding lazy BSP

tree, and f 2 faces(�lazy(A)) having an outwards pointing normal if f 2 @A.

Then f is a boundary face of A, if and only if, in the BSP tree �lazy(A) the face

f faces only IN cells on its inside and only OUT cells on its outside.

The boundary faces are found by traversing the BSP tree. For every BSP node
with partitioning plane h, IN tree �lazy(Ah;in), OUT tree �lazy(Ah;out) and a set of

faces facesh(�lazy(A)) on the plane h perform the following process:

Insert every face f 2 facesh(�lazy(A)) into the IN tree of the corresponding BSP

node and split it on all partitioning planes. The parts of the face f which lie at the
end of this process in an IN cell are exactly the parts which face an IN cell on their
inside. Insert only these faces in the tree on the outside of face f and collect the

parts which lie in an OUT cell. These parts are exactly the parts of the input faces
with an OUT cell on their outside. Hence with lemma 3.2 the resulting parts of the

original face f lie on the object boundary. The algorithm is described in functional
code in �gure 3.12. Before explaining the code we want to clarify the algorithm with
two examples.

Note �rst that the algorithm can be understood as a double �ltering process:
�rst remove all parts of face f that do not face an IN cell at the inside, and from

the remaining parts remove all parts that do not face an OUT cell at the outside.

Example 3.2 Figure 3.10 clari�es the double �ltering process. Part (a) of the �gure

shows a CSG object de�ned as Object = (Object1n
?
Object2)[?Object3. In (b) the

corresponding BSP tree is pictured. Consider the face labeled Face. To extract
parts from it lying on the boundary the face is �rst �ltered down the subtree on its

inside. In this case this is the IN tree since the face and the partitioning plane h1
have the same orientation. Figure 3.10 (c) shows that the part labeled Face1 ends

in an IN cell and the part labeled Face2 ends in an OUT cell. Hence only Face1
is used for the second �ltering step. Now Face1 is inserted into the subtree on its
outside (here the OUT tree) and the face is divided into three parts. Only two of

them end in an OUT cell, namely Face1:1 and Face1:3. Indeed, these are exactly

3.3 Lazy B-rep Algorithm 33

a)

c)

Object1

Object2

Object3

Face

IN

IN
IN

OUT

OUT

OUT

OUT
OUT

OUT

OUT

IN

IN
IN

OUT

OUT

OUT

OUT
OUT

OUT

OUT

b) h1h2

h3

h4

h5
h6

h7

h8
h9

d)

IN

IN
IN

OUT

OUT

OUT

OUT
OUT

OUT

OUT

IN tree OUT tree

OUT tree

OUT tree

IN tree

IN tree

Face2

Face1

Face1,1

Face1,2
Face1,3

h1
h2

h3

h4

h5

h6

h7

h8

h9

IN

IN

IN

OUT

OUT

OUT

OUT

OUT

OUT

OUT

h1
h2

h3

h4

h5

h6

h7

h8

h9

h1
h2

h3

h4

h5

h6

h7

h8

h9

Face1

Face2

Face1,3

Face1,2 Face1,1

Figure 3.10. Extracting part of the object boundary from a face.

34 Binary Space Partitioning and Boundary Representation

the fragments of the original face, which lie on the boundary of Object as lemma 3.2

claimed.

Example 3.3 Figure 3.11 illustrates the boundary extraction step for a face with

normal orientation opposite to the partitioning plane. Then the OUT tree of the

corresponding BSP node lies inside the face and the IN tree outside the face. Hence

the face fragments on the object boundary are those parts which face an IN cell in

the OUT tree and an OUT cell in the IN tree.

a) b)

Face

Face1

Face2

h1

IN IN

OUT

OUT

OUT OUT

OUT

OUT

IN treeOUT tree

Figure 3.11. Extracting part of the object boundary from a face with normal orientation

opposite to the partitioning plane normal.

Figure 3.12 summarizes the algorithm for boundary extraction. It is implemented
by the function BoundaryBSPTree which traverses the BSP tree in in-order. For each

BSP node the superset faces of the boundary faces is split into two sets faces-

SameNormal and facesOpNormal of faces with normal orientation equal and opposite,
respectively, to the plane normal. The function SingleSideExtractBoundary deter-

mines then for all faces of these sets the fragments lying on the object boundary.
Input to the function SingleSideExtractBoundary are a list of coplanar faces with

identical normal orientation and two BSP trees lying on the inside and outside of the
faces, respectively. The result of the function are all parts of the input faces which
lie on the object boundary. The function SingleSideExtractBoundary �lters �rst all

faces down the BSP tree on their inside and retains the face fragments reaching an

IN cell. This is done by the function InsertInCells with the leaf class IN as �rst
argument. The remaining parts of the face are then �ltered down the BSP tree on

their outside (function InsertInCellswith �rst argument OUT) and the face fragments
landing in OUT cells are returned.

The straightforward function InsertInCells is de�ned in �gure 3.13. Insert a

list of faces into a BSP tree by splitting them with the partitioning planes of the
BSP tree. The parts of the faces lying inside and outside the partitioning plane are

inserted recursively into the corresponding IN tree and OUT tree, respectively. If a

3.3 Lazy B-rep Algorithm 35

BoundaryBSPTree :: BSPTree -> BSPTree

BoundaryBSPTree (BSPLeaf class) = BSPLeaf class

BoundaryBSPTree (BSPNode plane faces inTree outTree)

= BSPNode plane (boundsSameNormal ++ boundsOpNormal) newInTree newOutTree

where

SameNormal plane face = (PlaneNormal plane) == (FaceNormal face)

(facesSameNormal,facesOpNormal) = SplitListWith (SameNormal plane) faces

boundsSameNormal = SingleSideExtractBoundary inTree outTree facesSameNormal

boundsOpNormal = SingleSideExtractBoundary outTree inTree facesOpNormal

newInTree = BoundaryBSPTree inTree

newOutTree = BoundaryBSPTree outTree

SingleSideExtractBoundary :: BSPTree BSPTree [Face] -> [Face]

SingleSideExtractBoundary insideTree outsideTree faces = facesOnBoundary

where

facesInIN Cells = InsertInCells IN insideTree faces

// Face fragments which lie in IN cell of insideTree

facesOnBoundary = InsertInCells OUT outsideTree facesInIN Cells

// Face fragments which lie in OUT cell of outsideTree

Figure 3.12. Extracting a boundary BSP tree from a BSP tree augmented with a candidate

set of the boundary.

InsertInCells :: LeafClass BSPTree [Face] -> [Face]

InsertInCells [] = [] // no face reaches this (sub)tree

InsertInCells wantedClass (BSPLeaf class) faces

| class == wantedClass = faces

= []

InsertInCells wantedClass (BSPNode plane inTree outTree) faces

= faceFragmentsInside ++ faceFragmentsOutside

where

(facesInside,facesOutside) = UnZipWith (SplitFace plane) faces

faceFragementsInside = InsertInCells wantedClass inTree facesInside

faceFragmentsOutside = InsertInCells wantedClass outTree facesOutside

Figure 3.13. Inserting a set of faces into a BSP tree and returning fragments which reach

a cell of the speci�ed leaf class.

36 Binary Space Partitioning and Boundary Representation

subtree is not reached by any face the recursion stops. The faces reaching a cell of

the speci�ed leaf class are returned.

3.4 Merging B-rep Algorithm

A second approach for transforming a CSG object A = A1�
?A2 into a boundary

BSP tree �(A) is to generate recursively BSP trees from the child objects A1 and

A2 and to merge them with the set operation �?.

Naylor, Amanatides, and Thibault [NAT90] describe an algorithm to merge two

BSP trees �(A1) and �(A2) by inserting the tree �(A2) into the tree �(A1). Binary

partitioning the tree �(A2) in turn involves inserting the binary partitioners of �(A1)

into �(A2). The algorithm is e�cient but fairly complex.

We present here a simpler though less e�cient solution. An optimal solution is

not necessary, since Triage Polygonization itself does not merge BSP trees to polygo-
nize a quasi-convolutionally smoothed object, but uses the more e�cient lazy b-rep

algorithm instead. However, the merging of BSP trees is necessary to polygonize
the example scenes from section 2.5.

A straightforward solution to the problem of merging BSP trees is achieved by

recognizing that a BSP tree �(A) represents the object A as a union of its IN cells.
Furthermore each IN cell is a (convex) polyhedral object. Hence with our model a
BSP tree is a CSG object formed as a union of primitive convex polyhedra.

The merging operations are handled by the lazy set operations. The union of two

BSP trees, e.g., is computed with the lazy union operation as shown in �gure 3.14.

Union merged` :: BSPTree BSPTree -> BSPTree

Union merged` tree1 tree2 = foldl Union lazy tree1 (GetInCells tree2).

Figure 3.14. Ine�cient union of two BSP trees.

Here we assume that the function GetInCells returns all IN cells of a BSP tree as

polyhedra (i.e., primitive CSG objects). The foldl function iterates the lazy union

operator Union lazy with the initial BSP tree tree1 over a list of CSG objects. In
that way all IN cells of the second BSP tree are inserted in the �rst BSP tree yielding

the union of both BSP trees.

However, we recognized that a complex CSG object usually gets heavily frag-

mented into IN cells if represented as a BSP tree. Recall that the lazy union opera-
tion inserts every face of a primitive polyhedral object into the tree as a candidate

face for the boundary of the represented object. Therefore the resulting BSP tree is
augmented with a disproportional large superset of the boundary of the represented

object. We obtain a more e�cient algorithm by merging the BSP trees without

explicitly representing faces. Instead a candidate set for the object boundary is

3.4 Merging B-rep Algorithm 37

inserted in the tree in a post-processing step. Finally the boundary BSP tree is

produced by extracting all boundary faces. The resulting merged b-rep algorithm is

given in �gure 3.15.

BRep merged :: CSGObject -> BSPTree

BRep merged csgObject

= (BoundaryBSPTree o InsertCandidateFaces o BSPTree merged) csgObject

Figure 3.15. Merged b-rep algorithm.

BSPTree merged :: CSGObject -> BSPTree

BSPTree merged (Union obj1 obj2)

= Union merged (BSPTree merged obj1) (BSPTree merged obj2)

BSPTree merged (Intersection obj1 obj2)

= Intersection merged (BSPTree merged obj1) (BSPTree merged obj2)

BSPTree merged (SetDifference obj1 obj2)

= SetDiff merged (BSPTree merged obj1) (BSPTree merged obj2)

BSPTree merged (Primitive (Polyhedron faces)) = LinearBSPTree faces

Figure 3.16. Merged BSP tree algorithm.

Here the function BSPTree merged, given in �gure 3.16, computes an unaugmented
BSP tree. The set operations Union merged, Intersection merged, and SetDiff merged

on BSP trees are de�ned analogously to the merged union in �gure 3.14 except
that they use lazy set operations producing unaugmented BSP trees. The function

LinearBSPTree was already given in �gure 3.7.

Lazy set operations producing unaugmented BSP trees are easily achieved by

taking the corresponding lazy set operation (e.g., the lazy union operation in �g-

ure 3.8) without de�ning the list newFacesOnPlane of boundary faces for the new tree.
The parts of the algorithm computing the superset of boundary faces are then not

anymore needed.

It remains to de�ne the function InsertCandidateFaces, which computes a candi-
date set of boundary faces for the boundary extraction. Note that every boundary

face must lie on a partitioning plane and every CSG object is bounded. We get

all possible boundary faces of a CSG object by pushing its bounding box (a poly-

hedron) down the tree. Every time the polyhedron is intersected by a partitioning

plane the intersection forms a candidate face for the boundary. The parts of the
split polyhedron inside and outside the partitioning plane are inserted recursively

into the left and right subtree, respectively. The recursion ends if the bounding box

reaches a leaf in the tree. Figure 3.17 gives the algorithm in functional code.

38 Binary Space Partitioning and Boundary Representation

InsertCandidateFaces :: BSPTree Polyhedron -> BSPTree

InsertCandidateFaces leaf=:(BSPLeaf) = leaf

InsertCandidateFaces (BSPNode plane inTree outTree) polyhedron

= BSPNode plane [newFace] newInTree newOutTree

where

(inPolyhedron,outPolyhedron) = SplitPolyhedron plane polyhedron

newFace = Intersection plane polyhedron

newInTree = InsertCandidateFaces inTree inPolyhedron

newOutTree = InsertCandidateFaces outTree outPolyhedron

Figure 3.17. Producing candidate faces for the boundary representation.

As a �nal remark note that even though all IN cells of a BSP tree are disjoint,

it is not trivial to form a new BSP tree from a subset of them.

in

in

in

in

in

in

in
in
in

a) b)

Figure 3.18. Forming a BSP tree from a subset of its IN cells may lead to additional

fragmentation.

Example 3.4 Figure 3.18 (a) shows a union of three cubes and the corresponding

BSP tree. In (b) only a subset of two cubes is taken. If their union is represented
as BSP tree the rightmost square is fragmented into two IN cells. Hence taking a

subset of a CSG object may yield a di�erent binary space partitioning for the subset

than if taking the object as a whole.

3.5 Implementation

The previous sections introduced two b-rep algorithms. For a better understanding

of the actual algorithms we have postponed the de�nition of the various splitting

algorithms used to this section. We also give some additional implementation details.

3.5 Implementation 39

3.5.1 Splitting a CSG Object

A common operation of the b-rep algorithm is the splitting of a CSG object with a

partitioning plane. To recognize the subtleties of the splitting operation note that it

corresponds to the intersection of an object with the inside and outside half-spaces

of the partitioning plane. Also recall that all objects are \real-world solids". This

means that for example an object which only touches the partitioning plane must

not be split into two objects. To produce regularized results the splitting operation

must correspond to a regularized intersection with a half-space.

h

Hin Hout

Object Objectout

Objectin Objectin

Objectout
a) b) c)

Figure 3.19. Splitting an object with a partitioning plane implemented as a non-

regularized operation (b) and as a regularized operation (c).

Example 3.5 Figure 3.19 (a) shows an object Object and a partitioning plane
h with inside and outside half-spaces Hin and Hout respectively. The object is

split into two parts Objectin and Objectout lying inside and outside the partitioning
plane, respectively. In (b) the splitting operation is performed according to a non-

regularized intersection with Hin and Hout. As result Objectout has a dangling face.
This error is corrected in (c) by using a regularized intersection instead.

The splitting operation for a CSG object can be reduced to splitting its primitive
objects. As example consider a set B = B1\

?B2 and a partitioning plane h with
inside and outside half-spaces Hin and Hout, respectively. De�ne Bin = B\?Hin,

B1;in = B1\
?Hin, and B2;in = B2\

?Hin. Basic set algebra yields

Bin = B\?Hin

= (B1\
?B2)\

?Hin

= (B1\
?Hin)\

?(B2\
?Hin)

= B1;in\
?B2;in

=

(
; if B1;in = ; _B2;in = ;

B1;in\
?B2;in otherwise

Hence Bin, the part of object B inside the partitioning plane, is found by splitting

B's child objects B1 and B2 on the partitioning plane. If either of them lies outside

the partitioning plane then B lies outside the partitioning plane as well. In this case

40 Binary Space Partitioning and Boundary Representation

Bin is void. Otherwise Bin is the intersection of the inside the partitioning plane

lying parts of the child objects. Bout is determined in the same manner. Figure 3.20

uses above equation to give an algorithm for splitting an intersection of two CSG

objects.

SplitCSGObject :: Plane CSGObject -> (CSGObject,CSGObject)

SplitCSGObject plane (Intersection bit1 bit2)

= (inBit,outBit)

where

(inBit1,outBit1) = SplitCSGObject plane bit1

(inBit2,outBit2) = SplitCSGObject plane bit2

inBit = if ((IsVoid inBit1) || (IsVoid inBit2)) VoidObject

(Intersection inBit1 inBit2)

outBit = if ((IsVoid outBit1) || (IsVoid outBit2)) VoidObject

(Intersection outBit1 outBit2)

Figure 3.20. Splitting an intersection of two CSG objects.

The splitting of a union or set di�erence of CSG objects is performed similarly.
The problem of splitting a CSG object is therefore reduced to that of splitting its
primitive objects. In our object model these are convex polyhedra.

Section 2.4 mentioned that the internal representation of a polyhedral primitive
is a list of its boundary faces. If all of its faces lie on one side of the partitioning
plane the polyhedron is not split. The same is valid if one of the polyhedron's faces

lies on the partitioning plane (since a polyhedral primitive is convex). Otherwise
the polyhedron is split by partitioning all its faces. A new boundary face for the two

bits of the split polyhedron is formed by the intersection of the partitioning plane
with the polyhedron. The corresponding algorithm is shown in �gure 3.21.

The algorithm for splitting a (convex) polyhedron �rst classi�es all faces with

the partitioning plane. A face is either inside, outside, or on the plane or it is inter-
sected by the plane. All faces intersected by the plane are split into inside fragments

(inBits) and outside fragments (outBits). The intersection of the polyhedron with

the partitioning plane (newFace) is calculated by intersecting all the polyhedron's

edges with the plane. The resulting new face is a boundary face of both the in-

Polyhedron (the other faces of which are all the inside faces and inside fragments)

and the outPolyhedron (the other faces of which are all the outside faces and outside
fragments).

We conclude with a remark: In subsection 3.3.2 we claimed that the boundary

faces of all primitive objects of a CSG object lying on a partitioning plane can be

determined during splitting the CSG object. This is indeed the case. Inspecting �g-

ure 3.21 reveals that the desired faces are given as onF. In the actual implementation
the function SplitPolyhedron returns additionally these faces.

3.5 Implementation 41

SplitPolyhedron :: Plane Polyhedron -> (Polyhedron,Polyhedron)

SplitPolyhedron plane polyhedron=:(Polyhedron faces)

| IsEmpty insideF = (VoidPolyhedron,polyhedron)

| IsEmpty outsideF = (polyhedron,VoidPolyhedron)

= (inPolyhedron,outPolyhedron)

where

(insideF,outsideF,onF,intersectedF) = ClassifyWith plane faces

(inBits,outBits) = UnZipWith (SplitFace plane) intersectedF

newFace = Intersection plane polyhedron

inPolyhedron = Polyhedron [newFace:(inBits ++ insideF)]

outPolyhedron = Polyhedron [FlippedFace newFace:(outBits ++ outsideF)]

Figure 3.21. Splitting a polyhedron.

3.5.2 Inserting a CSG Object into a BSP tree

The heart of the b-rep algorithms introduced in this chapter is the insertion of a

CSG object into a BSP tree according to a set operation. Figure 3.8 gives as an
example the lazy union operation. A crucial part of the insertion operation is to

retain and classify the boundary information of the inserted CSG object. We explain
why it is necessary to retain and classify boundary information and show how this
is achieved in our implementation.

A CSG object inserted in a BSP tree is split with partitioning planes. In this

section we often consider only one of the resulting fragments and say the polyhedron
is clipped with the partitioning plane. Depending whether we choose the fragment
inside or outside the partitioning plane, clipping corresponds to the regularized

intersection with the inside or outside half-space, respectively.

To see the importance of retaining and classifying the boundary information of a
CSG object, insert it into a BSP tree. Once the CSG object reaches a cell, dependent

on the cell type and the set operation, the cell is partitioned with the boundary faces
of the object. This means the boundary faces completely inside the cell must be

known (see �gure 3.9). However, the remaining boundary information of the CSG

object must not be forgotten. This fact is illustrated in �gure 3.22, which shows a
polyhedron clipped with all partitioning planes de�ning a cell. In the �rst case (a)

the polyhedron encloses the cell and in the second case (b) it is disjoint from the cell.

However, in both cases all its boundary faces are clipped o�. If a polyhedron is only

represented by its boundary faces these two cases can not be di�erentiated. Hence

the result of a set operation between the object and the cell can not be determined.

The solution is to de�ne with each clipping operation a new boundary face lying

on the partitioning plane. These new boundary faces must be distinctive from the
original boundary faces since they are not used to partition a cell. Hence an object

with two types of boundary faces is required. The boundary faces of the clipped

42 Binary Space Partitioning and Boundary Representation

a)

b)

Cell

Polyhedron
Boundaries of polyhedron
after insertion in cell

Cell

Polyhedron
Boundaries of polyhedron
after insertion in cell

Figure 3.22. Inserting a polyhedron into a cell (without de�ning domain boundaries). In

(a) the polyhedron encloses the cell, in (b) it is disjoint from the cell. In both cases all its

boundary faces are clipped o� during insertion.

object which lie on the partitioning plane are called domain boundaries. The original
boundary faces are called object boundaries. Since a CSG object is composed from

convex polyhedra it is enough to change the data type for a polyhedron accordingly.
We call a polyhedron with the above two types of boundary faces a restricted

polyhedron, since it is restricted to a domain speci�ed by a set of partitioning planes.

The corresponding data structure is:

:: RPolyhedron = RPolyh [Face] [Face]

// RPolyh objectBoundaries domainBoundaries

With theorem A.8 the boundary of the inside fragment of a polyhedron P split
with a partitioning plane h is given as all boundary faces lying inside the correspond-

ing half-space Hin, the part of the partitioning plane h lying inside the polyhedron,
and those faces of the polyhedron lying on the partitioning plane h with the same

normal orientation as h. Figure 3.23 gives two examples how object and domain

boundaries are a�ected by this result.

It can be seen that the type of domain boundaries does not change by splitting.

However, �gure 3.23 (b) shows that an object boundary lying on the partitioning

plane becomes a domain boundary. The intersection of the partitioning plane with
the interior of the polyhedron (in part (a) of the �gure) is always a domain boundary.

These results are translated into an algorithm to split a restricted polyhedron shown

in �gure 3.24.

Similar to the algorithm for splitting a polyhedron (see �gure 3.21) we classify

�rst all boundary faces of a restricted polyhedron (i.e., object and domain bound-
aries). If there are no boundaries on the outside of the partitioning plane the whole

polyhedron lies inside of it. Boundary faces on the partitioning plane (onOB) become

3.5 Implementation 43

Hin

Polyhedron

Partitioning plane h

Polyhedron

Partitioning plane h

Hin

a)

b)

Object boundary

Domain boundary

Split polyhedron

Split polyhedron

inside
Fragment

outside
Fragment

inside
Fragment

Hout

Hout

Figure 3.23. Splitting a restricted polyhedron with a partitioning plane. The intersection

of the partitioning plane with the polyhedron forms a domain boundary for the resulting

fragments (a). If an object boundary of the polyhedron lies on the partitioning plane it

becomes a domain boundary (b).

domain boundaries (see �gure 3.23 (b) for an example). A similar case arises if there

are no boundary faces inside the partitioning plane.

In the remaining case the polyhedron is split on the partitioning plane. We

split all its boundary faces and form with them two new polyhedra. The object
boundaries of the polyhedron inside the partitioning plane are given by the object

boundaries insideOB completely inside the plane and the bits inBitsOB of the split
object boundaries. The same is valid for the domain boundaries. An additional
domain boundary newFace is formed from the intersection of the partitioning plane

with the polyhedron. The outside bit of the split polyhedron is de�ned in a similar
manner.

3.5.3 Surface Normals

Subsection 3.3.4 presented an algorithm to extract the boundary @A of an object

A from a BSP tree �lazy(A) augmented with a superset faces(�lazy(A)) of @A. The
algorithm assumed that all surface normals of boundary faces point to the outside

of the object. Here we explain briey how this is achieved.

The lazy BSP tree �lazy(A) is constructed with lazy set operations (see �gure 3.5).

This means that for example for the union of two objects A1 and A2 a superset

44 Binary Space Partitioning and Boundary Representation

SplitRPolyhedron :: Plane RPolyhedron -> (RPolyhedron,RPolyhedron)

SplitRPolyhedron plane rPolyhedron=:(RPolyhedron objBounds domBounds)

| IsEmpty (outsideOB ++ outsideDB) = (RPolyhedronOnInside,VoidRPolyhedron)

| IsEmpty (insideOB ++ insideDB) = (VoidRPolyhedron,RPolyhedronOnOutside)

= (inRPolyhedron,outRPolyhedron)

where

(insideOB,outsideOB,onOB,intersectedOB) = ClassifyWith plane objBounds

(insideDB,outsideDB,onDB,intersectedDB) = ClassifyWith plane domBounds

(inBitsOB,outBitsOB) = UnZipWith (SplitFace plane) intersectedOB

(inBitsDB,outBitsDB) = UnZipWith (SplitFace plane) intersectedDB

RPolyhedronOnInside = RPolyhedron insideOB (onOB ++ domBounds)

RPolyhedronOnOutside = RPolyhedron outsideOB (onOB ++ domBounds)

newFace = Intersection plane rPolyhedron

inRPolyhedron = RPolyhedron (insideOB ++ inBitsOB)

[newFace:(insideDB ++ inBitsDB)]

outRPolyhedron= RPolyhedron (outsideOB ++ outBitsOB)

[FlippedFace newFace:(outsideDB ++ outBitsDB)]

Figure 3.24. Splitting a restricted polyhedron.

faces(�lazy(A1[
?A2)) of its boundary @(A1[

?A2) is constructed as the union of the

supersets faces(�lazy(A1)) and @allA2 of the boundaries @A1 and @A2, respectively.
The following result applies:

Theorem 3.1 Let A1 and A2 be two polyhedral objects and f a face on the boundary

of A1[
?A2 with surface normal ~nf .

Then there is an i; i 2 1; 2, such that f is on the boundary of Ai and f has an

outward normal with respect to the object A1[
?A2, if and only if, it has an outward

normal with respect to the object Ai.

A similar result is valid for the regularized intersection of two sets. For the

regularized set di�erence A1n
?
A2 above result is valid if all faces on the boundary

of A2 are ipped.
Theorem 3.1 can be proven analytically for arbitrary sets with a 2-manifold

boundary (given for polyhedral objects). However, it is easier to illustrate it with a
simple example.

Example 3.6 Figure 3.25 (a) shows two CSG objects A1 and A2 and their boundary

faces with surface normals. In (b) their regularized union A1[
?A2 is pictured. All

boundary faces of the regularized union are boundary faces of either of the two

child objects. Their surface normals do not change. Figure 3.25 (c) shows the set

3.6 Complexity Analysis 45

a)
b) c)

A1 ∪∗ A2
A1

A2

A1 * A2

Figure 3.25. Two CSG objects with boundary faces and surface normals (a), their regu-

larized union (b) and their regularized set di�erence (c).

di�erence of the CSG objects A1 and A2 from (a). All boundary faces of the set

di�erence A1n
?
A2 belong to either A1 or A2. However, the normal orientation of the

boundary faces of A1n
?
A2 which belong to A2 is now reversed.

With the above theorem, and assuming that the surface normals of the primitive

objects of a CSG object A are outward normals, all normals of the CSG object itself
are outward normals as well.

We conclude with the following notes:

Note 1. For most algorithms it is computationally advantageous to know the ori-
entation of a face with respect to the partitioning plane it lies on (e.g., the function

BoundaryBSPTree in �gure 3.12). This is achieved by either providing each face with
a tag specifying its orientation or using two di�erent face lists for faces parallel or
anti-parallel to the partitioning plane.

Note 2. If di�erent boundary faces of a CSG object can have di�erent surface
properties, the boundary faces must be stored explicitly and retained during BSP

operations. The merged b-rep algorithm does not ful�ll this condition. Hence it is
only suited for objects with constant surface properties.

Note 3. The lazy set operations de�ne duplicate faces for common boundaries and

do not remove faces that after a set operation no longer belong to the boundary.
This is illustrated in �gure 3.26

3.6 Complexity Analysis

The previous sections introduced two b-rep algorithms for CSG objects. This section
estimates their expected running time. We derive formulas for the best and average

case running time of the lazy b-rep algorithm (�gure 3.5) and a lower bound for its

worst case running time. Since the merged b-rep algorithm (�gure 3.15) is essentially

46 Binary Space Partitioning and Boundary Representation

Figure 3.26. BSP tree faces generated by lazy union.

based on the lazyb-rep algorithm we expect for it a similar asymptotic behavior. We

denote with n the size of a CSG object, i.e., n gives the number of half-spaces (faces)

de�ning the polyhedral primitives of the CSG object. The size of a BSP tree is given

by the number m of partitioning planes of the BSP tree. Note that the number of

partitioning planes of a BSP tree is both proportional to the number of cells and
the total number of nodes of the tree.

Best Case Running Time

The best case running time for the lazy b-rep algorithm is given for a scene which

leads to a balanced BSP tree. Furthermore partitioning a CSG object must not
occur (since partitioning leads to fragmentation and increases complexity). We
assume here and in the following cases that all faces have constant complexity. The

splitting algorithm for a CSG object of size n tests all faces of the objects's primitives
against the partitioning plane (see section 3.5.1 on page 39). This takes �(n) time

irrespective of whether the object is split or not2.
The lazy set operations (see �gure 3.8 for the lazy union operation as an example)

between a BSP tree of size m and a CSG object of size n are computed by inserting

the CSG object into the BSP tree. The CSG object is split with the partitioning
plane of a BSP node and the resulting bits are recursively inserted into the subtrees.

Since we assume a balanced tree the subtrees are half the size of the original tree.

If an inserted CSG object reaches a cell we compute for the object a BSP tree

representation with the lazy BSP tree algorithm. The complexity of a lazy set

operation in the best case is hence given by the recurrence relation

Cbest
SetOp lazy(m;n) = Cbest

SetOp lazy(
m

2
; n) + n (3.7)

Cbest
SetOp lazy(1; n) = Cbest

BSPTree lazy(n)

which solves with theorem A.5 to

Cbest
SetOp lazy(m;n) = n log2m + Cbest

BSPTree lazy(n)

2In case the object is not split the running time of the splitting algorithm can be improved to
�(1) in most cases by de�ning a bounding box for each CSG object and testing the bounding box
against the partitioning plane.

3.6 Complexity Analysis 47

The lazy BSP tree algorithm (�gure 3.7) transforms a CSG object A = A1�
?A2

(� 2 f[;\; ng) into a BSP tree by transforming the CSG object A1 into a BSP tree

and inserting the CSG object A2 according to the set operation �. In the best case

A1 and A2 are equal-size and the complexity of the lazy BSP tree algorithm is given

by the recurrence relation

Cbest
BSPTree lazy(n) = Cbest

BSPTree lazy(
n

2
) + Cbest

SetOp lazy(
n

2
;
n

2
) (3.8)

Cbest
BSPTree lazy(1) = c

Inserting equation 3.7 into equation 3.8 yields

Cbest
BSPTree lazy(n) = 2Cbest

BSPTree lazy(
n

2
) +

n

2
log2(

n

2
)

which solves with theorem A.6 to

Cbest
BSPTree lazy(n) = �(n log2 n) (3.9)

A similar argument shows that using a splitting operation which needs �(1) time
to recognize that an object not intersected by the partitioning plane improves the

best case time complexity of the lazy BSP tree algorithm to �(n logn).
It remains to compute the complexity of the post-processing step for boundary

extraction. For the best case we assume that the number of faces stored in the aug-

mented BSP tree does not change. Also assume that all faces are equally distributed
on the partitioning planes. This means each partitioning plane is augmented with
�(1) faces.

In the best case a face inserted in a tree is not split. Since a tree of size m has a
height of logm the function InsertInCells (see �gure 3.13) needs �(n logm) time to

insert a list of n faces in a BSP tree of sizem. The function SingleSideExtractBoundary

with two given BSP trees of size m (a tree is balanced in the best case) and a face
list of size n has then the same time complexity.

The boundary extraction algorithm BoundaryBSPTree (�gure 3.12) calls the func-
tion SingleSideExtractBoundary two times with two BSP trees of half the original size
m and a list with a constant number of faces. The recurrence relation

Cbest
BoundaryBSPTree(m) = 2Cbest

BoundaryBSPTree(
m

2
) + 2 log(

m

2
)

Cbest
BoundaryBSPTree(1) = c

gives the best case time complexity of the boundary extraction algorithm and solves

with theorem A.6 to

Cbest
BoundaryBSPTree(m) = �(m) (3.10)

The lazy b-rep algorithm (�gure 3.5) is formed as the composition of the lazy BSP

tree algorithm and the boundary extraction algorithm. Adding the complexities of

equation 3.9 and equation 3.10 and noting that the size m of a BSP tree is equal

48 Binary Space Partitioning and Boundary Representation

to the size n of the corresponding CSG object (since no face splitting takes place)

gives for the lazy b-rep algorithm a best case time complexity of

Cbest
BRep lazy(n) = �(n log2 n) (3.11)

Worst Case Running Time

A tight upper bound for the worst case time complexity of the lazy b-rep algorithm

proves to be di�cult to �nd. However, a lower bound for the worst case time

and space complexity of any b-rep algorithm is constructed by considering three

orthogonal sets of n parallel at cuboids. Taking the symmetric di�erence3 of the

union of each of the three sets of parallel cuboids results in a checkerboard pattern

with cells alternately inside and outside the resulting object (see �gure 3.27). The

BSP tree for the resulting object has �(n3) faces and cells. Therefore a lower bound
for the worst case time and space complexity of the lazy b-rep algorithm is given by

(n3).

a) b)

IN cell with object boundaries

∪

∆

∪

Figure 3.27. A lower bound for the worst case time complexity of a b-rep algorithm is

given for the symmetric di�erence of 3 orthogonal sets of n at cuboids (a). The resulting

BSP tree has �(n3) faces and cells (b).

Average Case Running Time

For the average case analysis assume that whenever a CSG object is split it is divided

into equal-size parts. This means especially that the resulting BSP tree is balanced.

This assumption is motivated from binary search trees. Knuth [Knu73] shows that
the search of a binary search tree with N keys, inserted in a random order, will

3Note that for two sets A and B the symmetric di�erence is de�ned as A�B = A nB [B nA,
i.e., we can represent a symmetric di�erence with our model.

3.6 Complexity Analysis 49

require only about 2 lnN comparisons. Hence well-balanced trees are common and

degenerate trees are very rare.

First consider a lazy set operation between a BSP tree of size m and a CSG

object of size n. An example is given by the lazy union operation in �gure 3.8. To

perform a union operation a CSG object is split with the partitioning plane of the

BSP tree and the resulting parts are inserted into the child trees of the BSP tree.

Splitting a CSG object takes �(n) time. We suggest that in average the size of a

CSG object increases at each split by an ad hoc factor4 of 1 < < 2, i.e., the child

objects resulting from a splitting operation have an average size of n
2
. If a CSG

object reaches a cell, we assume it has a constant size. Then the time complexity of

a lazy set operation is described by the recurrence relation

C
avg
SetOp lazy(m;n) = 2Cavg

SetOp lazy(
m

2
;
n

2
) + n

C
avg
SetOp lazy(1; n) = c

which solves with theorem A.5 to

C
avg
SetOp lazy(m;n) = �(m + nmlog2)

The lazy BSP tree algorithm (�gure 3.7) transforms a CSG object A = A1�
?A2

(� 2 f[;\; ng) into a BSP tree by transforming the CSG object A1 into a BSP tree
and inserting the CSG object A2 according to the set operation �. In the average

case A1 and A2 are approximately equal-size and the complexity of the lazy BSP
tree algorithm is given by the recurrence relation

C
avg
BSPTree lazy(n) = C

avg
BSPTree lazy(

n

2
) + C

avg
SetOp lazy(

n

2
;
n

2
)

= C
avg
BSPTree lazy(

n

2
) +

�
n

2

�log2 +1
C

avg
BSPTree lazy(1) = c

which forms a geometric series and solves to

C
avg
BSPTree lazy(n) = �(nlog2 +1) (3.12)

It remains to compute the average time complexity of the post-processing step

for boundary extraction. We give here only an upper bound for the time complexity.
First note that the size of a CSG object inserted in a BSP tree increases by a factor

 in each step (we consider here the total size of all resulting fragments). If the
CSG object is inserted in a BSP tree of size m (and height log2m) the number of

faces of the CSG object increases therefore by a factor of log2m. Hence the lazy

BSP tree for a CSG object of size n is augmented with at most nlog2n faces. We

assume that most of the new faces de�ne partitioning planes if reaching a cell of the

4If an object is split the total number of faces of both parts is at least two greater than the
number of faces of the original object. Therefore we assume > 1. On the other hand usually not
all faces of an object are split and therefore < 2.

50 Binary Space Partitioning and Boundary Representation

BSP tree. Then the resulting BSP tree has a size of m = nlog2 +1 and, assuming the

faces are equally distributed over the tree, each partitioning plane is augmented with

a constant number of faces. We insert these faces with the function InsertInCell

into the BSP tree of size m. At each step the number of faces is again increased

by a factor of . The time complexity of the insertion step5 with n0 faces on each

partitioning plane is given by

C
avg
InsertInCell(m;n0) = 2Cavg

InsertInCell(
m

2
;
n0

2
) + n0

C
avg
InsertInTree(1) = c

which solves with theorem A.5 to

C
avg
InsertInTree(m;n0) = �(m + n0mlog2) (3.13)

Let n be the number of faces of the initial CSG object. The function SingleSideEx-

tractBoundary inserts for each partitioning plane of a BSP tree a constant number of
n0 = c faces in the IN tree and the resulting faces in the OUT tree. With a similar
argument as for the size of the BSP tree the number of faces increases by splitting

to at most n00 = nlog2 . Using equation 3.13 the average case time complexity of
the function SingleSideExtractBoundary for a BSP tree of size m and n0 = c inserted
faces is bounded to above by O(m + n00mlog2) = O(m). For the latter equality we

use the fact that the initial BSP tree has the size m = nlog2 +1 and that 1 < < 2
and therefore log22 < log2 < 1.

The boundary extraction step evaluates the function SingleSideExtractBoundary

twice for each node of a BSP tree and calls itself recursively for both subtrees of the
node. The recurrence relation

C
avg
BoundaryBSPTree(m) = 2Cavg

BoundaryBSPTree(
m

2
) +m

C
avg
BoundaryBSPTree(1) = c

gives an upper bound for the average case time complexity of the boundary extrac-

tion algorithm and solves with theorem A.2 to

C
avg
BoundaryBSPTree(m) = O(m log2m)

= O(nlog2 +1 log2 n) (3.14)

The lazy b-rep algorithm (�gure 3.5) is formed as the composition of the lazy BSP

tree algorithm and the boundary extraction algorithm. Combining equation 3.12 and

equation 3.14 gives

C
avg
BRep lazy(n) =
(nlog2 +1) (3.15)

5The given time complexity is again only an upper bound since it does not consider the case
where the insertion stops before a cell of the BSP tree is reached. This case occurs if the list of
inserted faces is empty.

3.7 Results 51

as a tight lower bound for the average time complexity of the lazy b-rep algorithm

and

C
avg
BRep lazy(n) = O(nlog2 +1 log2 n) (3.16)

as an upper bound for the average time complexity. Since the upper bound is

not tight and since the factor log2 n in the upper bound is small compared to the

polynomial factor we suggest �(nlog2 +1) as average time complexity of the lazy

b-rep algorithm.

3.7 Results

This section examines the performance of the lazy b-rep algorithms presented in this

chapter. The merged b-rep algorithm is with our implementation based on the lazy

b-rep algorithm and exhibits therefore a similar behavior. The main performance
measure is the running time. We give evidence that the asymptotic running time
is polynomial sub-quadratic as suggested in the complexity analysis in the previous

section. Additionally results of interest are the form and quality of the generated
BSP tree and of the boundary representation.

We implemented both algorithms in Clean 1.0. The following statistical results

were obtained on an Apple Macintosh Quadra 700 with 8 MByte heap space
and 1 MByte stack space.

The test data are the example scenes described in section 2.5. Recall that we

deal in this section only with unrounded polyhedral objects and we therefore refer
to the \n3 Blended Cubes" as \n3 Cubes". We examine results for these scenes
separately since their geometry is more regular than that of the complex scenes.

Lazy B-rep Algorithm

Table 3.1 summarizes the statistical results obtained with the lazy b-rep algorithm.
For each scene the algorithm generates a BSP tree. The table gives the number of

half-spaces in the scene and for the generated BSP tree both its height, and the
number boundary faces, IN cells, and OUT cells. It also shows the execution time
of the lazy b-rep algorithm.

An interesting problem is the dependence of the running time of the b-rep al-

gorithm on the size (number of half-spaces) of a scene. Figure 3.28 gives a scatter

chart with the execution time plotted over the number of half-spaces of the scene.

In the plot we use a double logarithmic scale because of the large size di�erences

of the scenes. This means a straight line with slope n corresponds to function of

the form f(n) = nk. Note that the plots for the \CSG Example" scene and the

\Variable Radius" scene fall on the same point. We omit the plot for the \Cube"

scene because it is a primitive object and hence not representative for a complex

scene.

52 Binary Space Partitioning and Boundary Representation

Complex Scenes #half- Height #boundary #IN #OUT texecution
spaces faces cells cells (in secs)

Cube 6 6 6 1 6 0.10

Cube In Cube 18 16 44 7 15 0.23

Stapler 47 13 109 19 52 0.81

CSG Example 72 13 118 24 37 0.58

Variable Radius 72 14 132 30 31 0.58

Hole Punch 203 32 460 92 161 4.18

Many Staplers 1128 30 3158 627 1193 30.53

Cube Scenes #half- Height #boundary #IN #OUT texecution
spaces faces cells cells (in secs)

1 Cube 6 6 6 1 6 0.10

8 Cubes 48 9 48 8 31 0.35

27 Cubes 162 15 162 27 42 1.31

64 Cubes 384 15 384 64 119 2.93

125 Cubes 750 21 750 125 202 7.35

216 Cubes 1296 27 1296 216 261 16.16

Table 3.1. BSP tree statistics for the lazy b-rep algorithm.

Execution time vs. number of half-spaces

Number of half-spaces

E
x
e
c
u
t
i
o
n

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

0.1

1

10

100

1 10 100 1000 10000

Complex scenes

Cube scenes

Figure 3.28. Execution time for the lazy b-rep algorithm vs. number of half-spaces in the

scene.

3.7 Results 53

For easier interpretation we insert for each data set a line with slope one ob-

tained by a least square �t. This line corresponds to a linear function. The plot

gives evidence that both data sets rise slightly faster than linear. According to the

complexity analysis in the previous section we try to �t a function of the form

C : #half-spaces! texecution

C(n) = �nk + �

with a least square �t to the plot. The best �tting curve, is the one with the smallest

average squared prediction error esq. An optimal solution is found for k = 1:1 as

the exponent of the complexity function. This suggests that the time complexity of

the lazy b-rep algorithm for complex scenes is �(n1:1). Comparing this result with

the time complexity �(nlog2 +1) obtained with the complexity analysis yields the

splitting factor = 1:07.

Another derivation of is obtained by extending the argument given for the

boundary extraction step of the average case analysis. This gives nf = 3 log2 n as
an upper bound for the number of faces in the BSP tree for a CSG object of size n.

Using this result computes (a lower bound for) the splitting factor = n
1=(3 log2 n)
f .

For the example scenes in table 3.1 the number of boundary faces nf in the �nal

BSP tree is given as \#boundary faces". The corresponding results for in the
example scenes are given in �gure 3.29.

Splitting Factor Gamma & Size of Scene

S
i
z
e

o
f

s
c
e
n
e

(
#
h
a
l
f
-
s
p
a
c
e
s
)

0

200

400

600

800

1000

1200

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

0.96

0.98

1

1.02

1.04

1.06

1.08

G
a
m
m
a Size of scene

Gamma

Figure 3.29. A lower bound for the splitting factor .

The �gure suggests that during execution of the lazy b-rep algorithm the total
size of a face increases by at least = 1:03 with each split. In other words, the

probability that a face is actually split with a partitioning plane seems to be at least
3%. The splitting factor does not seem to depend on the size of the scene.

For the cube scenes no splitting of faces occurs. We performed a least square �t

to the plot for the cube scenes in �gure 3.28. Both a function with complexity class

54 Binary Space Partitioning and Boundary Representation

�(n log2 n) and a function with asymptotic complexity �(n1:19) yielded a good least

square �t. Note that the former function corresponds to the result of our best case

analysis. The latter function suggests a wrong splitting factor = 1:14 (recall that

no face splitting occurs and hence must be one). Possible reasons for this result

are the regular (non-random) structure of the cube scenes and the evaluation order

of the CSG object (see next subsection). Also is possible to give an example where

the lazy b-rep algorithm has a time complexity of �(n2) even though no splitting of

faces occurs.

Boundary BSP Tree for Complex Scenes

Number of half-spaces

1

10

100

1000

10000

1 10 100 1000 10000

Height

#faces

#IN cells

#OUT cells

Boundary BSP Tree for Cube Scenes

Number of half-spaces

1

10

100

1000

10000

1 10 100 1000 10000

Height

#faces

#IN cells

#OUT cells

Figure 3.30. BSP tree statistics for the lazy b-rep algorithm.

Another interesting problem is the form and quality of the BSP tree produced

with the lazy b-rep algorithm. Figure 3.30 gives for each scene the height of the
generated BSP tree and the number of its boundary faces, IN cells, and OUT cells.

The x-axis is given by the size (number of half-spaces) of the scene. Note that we
use again a double logarithmic scale. The plot gives strong evidence that the height
of the BSP tree increases less than linearly, possibly logarithmically, in the size of

the scene. For the complex scenes the number of boundary faces, IN cells, and OUT
cells seems to increase slightly faster than linearly in the size of the scene. For the
cube scenes the behavior is linear, and the number of OUT cells grows less than

linearly.

Merged B-rep Algorithm

The results for the merged b-rep algorithm are similar to that for the lazy b-rep

algorithm. Since the merged b-rep algorithm makes rather ine�cient use of the lazy

b-rep algorithm we expect that it is at least by a constant factor slower. We found

this to be generally true, though for some scenes the merged b-rep algorithm proved
to be faster. This behavior can be explained by noticing that the algorithms evaluate

the CSG object in di�erent orders. The next subsection explains this phenomenon

in more detail.

3.7 Results 55

Order of Evaluation

The last results presented in this section concern the evaluation order of a CSG

object by a b-rep algorithm.

Many CSG objects are modeled as a union of a large number of component

objects. The b-rep algorithms introduced in this chapter �rst transform one of these

components into a BSP tree and then insert the other component objects. Clearly

the form of the BSP tree depends on the order of transformation and insertion, i.e.,

on the order of evaluation.

We give results only for the lazy b-rep algorithm and the \Hole Punch" scene.

This scene is a good example since it is modeled from components of di�erent scales.

A simpli�ed description of the \Hole Punch" scene is given in �gure 3.31.

The \Hole Punch" is built from four main components:

1. Base Two large convex polyhedra.

2. Top three large thin convex polyhedra.

3. Hinges Two large non convex polyhedra.

4. Metal Pins Several small polyhedra of di�erent shapes. Some constructed by
intersection and set di�erence operations.

The order in which the lazy b-rep algorithm evaluates these components inuences
the performance of the algorithm. Table 3.2 shows the statistics for the �nal bound-

ary BSP tree for di�erent evaluation orders of the components 1{4.

The symbol \1-4-2-3" gives the evaluation order of the components. In this
case the b-rep algorithm transforms the base �rst into a BSP tree and then inserts

the metal pins, the top, and the hinges in this order into the tree. Though 16
permutations are possible we give only 6 evaluation sequences containing the extreme
cases.

Evaluation Height #boundary #IN #OUT texecution
order faces cells cells (in s)

1-2-3-4 32 459 92 161 4.23

4-3-2-1 20 462 80 195 3.35

4-2-3-1 20 453 86 193 3.33

1-3-2-4 29 430 76 155 3.78

3-2-1-4 22 381 56 131 3.00

4-1-2-3 23 490 100 208 3.78

Table 3.2. BSP tree statistics for the \Hole Punch" scene with di�erent evaluation orders.

56 Binary Space Partitioning and Boundary Representation

Figure 3.31. Simpli�ed description of the Hole Punch scene.

3.8 Conclusion 57

The �rst table entry gives the tree for the evaluation order \1-2-3-4". This is

the order of the original scene de�nition. The evaluation starts with the big objects

�rst, from the bottom to the top. The small metal pins are inserted last. Though

this order seems intuitively e�cient, it results in the highest tree and the slowest

evaluation. The reversed order evaluates the smallest objects �rst and yields the

shallowest tree but the highest fragmentation. The fastest evaluation and lowest

fragmentation is given for the order \3-2-1-4". Since the variation of the data is

fairly small few conclusions can be drawn. However, we notice the tendencies that

inserting the smallest objects last leads to a small fragmentation but also a generally

slower evaluation. In above examples this is due to the fact that evaluating the big

objects �rst gives generally a high and unbalanced tree. If we evaluate the big objects

�rst and still can achieve a balanced tree (e.g., order \4-2-3-1") a fast execution is

likely. Starting with the smallest objects leads to high fragmentation but seems to

achieve in that way also a better balancing of the tree and hence a fast evaluation

of the algorithm.

3.8 Conclusion

This chapter presented two b-rep algorithms, which were used to compute the bound-

ary representation of a polyhedral CSG object. The algorithms compute a BSP tree
for the CSG object and augment it with a superset of its boundary. The object
boundary is then extracted in a post-processing step leaving a BSP tree augmented

with an explicit boundary representation of the CSG object.
As a by-product we developed set operations between two BSP trees and between

a BSP tree and a CSG object. The latter set operation is performed by inserting

the CSG object in the BSP tree and splitting it on its way down the tree with the
partitioning planes.

Both a complexity analysis and test results suggested a polynomial sub-quadratic
time complexity for the lazy b-rep algorithm which is dependent on the frequency
of the splitting operations. We tested several example scenes and detected that in

average the probability that a face is split on a partitioning plane is only about
3{7%. This resulted in a time complexity of about �(n1:1). Similar results are valid

for the number of faces of the resulting b-rep, i.e., for the space complexity of the
lazy b-rep algorithm. We showed, though, that in the worst case at least a cubic

time and space complexity must be expected.

As performance enhancing improvements we suggested to compute for each CSG
object and its child objects a bounding box. Then, if the CSG object is inserted into
a BSP tree, the existence of an intersection with a partitioning plane can be tested

in constant time. With a look ahead we mention another improvement suggested in

chapter 6. Here fragmentation of the BSP tree is reduced by inserting the bounding

box of a CSG object prior to the insertion of the object itself.

C H A P T E R 4

Polygonization of Implicit Surfaces

This chapter reviews popular polygonization methods for implicitly de�ned surfaces.
To get a basis for discussion we �rst introduce some notations. We then briey

review the literature before presenting and explaining four speci�c methods, which
demonstrate useful principles in more detail. We discover a common framework for
a general polygonization method for implicitly de�ned surfaces, which proves helpful

in the development of Triage Polygonization in chapter 5. A �nal section lists some
general quality criteria and reviews how the presented methods relate to them.

4.1 Notations & De�nitions

An implicit surface is given as all points x 2 IR3 such that �(x) = c for a function
� : IR3� > IR and a constant c 2 IR. The resulting surface is called a c iso-surface.

A polygonization method approximates an implicit surface with a mesh of polygons.
The following sections reveal that all polygonization methods reviewed by us take

data samples in the volume of interest and compute or approximate from them points

on the iso-surface which are connected to form a polygon mesh. To avoid confusion
we introduce here a set of notations that we use throughout the chapter. A data

sample is referred to as a voxel. A convex polyhedral region bounded by voxels is

called a computational cell, and voxels at the cell's corners are called vertices.

The iso-surface is implicitly speci�ed by an underlying scalar function of three

variables and a threshold value. For consistency with our polygonization problem in
chapter 2 we take 0:5 as the threshold value and call the underlying scalar function

� a density �eld. For simplicity we assume the function is continuous.

Generation of the iso-surface involves sampling of the density �eld and the de�ni-

tion of computational cells. For each cell determine whether the underlying function
takes on the threshold value within the cell, and if so, approximate where the iso-

surface lies. We shall call a vertex value high if its value is greater than or equal to

59

60 Polygonization of Implicit Surfaces

the threshold, and low if not.

An intersection point is the point at which the iso-surface is estimated to cross

the edge connecting two adjacent cell vertices that have di�erent classi�cation with

respect to the threshold. Such intersection points become vertices of one or more

topological polygons. These polygons specify the topology of the approximated sur-

face but are usually not planar.

If a face F has nF vertices v1 : : : vnF we de�ne its center as the facial average

centreF =

PnF
i=1 vi

nF

Analog we de�ne the center of a cell.

If a face F has mF intersection points p1 : : : pmF
of its edges with the iso-surface

we de�ne its centroid as the average of the intersection points

centroidF =

PmF
i=1 pi

mF

Analog we de�ne the centroid of a cell.

We use the word cell edge for an edge of a polyhedral cell, and polygon edge for
an edge of a polygonal approximation of the iso-surface.

4.2 Literature Review

Many published methods exist for �nding a polygonal approximation to an implicitly

de�ned surface. Though often written with a speci�c application in mind all methods
that we review here solve the polygonizing problem as de�ned by us.

The methods of Lorenson and Cline [LC87] and Wyvill et al. [WMW86b] involve

creating an array of cubes and evaluating the density �eld at each vertex. For
each cube that exhibits di�erently classi�ed vertices the method constructs a linear
approximation to the surface.

Lorenson and Cline polygonize each cell based on a precomputed table of 15

topologically distinct high-low patterns of cell vertices. This table lookup method
is devised for speed, at the occasional expense of a correct topology. In the original

implementation the authors did not recognize ambiguities. D�uurst [D�uu88] showed
that this could yield a discontinuity between cells.

Wyvill et al. [WMW86b] recognize ambiguities, and disambiguate by the fa-

cial average value; the vertices that agree with the central estimate are considered
connected.

Ambiguities can be resolved implicitly by decomposition into simplices. This

approach is taken by Koide et al. [KDK86] and Doi and Koide [DK91]. They de-
compose a cell into tetrahedra and interpolate linearly on each tetrahedral edge.

Bloomenthal [Blo88, BW90] extends this method to an adaptive subdivision based

on cubes.

4.2 Literature Review 61

Allgower and Gnutzman [AG87] give a more theoretical approach and yield error

bounds based on the mesh size.

Petersen, Piper and Worsey [PPW87] use a tetrahedral mesh in conjunction with

a Bernstein/Bezier representation. Hall and Warren [HW90] extend their method

using an adaptive subdivision technique which maintains a tetrahedral honeycomb

at all times.

Finally Gelder and Wilhelms [vGW94] give a thorough discussion of design-

objectives of iso-surface algorithms, iso-surface generation and solving of ambigui-

ties.

In the following subsections we present four selected algorithms in more detail.

First we choose the Marching Cube method because it is popular and fast. Its

implementation will serve as a benchmark for Triage Polygonization introduced in

chapter 5.

Next we analyze the Soft Object method from Wyvill et al. [WMW86b]. This

method is fast and eliminates the ambiguities of the Marching Cube method.

Hall's and Warren's algorithm [HW90] and Bloomenthal's method [Blo88] are
good examples for adaptive solutions. The former algorithm performs a tetrahedral

subdivision of space, whereas the latter one is interesting because it uses an octree
representation.

4.2.1 Marching Cubes: A High Resolution 3D Surface Con-

struction Algorithm

The Marching Cubes algorithm combines simplicity with high speed. Because of its
popularity we chose it as a benchmark program for Triage Polygonization. We �rst

describe the algorithm and then make a few comments about our own implementa-
tion.

The algorithm processes 3D data in scan-line order and builds a logical array of

cubes. Each cube is created from eight voxels; four each from two adjacent slices.
The algorithm determines how the surface intersects this cube, then moves to the
next cube.

The iso-surface intersection is determined by �rst classifying the density values in

the cube's vertices as high and low. Each edge with one high and one low vertex value
is assumed to intersect the iso-surface once. The intersection point is approximated

by linearly interpolating the density values in the vertices.

Since there are eight vertices in each cube and two values, high and low, there are

28 = 256 ways the surface can intersect the cube. Lorenson and Cline use symmetries

to reduce the number of patterns to 15 which are shown in �gure 4.11.

The algorithm can be summarized as

1The cases 12 and 15 are reective with respect to the xy-plane. This leaves 14 topologically
distinct patterns (22 without inversed patterns) [LVG80].

62 Polygonization of Implicit Surfaces

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4.1. Triangulated Cubes.

� Scan two adjacent slices and create a cube from any four neighbors on each

slice.

� Calculate an 8-bit index for the cube by classifying the eight density values at
the cube vertices with respect to the iso-surface density.

� Using the index, look up the list of edges forming triangles from a precalculated
table.

� Using the densities at each edge vertex linearly interpolate the iso-surface

intersection.

The main disadvantage of the algorithm is that some patterns in �gure 4.1

are topologically ambiguous as noted by van Gelder and Wilhelms [vGW94, pages
343 { 344]. This may produce a surface with a hole as pointed out by D�uurst

[D�uu88]. Van Gelder and Wilhelms [vGW94, page 340] cite Baker [Bak89] and

Kalvin [Kal91] for modi�cations that ensure continuity.

To simplify the algorithm in our implementation we only eliminate from the

original 256 patterns those with high and low vertices swapped. This leaves us a

table with 163 entries, where each pattern has at most four high values. Table 4.1

shows the number of remaining patterns.

We use the Marching Cubes algorithm to polygonize the surface of a quasi-con-

volutionally smoothed object. In our implementation we chose as cube size half the

4.2 Literature Review 63

Number of high vertices 0 1 2 3 4

Number of patterns 1 8 28 56 70

Table 4.1. Number of patterns with less than 5 high vertices.

rounding radius of the density object under consideration. This produces about the

same detail as our Triage Polygonization method presented in the next chapter. Note

that the rounding radius is the minimum resolution necessary to distinct between a

rounded and unrounded corner of 900 angle.

To polygonize a scene we �rst polygonize the density objects with the marching

cube algorithm. The polygonized objects and the primitive unrounded objects are

then transformed into BSP trees. The scene is formed by merging the BSP trees

according to the underlying set operations de�ned by the CSG object. Figure D.6

(b) gives as example a cube smoothed with varying rounding radii. More statistical

results for the Marching Cubes algorithm are given in subsection 7.5.1 for comparison
with Triage Polygonization.

4.2.2 Data Structure for Soft Objects

Wyvill, McPheeters and Wyvill report a polygonization method designed for soft
objects [WMW86b, WMW86a, WWM87, BW90] but which can be readily applied
to our problem.

The authors construct a polygon mesh in two distinct stages. In a �rst step they

partition the space occupied by the iso-surface with a three dimensional cubic grid.
To �nd the cubes intersected by the surface without scanning the whole the authors

start with a set of seed cubes, at least one for every disconnected component2.
Starting at the seed cubes, they track the surface by cell propagation. If a cube
is intersected by the iso-surface the process continuous for each cube neighboring

an intersected face. A hash table is used to prevent cells being revisited during
recursion.

In the second stage the authors only deal with cubes which are intersected by

the surface. They construct a local polygonal approximation to the iso-surface by

linearly interpolating the intersection points of the iso-surface with the edges of the
cube. The intersection points on a face are connected to polygon edges. Ambiguities

are resolved by considering the center point of a face. Figure 4.2 illustrates the seven

possible cases.

This calculation is consistent across adjacent cubes with shared edges. By trac-

ing the natural successors of each polygon edge the authors construct topological

polygons. Since the resulting topological polygons are in general not planar the

2This is easily achieved for the Soft Object data structure. For our problem a su�cient set of
seed cubes can be constructed from the primitive objects of the scene.

64 Polygonization of Implicit Surfaces

*

*

1 2 3 4 5

6 7

*

Vertex with low density value (low vertex)

Vertex with high density value (high vertex)

Intersection point

Polygon edge

*

*

*

*

*

* * *

*

*

*

*

Figure 4.2. Seven di�erent cases for connecting intersection points.

authors divide them into triangles by connecting each polygon vertex to the central
average of the topological polygon.

4.2.3 Adaptive Polygonization of Implicitly De�ned Surfaces

Hall and Warren [HW90] report an adaptive polygonization method that performs a

tetrahedral subdivision of space. The authors maintain a tetrahedral honeycomb of
space at all time. A polyhedral subdivision of space forms a honeycomb if every face

is shared by at most two polyhedra. Because the recursive subdivision of a single
tetrahedron might cause the honeycomb property to be lost, the method partially
subdivides the neighbors of that tetrahedron to maintain the property. The adaptive

subdivision algorithm decides independently for each tetrahedron in the honeycomb
whether it should be recursively subdivided. The algorithm defers processing of
tetrahedra not recursively subdivided until it has considered all tetrahedra. It then

makes a second pass through the list of unsubdivided tetrahedra. For each tetrahe-

dron, the algorithm checks each edge to see if it must be subdivided. The faces and

polyhedra are then split according to the number of subdivided edges of each face.

The subspace polygonization algorithm takes as input a set of tetrahedra that

forms a honeycomb for the volume of interest. For each edge the authors determine
the intersection points with the iso-surface by successive linear interpolation. The

resulting intersection points are connected by one or two triangles. To ensure con-

tinuity the authors compute the edge intersections once and store them into a hash

table.

4.2 Literature Review 65

4.2.4 Polygonization of Implicit Surfaces

Bloomenthal [Blo88] introduces a numerical technique to approximate an implicit

surface with a polygonal representation. The implicit function is adaptively sampled

as it is surrounded by a spatial partitioning. The partitioning is represented by an

octree, which may either converge to the surface or track it. A piecewise polygonal

representation is derived from the octree. Bloomenthal reports three steps:

� Spatial partitioning: Bloomenthal considers two methods for sampling the im-

plicit surface. The �rst method represents the implicit surface as an octree,

which is a hierarchical partitioning of space formed by subdivision of cubes,

beginning with a cube that bounds the surface. The octree converges to the

surface by subdivision of those cubes that intersect the surface. A disadvan-

tage is that small surface details may be missed by a large cube, resulting

in a premature termination in the subdivision of the cube. This drawback is

overcome by the second method which tracks the surface by cell propagation.

This is the same technique as used by Wyvill et al. (see subsection 4.2.2).

In both cases, the author evaluates the density function � at each of the cell's
vertices. Only those cells that intersect the surface are retained in the par-

titioning. Bloomenthal determines the intersection points of the cell's edges
with the iso-surface by root search. To ensure continuity between polygons
Bloomenthal refers to Wyvill's method of storing the intersection points in a

hash table. Alternatively he suggests keeping for each cell eight pointers to its
vertices. As new cells are created, they must point correctly to shared vertices.

� Adaptive re�nement of the octree: Bloomenthal improves the estimation of
the surface by subdividing those cubes containing elements of high curvature.

� Polygonization of the octree nodes: The �nal surface approximation is obtained

by polygonizing the octree nodes (�nal subdivision cells). For each cube to be
processed, the intersection points are ordered, forming a convex polygon whose
sides are each embedded in a cube face [WMW86b]; the process is local to each

cube. Bloomenthal introduces a simple algorithm, illustrated in �gure 4.3 to

perform the three-dimensional ordering of intersection points. The ordering

begins with any intersection point on the cube and proceeds towards the high

vertex and then clockwise about the face to the right until another intersection
point is reached.

The (topological) polygons resulting from this method are decomposed into tri-
angles. Note that the adaptive subdivision may destroy the honeycomb property of

the spatial partition. Bloomenthal ensures continuity between subspace polygons,

by tracking the edges of the topological polygon along the more highly divided face
(the light grey vertices in �gure 4.4). He resolves ambiguities by taking the central

average as additional sample.

66 Polygonization of Implicit Surfaces

*
*

*
*

*

*

1

2

3

4

5

Vertex with low density value (low vertex)

Vertex with high density value (high vertex)

Intersection point

Topological polygon

Direction of search

Figure 4.3. Algorithm to order vertices.

*

*

*

*

*
*

Intersection point of back cube

Interscetion point of (subdivided) front cube

Shared face

Polygon edge of back cube

Polygon edge of (subdivided) front cube

Figure 4.4. To guarantee continuity Bloomenthal forms polygon edges by always tracking

along the more highly divided face.

4.3 Analysis of Polygonization Algorithms 67

4.3 Analysis of Polygonization Algorithms

In this section we analyze the above presented methods and extract a common

framework. This will prove helpful for the development of an improved solution for

our polygonization problem.

Comparing reviewed polygonization methods it can be seen that they all involve

three aspects:

1. Polyhedral subdivision of space

2. Subspace polygonization (approximate iso-surface inside a cell)

3. Ensuring continuity

4.3.1 Space Subdivision

During subdivision of space most methods maintain a honeycomb, the 3D analog

of a tessellation. The honeycomb guarantees that linear functions de�ned over a
polyhedron form a continuous surface.

The simplest honeycomb used is an array of cubes. As noted by Bloomenthal
[Blo88] vertex locations and face planes are computed more simply if the cells are
identical and similarly oriented. In three dimensions, the only such cell that �lls

space is the cube. Also it enjoys a number of rotational symmetries, and divides into
eight similarly oriented cubes. Note though, that a honeycomb can be maintained
only by dividing all cubes of the array. An additional disadvantage is that the high

and low vertices of a cubic cell can not be separated by a single plane. This may
lead to ambiguities during the second stage of the corresponding polygonization

algorithm and may ultimately result in discontinuities for the polygonized surface
(see subsection 4.2.1).

In contrast, the vertices of a tetrahedron can always be separated by a single

plane, thereby avoiding ambiguities during the polygonization. Also a tetrahedron
can be subdivided into tetrahedra without subdividing its faces. This allows for a

local subdivision of a tetrahedral honeycomb. The topic of tetrahedral subdivision

for an adaptive polygonization is discussed in [HW90]. Tetrahedral subdivision in

n-space is commonly called Dirichlet tessellation. Bowyer [Bow81] gives an e�cient

solution. A comprehensive bibliography of Voronoi diagrams, the dual of Dirichlet

tessellation, and related structures is given by Aurenhammer [Aur91].
It is interesting that the existing literature never mentions the use of a space

subdivision with general polyhedra. General polyhedra have the advantage that

every polyhedral partition of space can easily be transformed in a honeycomb. The

transformation is done by subdividing each face that faces more than one polyhedral

face. After the subdivision of the face the resulting object is still a polyhedron, apart
from that it has several coplanar faces. Figure 4.5 gives an example.

68 Polygonization of Implicit Surfaces

Figure 4.5. Transforming a polyhedral subdivision into a honeycomb.

4.3.2 Subspace Polygonization

Two di�erent methods of subspace polygonization are used by the reviewed algo-

rithms. Lorenson and Cline use a binary classi�cation of the cells' vertex values to

index a precomputed table yielding a set of polygons for the cell. The polygon ver-

tices are given by the intersection points of the cell's edges with the iso-surface. The
other methods �rst precompute these intersection points and use them to determine
the iso-surface intersection with each face. By tracing the resulting edges topological

polygons are formed. In a �nal step these are divided into planar polygons.
The iso-surface intersections of the edges can be determined by interpolation or

by a root �nder. Linear interpolation has the advantage that it is symmetric, which
means neighboring cells, sharing the same edge, share the same intersection point.
Omitting this condition leads to discontinuities of the resulting surface approxima-

tion. However, we can always achieve the condition by computing each intersection
point only once and then referring to it by pointers or by a hash table.

4.3.3 Ensuring Continuity

The third aspect of a polygonization algorithm is to guarantee surface continuity.
We identify three aspects: Ensure continuity on shared edges, on shared faces and

inside a cell.
All reviewed algorithms proceed by ensuring the following su�cient conditions

in this sequence:

1. Cells that meet at a common edge share a common intersection point.

2. Cells that meet along a common face share common polygon edges.

3. The subspace polygonization inside a cell is continuous, i.e., every polygon

edge inside a cell is shared by a neighbored polygon.

The �rst condition can always be ful�lled (for a honeycomb) by computing the
edge intersections by linear interpolation (subsection 4.2.1). Another approach,

taken by the other three presented algorithms, is to precompute all edge intersections

once and use them for all cells sharing that edge.

4.3 Analysis of Polygonization Algorithms 69

Given condition one the second condition is trivially ful�lled for a tetrahedral

honeycomb (subsection 4.2.3). For a non-tetrahedral honeycomb there may be more

than two intersection points leading to ambiguities. Wyvill et al. (subsection 4.2.2)

solve the ambiguities explicitly by taking the facial average values (see �gure 4.2

case 6 and 7). Lorenson and Cline omitted that point in their original implementa-

tion which resulted in possible discontinuities.

Bloomenthal (subsection 4.2.4) o�ers a di�erent solution. His subdivision does

not have the honeycomb property. However, he knows that two faces facing each

other are either the same or one is the subdivision of the other. By always computing

the iso-surface intersection for the more highly divided face he gains continuity.

At this point all reviewed algorithms result in a set of contours lying on the

cell faces. Condition one guarantees that they form closed topological polygons.

Above algorithms conclude by dividing the topological polygons into planar polygons

(triangles), maintaining the third continuity condition.

The properties of the reviewed algorithms are summarized in table 4.2.

Lorenson & Cline Wyvill et al. Hall & Warren Bloomenthal

(subsection 4.2.1) (subsection 4.2.2) (subsection 4.2.3) (subsection 4.2.4)

Type of cells Cubes Cubes Tetrahedra Cubes

1 Honeycomb Yes Yes Yes No

Adaptive subdivision No No Yes Yes

Type of polygons Triangles Triangles Triangles Triangles

Ambiguities Yes No No No

2 Continuous surface No Yes Yes Yes

Computation of linear linear root search root search

intersection points interpolation interpolation (regula falsi)

Continuity at Interpolates Compute edge Compute edge Compute edge

shared edge edge intersection intersections intersections intersections

linearly only once only once only once

3 Continuity at (no continuity) Has honeycomb and Has tetrahedral Computes face
shared face resolves ambiguities honeycomb intersections

only once

Disambiguation (not resolved) facial average (no ambiguities) central average

Table 4.2. Comparison of the reviewed polygonization algorithms.

We conclude this section with a some remarks regarding adaptive subdivision.
Adaptive subdivision results from the desire to approximate the iso-surface both

accurately and e�ciently. This means the polygonization method must sample the
function closely. In the process the algorithm may sample heavily in areas where the

function is nearly linear. The solution is to sample adaptively, i.e., sampling more

closely near highly curved portions of the surface. This is achieved by recursively
subdividing the partition of space. Subdivision criteria are:

� terminate subdivision if polyhedron does not contain iso-surface

� terminate subdivision if iso-surface lies within some user-de�ned tolerance of
a linear approximation.

The �rst criterion terminates re�nement away from the iso-surface. The second

criterion produces an adaptive surface tessellation based on the curvature of the
iso-surface.

70 Polygonization of Implicit Surfaces

4.4 Quality Criteria

Quality criteria for polygonization algorithms are usually dependent on the applica-

tion. However, van Gelder and Wilhelms [vGW94] suggest a set of desirable features

of a general-purpose polygonization method. We will repeat them here because it

is interesting to see how our analyzed algorithms ful�ll them. Also the quality cri-

teria are relevant to the development of our polygonization algorithm. The quality

criteria from van Gelder and Wilhelms are:

1. The algorithm should yield a continuous surface. Each polygon edge should be

shared by exactly two polygons or lie in an external face of the entire volume.

2. The iso-surface should be a continuous function of the input data. A small

change in the threshold value or some data value should produce a small change

in the iso-surface.

3. The iso-surface should be topologically correct when the underlying function
is \smooth enough".

4. The iso-surface produced should be neutral with respect to positive and nega-

tive sample data values (relative to threshold). Multiplying the samples (and
threshold) by �1 should not alter the surface.

5. The algorithm should not create artifacts not implied by the data, such as
bums and holes.

6. The algorithm should be fast.

Table 4.3 shows which quality criteria the presented algorithms ful�ll.

Quality Lorenson & Cline Wyvill et al. Hall & Warren Bloomenthal
criteria (subsection 4.2.1) (subsection 4.2.2) (subsection 4.2.3) (subsection 4.2.4)

1. Continuous No Yes Yes Yes

surface

2. Continuity No Noa (unknown) No

3. Topologically Yes Yes Yes Yes

correctb

4. Neutral to Noc Yes (unknown)d

sample values

5. Free from No Yes Yes Yes

artifacts

6. Speed Van Gelder and Wilhelms [vGW94] (unknown) (unknown)

report similar speed

aTake an ambiguous case and change facial average value continuously from high to low.
bBut what is \smooth enough"?
cCase 12 in �gure 4.1.
dWith some extra e�ort this property can be achieved.

Table 4.3. Quality criteria of the reviewed polygonization algorithms.

C H A P T E R 5

Triage Polygonization

5.1 Introduction

This chapter presents Triage Polygonization a new polygonization method designed
for quasi-convolutionally smoothed objects. Triage Polygonization outperforms con-

ventional implicit surface polygonization methods by increased speed and reduced
fragmentation.

Quasi-convolutionally smoothed objects are constructed from CSG objects with
polyhedral primitives by approximating a convolution with a spherical �lter. A
smoothed object is then de�ned by the 0.5 iso-surface of a density �eld given as

an arithmetic tree. Triage Polygonization exploits the property that quasi-convolu-
tionally smoothed polyhedra usually have predominantly planar surfaces with only
edges and corners rounded.

The polygonization is de�ned in three steps. First the density �eld de�ning the
quasi-convolutionally smoothed object is partitioned in a BSP-like manner into low

and high cells (regions completely outside and inside the iso-surface, respectively).

Faces separating a low from a high cell are part of the iso-surface and hence of the

polygonal approximation. They are extracted in a second step. The tree de�ning

the partition of the density �eld is called density BSP tree (DBSP tree) and the
polygons separating low and high cells are called tree polygons.

Some cells can not be classi�ed, i.e., they have points lying both outside and

inside the iso-surface. The third and last step of Triage Polygonization performs

a subspace polygonization for these cells and approximates the iso-surface inside
them. The resulting polygons are called subspace polygons. Algorithm 5.1 gives a

high-level description of Triage Polygonization.

Triage Polygonization reects most of the concepts introduced in the previous

chapters. The next section summarizes therefore the key ideas and motivates from

them Triage Polygonization. We then describe in detail the three steps of the poly-

71

72 Triage Polygonization

Algorithm 5.1 (Triage Polygonization)

INPUT: Quasi-convolutionally smoothed object

(defined as iso-surface in a density field)

OUTPUT: List of faces (defined as convex polygons)

1. Polyhedral subdivision of the density field in a BSP-like manner.

Identify cells completely inside or outside the iso-surface and

cells (possibly) intersected by the iso-surface.

2. Extract polygons separating a cell inside the iso-surface

from a cell outside the iso-surface.

3. Perform a subspace polygonization for cells intersected

by the iso-surface.

gonization method. Some necessary re�nements are described next. We go on with
the introduction of a simpli�ed local description of a density �eld and use this to im-
prove the polygonization scheme. The chapter concludes with a summary of Triage

Polygonization.

5.2 Review & Motivation

In this section we summarize the key ideas from the previous chapters and motivate
from them Triage Polygonization.

This thesis introduced �rst quasi-convolutional smoothing, which approximates
convolutional smoothing. The primitive objects of a quasi-convolutionally smoothed

CSG object are polyhedra modeled as intersection of half-spaces. We assume that
quasi-convolutionally smoothed polyhedra usually have predominantly planar sur-
faces with only edges and corners rounded. Hence large areas of the object's surface

are identical to the surface of the unrounded object. These parts of the surface of

a quasi-convolutionally smoothed object are called unsmoothed or unrounded. Un-
smoothed areas of the object's surface are planar and form a subset of all boundary

faces of the object's primitive polyhedra. This fact can be recognized by reviewing
the b-rep algorithms introduced in chapter 3.

Chapter 3 introduced BSP trees and two b-rep algorithms to extract the bound-
ary of a CSG object. A b-rep algorithm transforms a CSG object into a BSP tree

by de�ning partitioning planes from the half-spaces of the CSG object's primitive

polyhedra. The b-rep of a CSG object is de�ned either implicitly as the faces sepa-
rating the IN and OUT cells of a BSP tree or explicitly by using an augmented BSP

tree with the boundary faces stored in the nodes of the tree.

5.2 Review & Motivation 73

Finally chapter 4 presented four general polygonization methods with three com-

mon aspects:

1. Polyhedral subdivision of space.

2. Subspace polygonization.

3. Ensuring continuity.

Before developing an improved polygonization method for quasi-convolutionally

smoothed objects it is useful to analyze why the conventional methods mentioned in

the literature review (section 4.2) are not optimal for our polygonization problem.

First note that conventional polygonization methods assume little or no infor-

mation about the function underlying the surface. They must produce a minimum

resolution grid to �nd essential details. This leads to heavy fragmentation of planar

surface areas. The e�ect can be reduced by using an adaptive method. However,
we discovered that quasi-convolutionally smoothed objects may have regions of ar-
bitrarily high curvature. Even with adaptive sampling the minimum resolution of

the polyhedral subdivision must be rather high.

If we can identify unsmoothed areas of the iso-surface and can determine regions

of curvature (and possibly estimate the curvature), we can expect to produce fewer
polygons and a better surface approximation.

Note that conventional polygonization methods only produce an approximation

to the implicitly de�ned surface. Chapter 3 introduced two b-rep algorithms to
extract the exact boundary of an unrounded CSG object. The unsmoothed part
of a quasi-convolutionally smoothed object is una�ected by the rounding operation

and hence, if extracted, approximates the 0.5 iso-surface in that area exactly.

Additionally we found that most curved surfaces of a quasi-convolutionally

smoothed object are extremely simple, i.e., either smoothed edges or corners of
polyhedra. Identifying these regions gives the possibility of directly computing an
optimal solution.

The goals in the design of Triage Polygonization hence are

1. Fast speed.

2. Minimize the number of produced polygons1.

3. Where possible polygonize the surface exactly.

Also keep the general quality criteria from section 4.4 on page 70 in mind.

1Minimizing the number of polygons becomes especially important if performing set operations
between rounded (and hence polygonized) objects. Note however, that this might di�er with the
application. For example Hall and Warren [HW90] report that for �nite element analysis a small
aspect ratio of the polygonal elements is more important than minimizing their number.

74 Triage Polygonization

5.3 Polyhedral Subdivision of Space

This section presents the �rst step of the Triage Polygonization algorithm. We

subdivide the density �eld de�ning the quasi-convolutionally smoothed object into

polyhedral cells and classify the resulting cells. Cells completely inside or outside

the 0.5 iso-surface, and cells intersected by the 0.5 iso-surface are identi�ed.

5.3.1 Introduction & Motivation

The previous chapter introduced BSP trees as a useful concept to extract the sur-

face of an unsmoothed CSG object. This suggests using a BSP-like partition as a

polyhedral subdivision of the density �eld de�ning a quasi-convolutionally smooth-

ed object. Instead of classifying the cells of the partition into IN and OUT cells,

we classify them as inside, outside, or intersected by the iso-surface. To facilitate

discussion we de�ne:

De�nition 5.1 A density value smaller than 0.5 is called \low", a density value

greater than or equal to 0.5 is called \high". A subset S of the density �eld with all

its points having a low (high) density value is called a \low (high) region". Similarly

a region of constant density zero or one is called a \zero region" or \one region",

respectively. A region which can not be classi�ed as one of the above classes is called

\unclassi�ed". The expressions \zero", \low", \unclassi�ed", \high", and \one"

represent \density classes".

Note that the surface of a quasi-convolutionally smoothed object (the 0.5 iso-

surface in the corresponding density �eld) is for all natural objects de�ned as those
points separating low from high regions. This yields the lemma:

Lemma 5.1 The surface of a quasi-convolutionally smoothed object separates low

and high regions. A partitioning of the density �eld into low and high regions de�nes

implicitly the surface of the quasi-convolutionally smoothed object.

Hence an approximation to the correct partition of the density �eld into low and

high regions de�nes an approximation to the surface of the quasi-convolutionally

smoothed object. To implement this idea recall the de�nition of a quasi-convolu-

tionally smoothed object:
Let Obj be a CSG object with polyhedral primitives (de�ned as intersections of

half-spaces). De�ne a density �eld �Obj which is one for all points on or inside the

object and zero for all points outside the object. Then

Obj = fp 2 IR3 j �Obj(p) = 1g

A quasi-convolutionally smoothed object is de�ned by smoothing the density

�eld �Obj of the unsmoothed polyhedral CSG object with a spherical �lter of ra-

dius r. The new density �eld �rObj : IR3 ! IR is given as an arithmetic tree by

5.3 Polyhedral Subdivision of Space 75

convolutionally smoothing the half-spaces of Obj and replacing the set operations

union, intersection, and set di�erence by the arithmetic operations addition, multi-

plication, and subtraction (see de�nition 2.5). The surface of a quasi-convolutionally

smoothed object is de�ned as all points p 2 IR3 with �rObj(p) = 0:5.

To facilitate the following discussion we introduce a few additional notations.

De�nition 5.2 The plane de�ning a half-space is called a \half-space plane" (hs-

plane). If the half-space is rounded by a spherical �lter of radius r we call the

hs-plane orthogonally displaced to the inside by the radius r the \r-inner half-space

plane" (r-ihs-plane) and denote it by h�r. Similarly we call the hs-plane orthogonally

displaced to the outside by r the \r-outer half-space plane" (r-ohs-plane) and denote

it by hr.

}
}r

r

zero

low

high

one

h-r

hr

h

H1

Figure 5.1. A quasi-convolutionally smoothed half-space partitions the euclidean space

into four regions.

Figure 5.1 shows that the density �eld �rH partitions IR3 into four parts. Outside

the r-ohs-plane hr the density �eld is constant zero. Similarly inside h�r the density
�eld is constant one. Between the two planes are a low region and a high region

separated by the half-space plane h. Note that all points on h�r have a density
value of one, all points on hr have a density value of zero, and all points on h have

a density value of 0.5.

Figure 5.2 shows the density �eld of two half-spaces combined with a set opera-
tion. The two intersecting half-spaces H1 and H2 are smoothed with rounding radii

r1 and r2, respectively
2.

2For better illustration of the method we have chosen two di�erent rounding radii for the half-
spaces. Note though that with the original de�nition the CSG object is smoothed with a constant
rounding radius. This restriction is relaxed in section 6.6.

76 Triage Polygonization

}
}

}
}

r1

r1

r2
r2

h1

h1,-r1

h1,r1

h2

h2,r2

R1
R2

R3

p1
p2

h2,-r2

H1

H2

Figure 5.2. Intersection of two half-spaces.

According to equation 2.9 the resulting density �eld is the product of the density

�elds of the half-spaces. As example consider the points p1 and p2. The density
value in p1 is computed as

�H1\H2
(p1) = �r1H1

(p1) � �
r2
H2
(p1) = 0:5 � 1 = 0:5

since p1 lies both on the planes h1 and h2;�r2. Similarly

�H1\H2
(p2) = �r1H1

(p2) � �
r2
H2
(p2) = 1 � 0:5 = 0:5

since p2 lies both on the planes h2 and h1;�r1.

5.3.2 Density Classi�cation

The previous section showed how to classify any point of a density �eld. Similarly a

whole region of the density �eld is classi�ed. Consider again �gure 5.2. The planes

h1 and h2 and the corresponding inner and outer half-space planes partition the IR3

into 16 regions. By using interval arithmetic [Duf92, Sny92] it is possible to compute
the density values for a whole region of the density �eld. As example take region R1

bounded by the planes h1, h1;r1, h2, and h2;�r2.

Since R1 is bounded by the planes h1 and h1;r1 the contribution of the density

�eld of Hr1
1 to this region varies between zero and 0:5. We express this as

�r1H1
(R1) = (0:0; 0:5)

5.3 Polyhedral Subdivision of Space 77

Similarly, since R1 is bounded by h2 and h2;�r2 , we have

�r2H2
(R1) = (0:5; 1:0)

and obtain

�H1\H2
(R1) = �r1H1

(R1) �[] �
r2
H2
(R1) = (0:0; 0:5) �[] (0:5; 1:0) = (0:0; 0:5)

where �[] is the multiplication operator for two intervals. Hence all density values in

the region R1 lie in the (open) interval (0:0; 0:5). The same computation yields for

the region R2

�H1\H2
(R2) = �r1H1

(R2) �[] �
r2
H2
(R2) = (0:0; 0:5) �[] (0:0; 0:5) = (0:0; 0:25) (5.1)

and for the region R3

�H1\H2
(R3) = �r1H1

(R3) �[] �
r2
H2
(R3) = (0:5; 1:0) �[] (0:5; 1:0) = (0:25; 1:0)

The intervals of density values for both R1 and R2 have only values smaller then
0:5. Hence both these regions lie outside the 0.5 iso-surface. However, the interval
of density values for R3 contains the value 0:5. This result and similar computations

for the other regions reveal that R3 is the only region in �gure 5.2 that may contain
the 0:5 iso-surface. Indeed, as indicated by the bold line the iso-surface intersects

only R3. The remaining parts of the iso-surface lie on the planes h1 and h2.
In section 2.3 we assumed that the density �eld of a quasi-convolutionally

smoothed object has values only between zero and one. This fact can be used to

de�ne special operators op[0;1]; (op 2 f+;�; �; =g) for interval arithmetic restricting
the result to the [0:0; 1:0] interval.

I1op[0;1]I2 = (I1op[]I2) \[] [0; 1]; (op 2 f+;�; �; =g)

An empty interval as result of the interval operation op[0;1] indicates that the
result of the unrestricted interval operation lies outside the [0:0; 1:0] interval and

hence shows that a modeling error exists.

Example 5.1 Consider the set di�erence of two regions R1 and R2 with density

values �(R1) = (0:0; 0:5) and �(R2) = (0:5; 1:0). We want to compute the density

�eld �(R1 n R2) = �(R1) � �(R2). With the restricted interval operation the result
is an empty interval.

(0:0; 0:5)�[0;1] (0:5; 1:0) = []

Using the non-restricted interval operator yields

(0:0; 0:5)�[] (0:5; 1:0) = (�1:0; 0:0)

That means all values in the resulting density �eld are negative in contradiction to

the assumption that the density values lie between zero and one.

78 Triage Polygonization

Note that the restricted interval operator only detects an error in a density �eld

if all density values of a region are outside the [0:0; 1:0] interval.

The above computations can be simpli�ed by replacing intervals with density

classes. Analog to the de�nition of a point value denote with low any subinterval of

the half-open interval [0:0; 0:5) and with high any subinterval of the closed interval

[0:5; 1:0]. All other intervals are called unclassi�ed. An unclassi�ed interval is a

subinterval of [0:0; 1:0]. For computational e�ciency we introduce a zero interval

[0:0; 0:0] and a one interval [1:0; 1:0].

�[0;1] [0.0,0.0] [0.0,0.5) [0.0,1.0] [0.5,1.0] [1.0,1.0]

[0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0]

[0.0,0.5) [0.0,0.0] [0.0,0.25) [0.0,0.5) [0.0,0.5) [0.0,0.5)

[0.0,1.0] [0.0,0.0] [0.0,0.5) [0.0,1.0] [0.0,1.0] [0.0,1.0]

[0.5,1.0] [0.0,0.0] [0.0,0.5) [0.0,1.0] [0.25,1.0] [0.5,1.0]

[1.0,1.0] [0.0,0.0] [0.0,0.5) [0.0,1.0] [0.5,1.0] [1.0,1.0]

Table 5.1. Multiplication of intervals.

Table 5.1 shows the results of interval multiplication for zero, low, unclassi�ed,
high, and one intervals. Replacing the intervals with the density classes zero, low,

high, one, and unclassi�ed yields table 5.2.

� zero low unclassi�ed high one

zero zero zero zero zero zero

low zero low low low low

unclassi�ed zero low unclassi�ed unclassi�ed unclassi�ed

high zero low unclassi�ed unclassi�ed high

one zero low unclassi�ed high one

Table 5.2. Multiplication of density classes.

Note that by replacing the intervals with density classes information is lost. As

example consider again the computation for region R2 (equation 5.1):

�H1\H2
(R2) = �H1

(R2) � �H1
(R2) = low � low = low

Instead of the exact answer (0.0,0.25) the result is only classi�ed as a low interval,

i.e., a subinterval of [0:0; 0:5). Initial tests, however, showed that this information

loss makes little di�erence for the �nal result, the detection of low, high, and un-

classi�ed regions. This justi�es using this simple and fast approach.
Similarly we can de�ne tables for addition and subtraction (table 5.3 and 5.4).

Prohibited results (empty intervals) are marked with a dash. Additionally we assume

that the 0.5 iso-surface is a zero set in IR3, i.e., it is indeed a surface and not a volume.

5.3 Polyhedral Subdivision of Space 79

The table results are then correct with respect to a set of Lebesgue measure zero.

The only a�ected result is the subtraction of a high density class from a high density

class, which with a standard equality would be unclassi�ed, but now is a low density

class.

+ zero low unclassi�ed high one

zero zero low unclassi�ed high one

low low unclassi�ed unclassi�ed high one

unclassi�ed unclassi�ed unclassi�ed unclassi�ed high one

high high high high one -

one one one one - -

Table 5.3. Addition of density classes.

� zero low unclassi�ed high one

zero zero zero zero - -

low low low low - -

unclassi�ed unclassi�ed unclassi�ed unclassi�ed low zero

high high unclassi�ed unclassi�ed low zero

one one high unclassi�ed low zero

Table 5.4. Subtraction of density classes.

Figure 5.3 shows the complete classi�cation for our example partition. Note that

all faces separating low and high regions are part of the 0.5 iso-surface.

We have shown now how to classify density values in any region of the density
�eld. The next subsection presents a polyhedral subdivision of the density �eld.

5.3.3 Polyhedral Subdivision

A polyhedral subdivision suitable for the polygonization process must identify pla-

nar and curved regions of the surface. Figure 5.1 gave an example how such a
subdivision is achieved for the quasi-convolutionally smoothed intersection of two
half-spaces. The process can be generalized for an arbitrary quasi-convolutionally

smoothed object.

To do this we introduce �rst a BSP-like data structure to partition and classify

a density �eld into density classes. The data structure is called a density BSP tree

(DBSP tree) and is de�ned as follows:

80 Triage Polygonization

zero

low

high

one

un-

class-

 ifi
ed

zero

low

high

zero

low

low

zero

zero

zero

zero

low

Figure 5.3. Partitioning and classi�cation of the density �eld of two intersecting half-

spaces.

De�nition 5.3 DBSP tree

A DBSP tree ��(A) for an object A, quasi-convolutionally smoothed with a spherical

�lter of radius r and de�ned by a density �eld �rA, is recursively de�ned as

��(A) = (h; ��(Ah;in); ��(Ah;out))

j zero j low j unclassified j high j one

where

h is a hs-plane, r-ihs-plane, or r-ohs-plane of A,

Ah;in and Ah;out is the part of object A lying inside and outside

the partitioning plane h, respectively,

��(Ah;in) and ��(Ah;out) are DBSP trees inside and outside of h, respectively,

zero, low, unclassified, high, and one are the density classes of the cells

in the density �eld �rA.

The polyhedral subdivision algorithm transforms the density �eld of a quasi-

convolutionally smoothed CSG object into a DBSP tree. Chapter 3 introduced two

algorithms to transform a CSG object into a BSP tree. One of them was the lazy
BSP-tree algorithm. It builds a BSP tree by inserting the CSG object step by step

into an initially empty BSP tree.

5.3 Polyhedral Subdivision of Space 81

DCSG Objects

To de�ne a similar algorithm for DBSP trees, �rst convert a quasi-convolution-

ally smoothed CSG object into a CSG-like structure. This is done by replacing the

primitive objects of the unrounded object by convex polyhedral cells classifying their

density �elds. Since the density �eld of the primitive objects is zero except for a

bounded region we identify only cells with a density class di�erent from zero. The

resulting object is called a density CSG object (DCSG object). The data types for

a DCSG object and a DBSP tree are summarized in �gure 5.4.

:: DCSGObject = DUnion DCSGObject DCSGObject

| DIntersection DCSGObject DCSGObject

| DSetDifference DCSGObject DCSGObject

| DPrimitive Polyhedron DensityClass

:: DBSPTree = DBSPNode Plane DBSPTree DBSPTree | DBSPLeaf DensityClass

:: DensityClass = Zero | Low | Unclassified | High | One

Figure 5.4. Data types of a DCSG object and a DBSP tree.

Example 5.2 Figure 5.5 (a) shows a quasi-convolutionally smoothed object. The

object is given as a rounded set di�erence of two cuboids and is pictured in (b).
Both cubic primitives de�ne a density �eld. The DCSG object in (c) is de�ned by

partitioning and classifying the density �elds of the cuboids.

To de�ne the partition recall that a primitive object P is modeled as an in-
tersection of half-spaces. Let the object be quasi-convolutionally smoothed with a
spherical �lter of radius r. Then its density �eld �rP is the product of the density

�elds of the smoothed half-spaces. Hence �rP is zero outside any r-ohs-plane (a half-
space plane displaced orthogonally outwards by the rounding radius r). The region

inside all r-ohs-planes is partitioned with all hs-planes and r-ihs-planes. The density

class of the resulting cells is determined by classifying them against each half-space
and repeatedly applying the multiplication operator for density classes de�ned by

table 5.2.

The algorithm to transform a quasi-convolutionally smoothed CSG object into a

DCSG object is most easily formulated in functional code and is given in �gure 5.6.

The polyhedron enclosing the non-zero density �eld is called outerPolyhedron. It

lies inside all r-ohs-planes. The outerPolyhedron is partitioned with all hs-planes and

r-ihs-planes. The resulting cells are classi�ed by the function ClassifiedCell, which

computes the density class of the center of the cell with respect to the density �eld
of each smoothed half-space. The partition guarantees that the density class of the

centre is the density class of the entire cell.

82 Triage Polygonization

a)

rounded object

cell {
one

high

unclassified

low

zero

half-space plane

r-outer half-space plane

r-inner half-space plane

rounded(r)

set difference

DSetDifferenceb) c)

DUnion

DUnion

Figure 5.5. A quasi-convolutionally smoothed object (a) is de�ned by a CSG object (b).

The CSG object is transformed into a DCSG object (c) by partitioning and classifying the

density �elds of the primitive objects.

The density �eld of the cell is the product of the density �elds of the half-spaces.
Hence its density class is the product of the density classes of the parts of the half-
spaces intersected by the cell. The product of the density classes is computed with

table 5.2.

Example 5.3 The partitioning of a primitive object is described in �gure 5.7. Part
(a) shows a quasi-convolutionally smoothed primitive object and the corresponding

unrounded object. The density �eld of the primitive object is partitioned with the

object's hs-planes, r-ihs-panes, and r-ohs-planes (b). The resulting cells with non-

zero density class are given in (c).

Building a DBSP Tree

It remains to transform the DCSG object into a DBSP tree. As in the lazy b-rep

algorithm (in �gure 3.5) we start with an initially empty DBSP tree and insert

the child objects of the DCSG object according to the involved set operation. A
primitive polyhedron is again transformed into a linear tree. The cell representing

the polyhedron in the linear tree is classi�ed with the density class of the polyhedron

5.3 Polyhedral Subdivision of Space 83

CSG2DCSG :: Real CSGObject -> DCSGObject

CSG2DCSG r (Union obj1 obj2)

= DUnion (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (SetDifference obj1 obj2)

= DSetDifference (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (Intersection obj1 obj2)

= DIntersection (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (Primitive (Intersection hs Planes)) = DUnion classifiedCells

where

r ohs Planes = map (Translation r) hs Planes

r ihs Planes = map (Translation (-r)) hs Planes

outerPolyhedron = MakePolyhedron r ohs Planes

polyhedra = PartitionWith outerPolyhedron (hs planes ++ r ihs Planes)

classifiedCells = map (ClassifiedCell r hs Planes) polyhedra

ClassifiedCell :: Real [Plane] Polyhedron -> DCSGObject

ClassifiedCell r planes polyhedron = DPrimitive polyhedron densityClass

where

DensityField plane = DensityFieldOfHalfSpace r plane

densities = map ((Density (Centre polyhedron)) o DensityField) plane

densityClass = foldl * One (map DensityClass densities)

Figure 5.6. Transforming a quasi-convolutionally smoothed CSG object into a DCSG

object.

a)

rounded object

cell {
one

high

unclassified

low

zero

b)

half-space plane

r-outer half-space plane

r-inner half-space plane

c)

Figure 5.7. Partitioning of the density �eld of a quasi-convolutionally smoothed primitive

object into cells with non-zero density class.

84 Triage Polygonization

and the other cells of the linear DBSP tree are classi�ed as zero. Figure 5.8 presents

the algorithm. Note the similarity to the lazy b-rep algorithm.

DCSG2DBSP :: DCSGObject -> DBSPTree

DCSG2DBSP (DUnion obj1 obj2) = UnionDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DIntersection obj1 obj2) = IntDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DSetDifference obj1 obj2) = SetDifDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DPrimitive (Polyhedron faces) densityClass)

= LinearDBSPTree densityClass faces

LinearDBSPTree :: DensityClass [Face] -> DBSPTree

LinearDBSPTree densityClass [face:faces]

= DBSPNode (PlaneOf face) (LinearDBSPTree densityClass faces) (DBSPLeaf Zero)

LinearDBSPTree densityClass [] = DBSPLeaf densityClass

Figure 5.8. Transforming a DCSG object into a DBSP tree.

As an example for a set operation between a DBSP tree and a DCSG object
consider the union operation. The algorithm is again similar to the union opera-

tion between a BSP tree and a CSG object (see �gure 3.8). The only di�erence
occurs if partitioning a polyhedral cell of a DBSP tree with a DCSG object. If the
cell's density class is one then it does not change by the union operation (use the

assumption that the density values are bounded by one). If the cell's density class
is zero partition the cell with the DCSG object and form a DBSP tree (using the

function DCSG2DBSP). The same is done if the cell's density class is neither one nor
zero. However, in this case the density classes of the resulting subtree are given
as the sum of the density class of the partitioned cell and the density class of the

corresponding region of the DCSG object. The function AddDensity forms the sum
by adding the density class of the partitioned cell, according to table 5.3, to all cells

of the new subtree.

5.3.4 Tree Polygons

A DBSP tree partitions the density �eld of a quasi-convolutionally smoothed object
into cells with density classes zero, low, unclassi�ed, high, and one. Lemma 5.1

yields that faces between low and high cells form part of the surface of the quasi-
convolutionally smoothed object (the 0.5 iso-surface). They are therefore part of

the polygonized surface and can be extracted already at this stage. Note that the

density �eld of a quasi-convolutionally smoothed object is continuous and therefore
no part of the 0.5 iso-surface neighbors a zero or a one cell.

Section 3.3.4 introduced the function BoundaryBSPTree to extract faces, which

separate IN and OUT cells, from a BSP tree (see �gure 3.12). A similar algorithm

5.3 Polyhedral Subdivision of Space 85

UnionDBSP DCSG :: DBSPTree DCSGObject -> DBSPTree

UnionDBSP DCSG (DBSPNode plane inTree outTree) dcsgObj

= DBSPNode plane newInTree newOutTree

where

newInTree = UnionDBSP DCSG inTree inDCSG

newOutTree = UnionDBSP DCSG outTree outDCSG

(inDCSG,outDCSG) = SplitDCSGObj plane dcsgObj

UnionDBSP DCSG (DBSPLeaf densityClass) dcsgObj

| densityClass == Zero = DCSG2DBSP dcsgObj

| densityClass == One = DBSPLeaf One

= AddDensity densityClass (DCSG2DBSP dcsgObj)

AddDensity :: DensityClass DBSPTree -> DBSPTree

AddDensity densityClass (DBSPNode plane inTree outTree)

= DBSPNode plane (AddDensity densityClass inTree)

(AddDensity densityClass outTree)

AddDensity densityClass1 (DBSPLeaf densityClass2)

= DBSPLeaf (densityClass1 + densityClass2)

Figure 5.9. Union between a DBSP tree and a DCSG object.

applies to DBSP trees to extract faces separating low from high cells. The resulting

faces are called tree polygons and the algorithm to extract them is given in �gure 5.10.
Since faces are polygons the return value of the function is a list of polygons.

The algorithm TreePolygons di�ers from the algorithm BoundaryBSPTree in �g-
ure 3.12 in that way that it has a third argument, which is a polyhedron (bounding-
Box) bounding the non-zero density �eld. The intersection of the bounding box with

a partitioning plane forms a candidate face for the parts of the object surface lying
on the plane. This is necessary because in contrary to a BSP tree a DBSP tree is not
augmented with a set of candidate faces. The de�nition of a DBSP tree guarantees

that all unsmoothed parts of the object's surface lie on a partitioning plane3.
For each DBSP node the candidate face (newFace) is pushed down the IN and

OUT tree to �nd the parts of it facing a high cell on the inside and a low cell on
the outside. The resulting polygons then have an outward surface normal. The

procees is executed by the function SingleSideTreePolygons. To �nd the polygons

on the iso-surface with opposite orientation to the partitioning plane the process is
repeated with newFace ipped.

After �nding the tree polygons of a DBSP node the algorithm is called recursively
for the subtrees of the node until a cell is reached.

3We even know that the unsmoothed part of the object surface must lie on a partitioning plane,
which is a half-space plane of the original CSG object, and not a r-ihs-plane or a r-ohs-plane.
However, for simplicity we do not make this di�erence between partitioning planes.

86 Triage Polygonization

TreePolygons :: DBSPTree Polyhedron -> [Face]

TreePolygons (DBSPNode plane inTree outTree) boundingBox

= polysOnPlane ++ polysInTree ++ polysOutTree

where

(inPolyh,outPolyh) = SplitPolyhedron plane boundingBox

newFace = Intersection boundingBox plane

sameFaces = SingleSideTreePolygons inTree outTree newFace

oppositeFaces = SingleSideTreePolygons outTree inTree (FlippedFace newFace)

polysOnPlane = sameFaces ++ oppositeFaces

polysInTree = TreePolygons inTree inPolyh

polysOutTree = TreePolygons outTree outPolyh

TreePolygons (DBSPLeaf) = []

SingleSideTreePolygons :: DBSPTree DBSPTree Face -> [Face]

SingleSideTreePolygons insideTree outsideTree face = treePolygons

where

facesInLowCells = InsertInDCells Low insideTree [face]

// Face fragments which lie in Low cell of insideTree

treePolygons = InsertInDCells High outsideTree facesInLowCells

// Face fragments whic lie in High cell of outsideTree

Figure 5.10. Extracting tree polygons from a DBSP tree.

The function InsertInDCells inserts a list of faces into a DBSP tree and returns
the fragments of the faces landing in a cell with the speci�ed density class. It works
analogously to the function InsertInCells (�gure 3.13) used for BSP trees.

5.4 Subspace Polygonization

The surface of a quasi-convolutionally smoothed object is de�ned as the 0.5 iso-

surface of a density �eld. The previous section introduced a polyhedral subdivision

of the density �eld. The subdivision identi�es cells inside and outside the iso-surface
and extracts the sections of the object surface separating them. The remaining parts

of the object surface lie inside unclassi�ed cells. These cells can not be classi�ed as
lying outside or inside the iso-surface and might be intersected by it. This section

presents an algorithm to polygonize the 0.5 iso-surface inside unclassi�ed cells.

5.4 Subspace Polygonization 87

InsertInDCells :: DensityClass DBSPTree [Face] -> [Face]

InsertInDCells [] = [] // no face reaches this (sub)tree

InsertInDCells wantedClass (DBSPLeaf densityClass) faces

| densityClass == wantedClass = faces

= []

InsertInDCells wantedClass (DBSPNode plane inTree outTree) faces

= faceFragmentsInside ++ faceFragmentsOutside

where

(facesInside,facesOutside) = UnZipWith (SplitFace plane) faces

faceFragementsInside = InsertInDCells wantedClass inTree facesInside

faceFragmentsOutside = InsertInDCells wantedClass outTree facesOutside

Figure 5.11. Inserting a set of faces into a DBSP tree and returning the fragments which

reach a cell of the speci�ed density class.

5.4.1 Motivation & De�nitions

Chapter 4 suggested as a promising approach for a subspace polygonization to ap-

proximate the iso-surface in steps of increasing dimension: �rst compute points on
the iso-surface, then connect the points to form edges, and connect the edges to
form polygons.

A set of points on the iso-surface is formed by computing for every face of an
unclassi�ed cell the intersection points of its edges with the 0.5 iso-surface. The
intersection points of the edges of a face can be connected to form a new set of

edges, called polygon edges. The polygon edges approximate the 0.5 iso-surface
intersection with the face. Connecting the polygon edges to a topological polygon

yields an approximation to the 0.5 iso-surface intersection with the cell.
These steps represent already a subspace polygonization. The quality of the

polygonization is improved by re�ning the polygon edges and the topological poly-

gons. In particular a non-planar topological polygon must be subdivided into planar

polygons. Some notations are useful for the following discussion:

De�nition 5.4 A face in a DBSP tree which separates two unclassi�ed cells is \fully

unclassi�ed". If it separates an unclassi�ed cell and a low or high cell it is \simple

unclassi�ed". In all other cases the iso-surface does not intersect the face and it is

a \classi�ed" face.

A face is a polygon de�ned by \face vertices". A \face edge" connects two face

vertices. We will determine \intersection points" of the face edges with the 0.5

iso-surface. The intersection points are also called \polygon vertices". Polygon ver-

tices are connected to form \polygon edges", which are connected to form topological

polygons.

The face vertices are given in anti-clockwise order. A polygon vertex lying between

88 Triage Polygonization

a high and a low face vertex forms a \high-low transition" and a polygon vertex

between a low and a high face vertex forms a \low-high transition".

With these notations algorithm 5.2 gives a high-level description for the subspace

polygonization.

Algorithm 5.2 (Subspace Polygonization)

INPUT: A density BSP tree (DBSP tree)

OUTPUT: List of convex polygons

for each unclassified cell C do begin

1. for each face F of cell C do begin

fApproximate the intersection of F with the 0.5 iso-surfaceg

for each edge E of face F do

Compute the 0.5 iso-surface intersection of edge E

1.1. Connect intersection points to polygon edges

1.2. Refine polygon edges

end ffor loopg

2. Connect polygon edges to form topological polygons

3. Refine topological polygons and form planar polygons

end ffor loopg

a) b) c) d)

0.5 iso-surface

Point on 0.5 iso-surface

Polygon edge

Cell

Figure 5.12. The subspace polygonization is performed in three steps. First approximate

the 0.5 iso-surface intersection with a face by computing the iso-surface intersections with

the edges (a) and connecting them to polygon edges (b). Polygon edges are re�ned and

connected to form topological polygons (c). Finally the topological polygons are re�ned and

subdivided into planar polygons.

5.4 Subspace Polygonization 89

Example 5.4 The basic steps of the subspace polygonization for a single unclassi-

�ed cell are described in �gure 5.12. The picture shows an unclassi�ed cell and the

part of the 0.5 iso-surface intersecting it.

The intersection points of the cell's edges with the 0.5 iso-surface are given in (a)

as dots. Part (b) shows the polygon edges connecting two intersection points of a

face. The polygon edges are re�ned in (c). Note that the polygon edges approximate

the iso-surface intersection with a face.

Connecting the polygon edges forms a topological polygon. The topological

polygon is re�ned and subdivided into planar polygons in (d) by connecting all

polygon vertices to a new point on the 0.5 iso-surface, which is near to the centroid

of the topological polygon.

The following subsections describe the subspace polygonization in more detail.

Especially we want to achieve two goals:

1. Continuity of the polygonization.

2. Constructing a closed topological polygon.

A discussion of these aspects is presented in section 6.5. At this stage we use these

goals only to motivate our solution. The next subsection presents an approach to
guarantee continuity by precomputing the polygon edges.

5.4.2 Precomputing Polygon Edges

A necessary condition for a continuous polygonization is continuity at common faces
of cells. This means cells that meet at a common face must have the same polygon

edges approximating the 0.5 iso-surface intersection with the face. This is most easily
achieved by computing polygon edges only once for a face and using them for the
subspace polygonization of both cells sharing the face. This subsection introduces

an algorithm to precompute polygon edges for all faces of unclassi�ed cells.
First note that two adjacent cells do not necessarily have a common face. This

situation is shown in �gure 5.13 (a). However, (b) illustrates that faces can be

subdivided until each face is common to exactly two cells.

The �rst step in the precomputation of all polygon edges is to generate a set

of faces each of which is common to exactly two cells. For these faces approximate

their 0.5 iso-surface intersection by polygon edges.

A simple continuity argument yields that faces of a zero or one cell can not

intersect the 0.5 iso-surface4. They do not de�ne polygon edges. The set of candidate
faces for a 0.5 iso-surface intersection is hence restricted to faces separating a low

or high cell from an unclassi�ed cell (simple unclassi�ed faces) and faces separating
two unclassi�ed cells (fully unclassi�ed faces).

4An exception arises from the application of clipping planes (see section 6.6.1).

90 Triage Polygonization

Cell

a) b)

Face

Figure 5.13. Adjacent cells do not always have common faces (a). Common faces are

obtained by subdivision (b).

The algorithm to precompute polygon edges �rst extracts faces common to a

high or low cell and at least one unclassi�ed cell5. It then approximates the 0.5

iso-surface intersection with a face by polygon edges. Because the polygon edges

are part of the subspace polygonization of an unclassi�ed cell they are stored in the

unclassi�ed cells sharing the corresponding face.

PrecomputePolygonEdges :: DBSPTree DensityField Polyhedron -> DBSPTree

PrecomputePolygonEdges (DBSPNode plane inTree outTree) densityField boundingBox

= DBSPNode plane newInTree newOutTree

where

(inBox,outBox) = SplitPolyhedron plane boundingBox

newFace = Intersection boundingBox plane

polygonEdges = flatten [PolygonEdgesOnFace densityField face \\

face <- UnclassifiedFaces inTree outTree newFace]

revPolygonEdges = map ReverseEdge polygonEdges

inTree` = PrecomputePolygonEdges inTree densityField inBox

outTree` = PrecomputePolygonEdges outTree densityField outBox

newInTree = StoreEdgesInUnclassifiedCell inTree` polygoneEdges

newOutTree = StoreEdgesInUnclassifiedCell outTree` revPolygoneEdges

PrecomputePolygonEdges leaf=:(DBSPLeaf densityClass)

| densityClass == Unclassified = DBSPLeaf (Edges []) densityClass

= DBSPLeaf NoEdges densityClass

Figure 5.14. Precomputing polygon edges.

The algorithm is given in functional code in �gure 5.14. Input to the algorithm

is a DBSP tree and a bounding box given as a polyhedron. The bounding box

only serves to create a candidate face newFace from which all unclassi�ed faces on

5In that respect the function PrecomputePolygonEdges is similar to the function TreePolygons

in �gure 5.10, which extracts faces separating low from high cells. In fact, the algorithms can be
combined and the results are obtained with only one traversal of the tree.

5.4 Subspace Polygonization 91

the partitioning plane are derived6. The unclassi�ed faces are determined by the

function UnclassifiedFaces, which works similar to the function SingleSideTreePoly-

gons in �gure 5.10 except that it returns face fragments (unclassi�ed faces) common

to at least one unclassi�ed cells. For each unclassi�ed face the function PolygonEdges

returns the polygon edges approximating the 0.5 iso-surface intersection with the

face. The function PrecomputePolygonEdges is then called recursively for both subtrees

of the DBSP node.

The unclassi�ed faces are constructed such that a polygon edge lies on a face

shared by exactly two cells. The cell inside and outside the corresponding face lies

in the IN tree and OUT tree, respectively. A face is a boundary face of the cell on

its inside (since then the normal of the face points outside the cell).

Since polygon edges have an orientation (as explained on page 94 �.) an edge

is stored only in the cell on its inside. For the cell on its outside the reversed edge

is taken. To store the edges in unclassi�ed cells the data structure for a DBSP leaf

must be extended by a list of edges. The new data structure for a DBSP tree is

shown in �gure 5.15.

:: DBSPTree = DBSPNode Plane DBSPTree DBSPTree

| DBSPLeaf PolygonEdges DensityClass

:: PolygonEdges = Edges [Edge] | NoEdges

Figure 5.15. New data structure for a DBSP tree with leafs extended by a list of edges.

The middle point of each edge is then inserted in the subtree in which we want

to store the edge. Every unclassi�ed cell having a middle point on its boundary at
the end of the insertion process is augmented with the corresponding edge.

It remains to compute the polygon edges approximating the 0.5 iso-surface in-
tersection with a face. We consider simple unclassi�ed faces and fully unclassi�ed
faces separately.

Polygon Edges for Simple Unclassi�ed Faces

A continuity argument yields that a simple unclassi�ed face can only be touched
by the 0.5 iso-surface. The iso-surface intersection with the face is either a point,

an edge, or the face itself. If the intersection is a single point the face does not
contain a polygon edge and can be discarded. If the intersection is an edge, the

edge itself de�nes a polygon edge. In the case that the whole face lies on the 0.5

iso-surface all its edges lie on the iso-surface as well, and hence are polygon edges.
For a simple unclassi�ed face the polygon edges are therefore the face edges lying

on the 0.5 iso-surface7.
6The same principle applied to the function InsertCandidateFaces in �gure 3.17.
7Numerical problems and the emerging of some special cases demanded an alternative solution.

The solution is to test for an iso-surface intersection with a displaced iso-surface of value 0:5 + �

92 Triage Polygonization

Polygon Edges for Fully Unclassi�ed Faces

In contrast to the above case a fully unclassi�ed face can be intersected anywhere by

the 0.5 iso-surface. An approximation to the iso-surface intersection with the face is

obtained by computing the iso-surface intersection with the face edges and connect-

ing the intersection points. Since the density �eld � is continuous, an intersection

point exists for a given edge if the density values at the edge vertices are on di�erent

sides of the 0.5 threshold. The intersection points are computed with a root �nder

(see section 6.3).

If there are exactly two intersection points they are connected to form an edge

approximating the iso-surface intersection with the face. For more than two inter-

section points their connection is ambiguous.

To resolve ambiguities observe that only neighbored intersection points can be-

long to an iso-surface intersection (otherwise the iso-surface is self-intersecting or

folded). It must be determined which pair of neighbored intersection points are
connected. To do this, subdivide a face by connecting each intersection point to the
centroid of the face as shown in �gure 5.16.

Intersection Point

Centroid

Sector

Vertex
}

low density value

on 0.5 iso-surface

high density value

Figure 5.16. Divide a face into sections by connecting each intersection point to the

centroid of the face.

Each pair of neighbored intersection points forms a sector with the centroid.
Since an intersection point lies between a low and a high vertex all face vertices of a

sector have the same density class. Observe that the iso-surface, if it intersects the

sector, seperates face vertices and the centroid into di�erent density classes. Hence a
test for an iso-surface intersection is made by determining the density classes of the

centroid and one of the face vertices of the sector. If they have the same density class
the sector is not intersected by the iso-surface. Otherwise the intersection points

(we chose � = 0:001). If an iso-surface intersection with the 0:5 + � iso-surface exists the real
0:5 iso-surface intersection is computed. The computation is then similar to the case with a fully
unclassi�ed face described in the next chapter. Implementation details for this technique are given
in section 6.7.

5.4 Subspace Polygonization 93

de�ning the sector belong to an iso-surface intersection with the face and we connect

them to form a polygon edge.

Example 5.5 As example consider �gure 5.17. The �gure shows a face intersected

by di�erent iso-surfaces in four intersection points. In (a) and (b) the centroid is

of low and high density, respectively. The algorithm produces di�erent polygon

edges and correctly approximates the iso-surface represented as thin curved line.

Part (c) of the �gure shows the same example as in (b) but with a strongly curved

iso-surface. The centroid is now of low density class and the algorithm produces

erroneous polygon edges.

a) b)

Intersection Point

Centroid

Sector

Vertex

low density value

on 0.5 iso-surface

high density value

Polygon edge

}

0.5 iso-surface

c)

Figure 5.17. A polygon edge separates low and high density values. If the centroid has a

low density value, the polygon edges separate the high vertices from the centroid and hence

approximate the iso-surface (a). If the centroid has a high density value the polygon edges

separate it from the low vertices (b). For a strongly curved iso-surface the approximation

can be wrong (c).

Above example illustrates that our method to connect intersection points might
still produce wrong polygon edges. However, this can only occur if the 0.5 iso-surface

intersections with the face are near together, i.e., if the 0.5 iso-surface is strongly

curved or uctuating. Since the surface of a quasi-convolutionally smoothed object is

94 Triage Polygonization

intrinsicly \smooth" this is unlikely8 and we can expect to compute correct polygon

edges.

The quality of the approximation of a polygon edge is improved by re�ning the

polygon edge to a polyline. The re�nement process is described in section 5.5. For

simplicity we continue with the description of the subspace polygonization algorithm

only with unre�ned polygon edges.

Orientation of Polygon Edges

A polygon edge is given an orientation by demanding that an edge always points

from a low-high transition to a high-low transition. The reason for this is that all

points inside the iso-surface have high density values. Every polygon built with

polygon edges oriented as above has the high vertices of a cell on its inside, and has

therefore an outward surface normal.

Now recall that a fully unclassi�ed face is shared by two cells. The face is then a

boundary face (i.e., with an outward normal) of only one of the cells sharing it. The
fully unclassi�ed face must be ipped in order to be a boundary face of the other
unclassi�ed cell sharing it. A boundary face is ipped by reversing its vertices. This

is the reason why the algorithm PrecomputePolygonEdges in �gure 5.14 inserts the
reversed polygon edges in the OUT tree of the corresponding node.

5.4.3 Forming Topological Polygons

The second step of Triage Polygonization connects the precomputed polygon edges

of an unclassi�ed cell to form topological polygons. Recall that the polygon edges
have an orientation. An algorithm to form topological polygons is given by starting
with an arbitrary edge and searching for an edge with a start point identical to

the end point of the previous edge. This process is repeated until the topological
polygon is closed. Figure 5.18 gives the algorithm in functional code.

The function MakeTopologicalPolygons takes into account that the subspace poly-
gonization can produce several topological polygons. MakeTopologicalPolygons takes
as input a list of edges and returns a list of topological polygons. A topological poly-

gon is generated by the function MakeTPolygon. The function connects edges from the

list of polygon edges to form a polygon and returns the new polygon and the list of

edges not used to form the new polygon. MakeTPolygon is repeatedly called until the
list of edges is empty.

MakeTPolygon takes as arguments a partial (not closed) polygon de�ned as a poly-

line, the start point of the polyline, and a list of edges. The polyline is given as

8A counterexample, though, is constructed by taking the rounded union of two objects, say
cubes. Dependent on the distance of the components the rounded object has either one or two
components. Then there exists a �xed distance at which the rounded union of the two cubes is
just a single connected object. Varying the distance of the cubes around that threshold may result
in a polygonization with erroneous polygon edges.

5.4 Subspace Polygonization 95

MakeTopologicalPolygons :: [Edge] -> [Polygon]

MakeTopologicalPolygons edges = [newPoly:MakeTopologicalPolygons restEdges]

where

(p1,p2) = hd Edges

(reversedPolyPoints,restEdges) = MakeTPolygon p1 [p2,p1] (tl edges)

newPolygon = reverse reversedPolyPoints

MakeTopologicalPolygons [] = []

MakeTPolygon :: Point [Point] [Edge] -> [Edge]

MakeTPolygon startPoint polyline edges

| startPoint == nextPoint = (polyline,edges)

= MakeTPolygon startPoint [nextPoint:polyline] restEdges

where

(nextPoint,restEdges) = FindNextPoint (hd polyline) [] edges

FindNextPoint :: Point [Edge] [Edge] -> (Point,[Edge])

FindNextPoint p [] = abort "Cannot close topological polygon"

FindNextPoint p notUsedEdges [(p1,p2):edges]

| p == p1 = (p2,notUsedEdges ++ edges)

= FindNextPoint p [(p1,p2):notUsedEdges] edges

Figure 5.18. Algorithm to form topological polygons for subspace polygonization.

a point list in reversed order, i.e., the �rst point is the end point of the polyline
and the last point is the start point of the polyline. The polyline is point by point

extended until it forms a closed polygon. At the initial call of MakeTPolygon in Make-

TopologicalPolygons the polyline consists only of the two points of a single egde.
The polyline is extended if the edge list contains an edge with a start point equal

to the end point of the polyline. In this case the edge is removed from the edge
list and the polyline is extended by the end point of the edge. The new point and

the list of remaining edges are given by the function FindNextPoint. The function

MakeTPolygon is recursively called with the extended polyline and the list of remaining

edges. If the end point of the new edge equals the start point of the polyline the

polyline de�nes a closed topological polygon and the recursion stops. The new

polygon and the remaining edges are returned.
The function FindNextPoint takes a point, a list of edges already examined but

not used to extend the polyline, and a list of new edges. It then �nds in the list of

new edges an edge with a start point equal to the inputted point (the current end

point of the polyline). The end point of the found edge and the list of unused edges

(i.e., the examined edges and the remaining new edge) are returned.
We conclude this subsection with a few notes:

96 Triage Polygonization

Note 1. The algorithm might produce degenerate polygons (polygons with an area

of zero). Such a polygon is generated if the iso-surface intersects the cell only in

a single edge or vertex of the cell. Degenerate polygons are eliminated in a post-

processing step

Note 2. It can not be guaranteed that the algorithm always produces closed topo-

logical polygons (see also section 6.5). However, this was the case in all scenes we

tested.

Note 3. Since no two polygon edges intersect each other, the topological polygons

do not intersect either.

Note 4. In general the so formed topological polygons are not planar.

5.4.4 Triangulation of a Topological Polygon

The last step of the subspace polygonization divides each topological polygon into

planar polygons. This is achieved by connecting each pair of neighbored polygon
vertices to the centroid of the topological polygon and thus triangulating the topo-

logical polygon.
The polygonal approximation of the iso-surface is improved by \moving" the

centroid towards the iso-surface. This means, that the centroid is replaced by a

point on the iso-surface near to it (if such a point can be found). The new point
on the iso-surface is called \adjusted centroid" and is given as the 0.5 iso-surface
intersection of a linear search space de�ned by the centroid and its density gradient.

If an iso-surface intersection is found the topological polygon is triangulated by
connecting its vertices to the adjusted centroid, otherwise the original centroid is

used.
Two restrictions apply to the intersection point. First it must lie inside the cell

subject to the subspace polygonization. Secondly, if the cell contains more than

two topological polygons the triangulated topological polygons must not intersect
each other. Both restrictions are achieved by restricting the linear search space to a

conical section of the cell. The conical section is de�ned by connecting the centroid
of the cell to the vertices of the topological polygon.

In all of our test scenes we never produced two topological polygons within the

same cell. Therefore we do not describe the triangulation algorithm for topological

polygons in detail but refer instead to the re�nement of polygon edges described in
section 5.5. The re�nement of polygon edges can be understood as a 2-dimensional

version of the problem of triangulating (re�ning) a topological polygon and is hence
both easier to illustrate and to understand.

The �nal result for the triangulation of a topological polygon is illustrated by

�gure 5.12 (d). Algorithm 5.3 gives a high level description of the corresponding
algorithm.

5.4 Subspace Polygonization 97

Algorithm 5.3 (Algorithm to Triangulate a Topological Polygon)

INPUT: Unclassified cell C with density field � and

n topological polygons Pi, i = 1; : : : ; n, given as

point lists [pi;1; : : : ; pi;mi
]

OUTPUT: Set of triangles Ti;j , i = 1; : : : ; n, j = 1; : : : ; mi

(given as point lists)

pcell centroid :=

Pn

i=1

Pmi
j=1

pi;jPn

i=1
mi

for i := 1 to n do ffor each topological polygon dog

begin

pcentroid := 1
mi

Pmi
j=1 pi;j

vsearch := r�(pcentroid) fgradient of density fieldg

Ssearch := fx j x := pcentroid + tvsearch; t 2 IRg

fdefine a linear search spaceg

Ssearch := Ssearch \ C frestrict search space to cell Cg

if n > 1 then fmore than one topological polygong

begin

Define conical section Csection from cell C by connecting

pcell centroid to pi;1; : : : ; pi;mi

Ssearch := Ssearch \ Csection frestrict search space to Csectiong

end

let sstart and send be the end points of the search space Ssearch
if : equal density class(sstart,send) then

begin fiso-surface intersection existsg

Compute the 0.5 iso-surface intersection pint with Ssearch
pcentroid := pint fnew centroid is on iso-surface g

end

for j := 1 to mi do Ti;j := [pi;j; pi;(j+1) mod mi
; pcentroid]

ftriangulated topological polygong

end ffor loopg

98 Triage Polygonization

5.4.5 Summary

This section presented the subspace polygonization used in Triage Polygonization.

Input is a polyhedral subdivision of a density �eld identifying low, high, and unclas-

si�ed cells. Only unclassi�ed cells can be intersected by the 0.5 iso-surface and hence

only they yield subspace polygons. The three steps of the subspace polygonization

are summarized in �gure 5.19.

SubspacePolygonization :: DBSPTree DensityField Polyhedron -> DBSPTree

SubspacePolygonization dbspTree densityField boundingBox = subspacePolygons

where

dbspTreeWithEdges = PrecomputePolygonEdges dbspTree densityField boundingBox

subspacePolygons = TraverseTree dbspTreeWithEdges

TraverseTree :: DBSPTree -> [Polygon]

TraverseTree (DBSPNode plane inDBSPTree outDBSPTree)

= (TraverseTree inDBSPTree) ++ (TraverseTree outDBSPTree)

TraverseTree dbspLeaf=:(DBSPLeaf) = SubspacePolygonsOfCell dbspLeaf

SubspacePolygonsOfCell :: DBSPTree -> [Polygon]

SubspacePolygonsOfCell (DBSPLeaf edges densityClass)

| densityClass != Unclassified = []

= polygons

where

topologicalPolygons = MakeTopologicalPolygons edges

polygons = TriangulateTopologicalPolygons topologicalPolygons

Figure 5.19. Subspace polygonization.

In a �rst step the function PrecomputePolygonEdges approximates the 0.5 iso-
surface intersections with the faces of unclassi�ed cells by polygon edges. The
polygon edges are stored in the corresponding unclassi�ed cells of the DBSP tree.

The tree is traversed and for all unclassi�ed cells subspace polygons are formed.

The subspace polygons are obtained by triangulating and re�ning the topological
polygons resulting from connecting the precomputed polygon edges. The function

TriangulateTopologicalPolygons implements the algorithm 5.3.
The quality of the subspace polygonization is improved by re�ning the precom-

puted polygon edges. The corresponding algorithm is explained in the next section.

Section 5.6 shows that the density �eld inside a cell can be simpli�ed. The simpli�ed
density �eld is exploited in section 5.7 to yield an improved subspace polygonization.

5.5 Re�nement of Face Intersections 99

5.5 Re�nement of Face Intersections

The previous section concluded the description of the subspace polygonization. How-

ever, a polygonization obtained with the subspace polygonization in its current form

is rather rough. This is mainly due to the fact that the intersection of the iso-surface

with a face of a cell is only approximated by one edge. Replacing the edge with a

polyline improves the approximation.

The de�nition of the polyhedral subdivision suggests that in most cases an un-

classi�ed cell contains a complete rounded edge or corner of a quasi-convolutionally

smoothed object. Experiments indicated that for quasi-convolutionally smoothed

scenes a polyline with two segments de�nes a su�cient approximation. Criteria for

a more sophisticated adaptive re�nement approach are given by von Herzen and Barr

[vHB87]. However, the general principle is best illustrated by re�ning an edge into

two segments. Note that edge re�nement is only necessary for a fully unclassi�ed

face. Figure 5.20 shows a polygon edge (a) and a possible result of the re�nement

process (b).

Vertex }

pint1

pint2

low density value

on 0.5 iso-surface

high density value

Polygon edge

0.5 iso-surface

pint1

pint2

a) b)

Point

pnew

Figure 5.20. Face intersection before (a) and after (b) re�nement.

It remains to �nd a suitable re�nement point pmid. The point pmid must lie inside

the face and, if the face has several 0.5 iso-surface intersections, the corresponding
re�ned polygon edges must not intersect each other. Algorithm 5.4 gives a high-level

description of the method to re�ne polygon edges.

Finding a Re�nement Point

A polygon edge on a face is de�ned by two intersection points pint1 and pint2 of the

face edges with the iso-surface. The edge is re�ned into two segments by connecting

100 Triage Polygonization

Algorithm 5.4 (Re�ning Polygon Edges)

INPUT: A face F with n polygon edges e1; : : : ; en
OUTPUT: List of polylines

for i := 1 to n do

begin

Find for the polygon edge ei a refinement point pnew;i, i = 1; : : : ; n

inside face F such that the refined polygon edges

do not intersect

Replace the edge ei = pstart;ipend;i with the polyline [pstart;i,pnew;i,pend;i]

end ffor loopg

the intersection points to a new point pnew on the iso-surface. The quality of the

results of Triage Polygonization depends on the choice of the re�nement point pnew
for a polygon edge. Two possible speci�cations of optimality for pnew are

1. The two line segments pint1pnew and pnewpint2 have equal length

2. The point pnew is the point with the highest curvature of the 0.5 iso-surface

intersection with the face

A good approximation is achieved by taking both speci�cations into account. To
do this de�ne pmid as the midpoint between the two intersection points (this considers

the �rst speci�cation). From pmid search in direction of the density gradient for an
iso-surface intersection. This method reects the hope that a strong change in the
density �eld indicates a high curvature of the iso-surface (hence taking the second

speci�cation of optimality into account).
Since the density gradient in pmid usually does not lie in the face plane we take

instead its projection rprojF� on the face given by

rprojF� = r�� nF hr�; nF i

where nF is the face normal.

The midpoint pmid of the edge and the projected density gradient in pmid de�ne
a linear search space. Since the re�nement point pnew must lie inside the face the

linear search space is restricted to the face, i.e.,

Ssearch = fx j x = pmid + trprojF �(pmid); t 2 IRg \ F

The linear search space Ssearch is therefore a line segment. The re�nement point
pnew for the polygon edge (pint1; pint2) is given by the 0.5 iso-surface intersection

with the linear search space. If no intersection point exists the edge is not re�ned,

5.5 Re�nement of Face Intersections 101

otherwise the edge is replaced with the polyline [pint1; pmid; pint2]. Note that the

original polygon edge and therefore also the polyline are directed.

The linear search space has an intersection point with the 0.5 iso-surface if its end

points sstart and send have di�erent density classes9. The intersection point is found

by a root search. The search space (and hence the root search) can be shortened by

using pmid. If the density class of pmid equals that of sstart then pmid becomes the new

start point of the linear search space. Otherwise send becomes the new end point of

Ssearch. Figure 5.21 illustrates the two possible cases (without loss of generality the

density classes of sstart and send are low and high, respectively).

Area of root search

pint2

pint1

pmid

Polygon edge

Density gradient projected on face

a)

b)

pint2

pint1

pint2

pint2

pint1

pmid pmid = sstart

sstart

sendsend

send

sstart

sstart

pmid = send

Vertex
}

low density value

on 0.5 iso-surface

high density value

Point

Figure 5.21. Shortening the linear search space (area of root search) for the edge re�ne-

ment by using pmid. In (a) and (b) the density class of pmid equals that of the end point

and start point of the linear search space, respectively.

9Here we use that the density �eld is continuous and the assumption that it is \reasonable"
smooth.

102 Triage Polygonization

A root search on the reduced linear search space �nds the desired re�nement

point pnew. Connecting the new point pnew to the end points of the polygon edge

forms the re�ned edge (see �gure 5.22).

pint2

pint1

pint2

pint1

0.5 iso-surface

Sstart

a) b)

pmid = send

pnew

Area of root search

Polygon edge

Density gradient projected on face
Vertex }

low density value

on 0.5 iso-surface

high density value

Point

Figure 5.22. Re�nement of a polygon edge.

Improving the Re�nement Process

If a face has more than one iso-surface intersection several problems arise. First
note that the end points of the linear search space for the re�nement point may
have the same density class even though an intersection point exists. This case is

illustrated in �gure 5.23 (a). If it is known that an iso-surface intersection exists
a root search can still be performed. However, part (b) of the �gure shows that

incorrect intersection points might be found.
The solution to this problem is to restrict the polygon edges to disjoint areas

on the face. Disjoint sectors of the face are given by connecting their end points to

the centroid of all intersection points. These sectors were already used to resolve

ambiguities in the de�nition of the polygon edges (see subsection 5.4.2 on page 92)
and are shown in �gure 5.24 (a).

For each sector the corresponding edge is re�ned as for a face with a single
polygon edge. That means a linear search space is de�ned by its midpoint pmid

and the density gradient in pmid projected on the face. The linear search space is

restricted to the sector. If its end points have di�erent density classes an intersection
point with the 0.5 iso-surface exists. The search space is shortened according to the

density class of pmid and its 0.5 iso-surface intersection pnew is determined by a root

5.5 Re�nement of Face Intersections 103

pint1,2

Pint1,1

Pint2,1

Pmid1

sstart1

send1

sstart2

send2

Pmid2

pint1,2

pint2,2 pint2,2
pnew1

pnew2

Pint2,1

Pint1,1

a) b)

0.5 iso-surface

Area of root search

Polygon edge

Density gradient projected on face
Vertex }

low density value

on 0.5 iso-surface

high density value

Point

Figure 5.23. Re�nement of two polygon edges on a face. Without modi�cation no re�ne-

ment point is found (a) or wrong re�nement points are computed (b).

Centroid

Pint1,1

Pint2,1 sstart1
send2

pmid1 = send1

pmid2 = sstart2

pnew1

pnew2

pint1,2

pint2,2

Pint1,1

pint2,2

pint1,2

Pint2,1

a) b)

0.5 iso-surface

Area of root search

Polygon edge

Density gradient projected on face

Vertex }
low density value

on 0.5 iso-surface

high density value

Point

Sector for root search

Figure 5.24. Re�nement of two polygon edges on a face. The re�nement process is

improved by restricting the linear search spaces to disjoint sectors (a). The re�ned polygon

edges do not intersect (b).

104 Triage Polygonization

search. The polygon edge is then re�ned with pnew. Figure 5.24 (b) shows that all

re�ned polygon edges lie in disjoint areas of the face and do not intersect.

Note 1. Restricting the re�ned edges to disjoint sectors does not guarantee that a

polygon edge can in fact be re�ned.

Note 2. Since a face is convex the intersection points form a convex object as

well. The centroid lies inside this convex object; therefore all sectors are disjoint.

The center of the face can lie outside the convex hull of all intersection points and

therefore can not be used to de�ne disjoint sectors.

Algorithm 5.5 summarizes the algorithm to re�ne polygon edges.

5.6 Local Density Fields

The subspace polygonization and the re�nement of polygon edges described in the
previous sections require a frequent evaluation of the density �eld inside an un-

classi�ed cell. A fast evaluation of the density �eld is hence desireable. The next
section shows that a better description of the density �eld inside a cell also enables
an improved subspace polygonization. This section derives a reduced local density

�eld for each cell, which enables a faster density computation and gives information
about the topology of the 0.5 iso-surface.

As explained previously the density �eld �rObj of an object quasi-convolutionally

smoothed with a spherical �lter of radius r, is a continuous function

�rObj : IR
3 ! IR

de�ned as an arithmetic tree. The leaves of the arithmetic tree are density �elds of

convolutionally smoothed half-spaces. The leaf density �elds are constant zero (one)
at a distance greater (less) than the smoothing radius r to the half-space plane. For
a small region in IR3 it can therefore be expected that most branches of an arithme-

tic tree are constant zero or one. This motivates the introduction of a reduced local
density �eld �rC for each unclassi�ed cell of a polyhedral subdivision.

Observe that the local density �elds for the regions of a rounded half-space H

(see �gure 5.1) classi�ed as zero, low, high, and one are given by de�nition 2.5 as

�rzero(x) = 0

�rlow(x) = (1� �)2(2 + �)=4

�rhigh(x) = (1� �)2(2 + �)=4

�rone(x) = 1

where � = d=r, d =< x;~nH > is the distance of point x to the plane of the half-space

H, and ~nH is the outward normal of H.

5.6 Local Density Fields 105

Algorithm 5.5 (Re�ne Polygon Edges)

INPUT: n polygon edges (pint1;i; pint2;i) , i = 1; : : : ; n

Face F with locala density field �

OUTPUT: Set of n polylines Pi , i = 1; : : : ; n (as point lists)

pcentroid := 1
2n

Pn
i=1(pint1;i + pint2;i)

for i := 1 to n do

begin

pmid :=
pint1;i+pint2;i

2

vsearch := rprojF�(pmid;i)
Ssearch := fx j x := pmid;i + tvsearch; t 2 IRg

fdefine linear search spaceg

Ssearch := Ssearch \ F frestrict search space to Fg

if n > 1 then fmore than one polygon edgeg

begin

Define sector Fsector from face F by connecting

the centroid centroid to pint1;i and pint2;i
Ssearch := Ssearch \ Fsector frestrict search space to Fsectorg

end

let sstart and send be the end points of Ssearch
if : equal density class(sstart,send) then

begin fiso-surface intersection existsg

fshorten search spaceg

if equal density class(sstart,pmid) then sstart := pmid

if equal density class(send,pmid) then send := pmid

Compute the 0.5 iso-surface intersection pnew with Ssearch
Pi := [pint1;i; pnew; pint2;i] frefine edge with new pointg

end

else Pi := [pint1;i; pint2;i] fdo not refine edgeg

end ffor loopg

aFor the algorithm it is su�cient to know the density �eld in all points of the face. Section 5.6
introduces a reduced local density �eld for a cell. The density �eld in a face is given by one or the
other of the two local density �elds of the cells sharing that face. For faster evaluation the density
�eld de�ned by the smaller arithmetic tree is chosen.

106 Triage Polygonization

During the polyhedral subdivision of the density �eld, the density �eld �rC local

to a cell C, changes only if the cell takes part in a set operation. Tables 5.5 { 5.7

show the local density �eld �rC1�C2 of a cell obtained with a set operation �?

(� 2 f[;\; ng) between two cells C1 and C2 with local density �elds �rC1 and �rC2 ,

respectively. The result is dependent on the density classes of the cells C1 (rows)

and C2 (columns).

\ zero low unclassi�ed high one

zero 0 0 0 0 0

low 0 �rC1 � �
r
C2

�rC1 � �
r
C2

�rC1 � �
r
C2

�rC2
unclassi�ed 0 �rC1 � �

r
C2

�rC1 � �
r
C2

�rC1 � �
r
C2

�rC2
high 0 �rC1 � �

r
C2

�rC1 � �
r
C2

�rC1 � �
r
C2

�rC2
one 0 �rC1 �rC1 �rC1 1

Table 5.5. Density �eld of the intersection of two cells C1 and C2. The top row and left

column give the density classes of C1 and C2, respectively.

[zero low unclassi�ed high one

zero 0 �rC2 �rC2 �rC2 1

low �rC1 �rC1 + �rC2 �rC1 + �rC2 �rC1 + �rC2 1

unclassi�ed �rC1 �rC1 + �rC2 �rC1 + �rC2 �rC1 + �rC2 1

high �rC1 �rC1 + �rC2 �rC1 + �rC2 �rC1 + �rC2 -

one 1 1 1 - -

Table 5.6. Density �eld of the union of two cells C1 and C2. The top row and left column

give the density classes of C1 and C2, respectively.

n zero low unclassi�ed high one

zero 0 0 0 - -

low �rC1 �rC1 � �rC2 �rC1 � �rC2 - -

unclassi�ed �rC1 �rC1 � �rC2 �rC1 � �rC2 �rC1 � �rC2 0

high �rC1 �rC1 � �rC2 �rC1 � �rC2 �rC1 � �rC2 0

one 1 1� �rC2 1� �rC2 1� �rC2 0

Table 5.7. Density �eld of the set di�erence of two cells C1 and C2. The top row and left

column give the density classes of C1 and C2, respectively.

Example 5.6 As example consider the intersection of two cells C1 and C2 with

density �elds �rC1 and �rC2 , respectively. The density �eld of the intersection of C1

5.7 Intersection of Two Half-spaces 107

and C2 is given as the product of �rC1 and �rC2 . If the density class of C1 is zero

then the density �eld �rC1 is constant zero. Hence the product of the density �elds is

constant zero. Similar if �rC1 is constant one the product of the density �elds is �rC2 .

The computation of a local density �eld is performed during the polyhedral

subdivison. Each table for the computation of a density class (tables 5.2 { 5.4) can

be combined with the corresponding table for the computation of a local density

�eld (tables 5.5 { 5.7). The local density �eld is stored in the leaves of the DBSP

tree yielding the new data structure:

:: DBSPTree = DBSPNode Plane DBSPTree DBSPTree

| DBSPLeaf PolygonEdges DensityClass DensityField

Triage Polygonization uses the local density �elds for all computations of density

values. Note that the density �elds of two cells that meet along a common face are

identical on the face. The next section shows that the local density �eld of a cell
gives also topological information about the 0.5 iso-surface. The information is used

to obtain an improved subspace polygonization.

5.7 Intersection of Two Half-spaces

Inspecting the polyhedral subdivision produced by Triage Polygonization reveals
that the density �eld inside of many cells is extremly simple. This is due to the fact

that the density �eld of a smoothed half-space is constant zero (one) at a distance
greater (smaller) than the smoothing radius to the half-space plane. Section 7.4.5

will show that for the scenes tested the local density �eld inside of about 30% of
the unclassi�ed cells represents a quasi-convolutionally smoothed intersection of two
half-spaces. Theorem A.13 states that the 0.5 iso-surface of the density �eld of a

quasi-convolutionally smoothed intersection of two half-spaces is convex. The above
results motivate the development of an improved subspace polygonization for cells
containing such a simple density �eld.

A desireable result for our improved subspace polygonization is to obtain less

polygons and to approximate the 0.5 iso-surface better than with the triangulation

algorithm presented in section 5.4.4

Example 5.7 Figure 5.25 (a) shows the 0.5 iso-surface of the quasi-convolution-

ally smoothed intersection of two half-spaces. The marked intersection points and
polylines are the iso-surface intersections of the cell's edges and faces derived by

precomputing the face intersections. The intersection points inside a face result
from edge re�nement.

The previously introduced subspace polygonization computes the centroid of all

intersection points and, if possible, adjusts it such that it lies on the 0.5 iso-surface.

108 Triage Polygonization

a) b)

Intersection point

Polyline

c)

0.5 iso-surface

Polygon

Figure 5.25. (a) Cell containing a quasi-convolutionally smoothed intersection of two

half-spaces. (b) The subspace polygonization leads to fragmentation. (c) Desired result of

the subspace polygonization.

Then all intersection points are connected to the centroid forming a set of triangles.

Figure 5.25 (b) gives an example where this procedure yields six pointed triangles.
A more desireable result in above situation are two long rectangles as shown in (c).

De�nition 2.9 yields that the density �eld of a quasi-convolutionally smoothed
intersection of two half-spaces is constant in points of constant distance to the cor-
responding half-space planes. The 0.5 iso-surface is hence a convex swept surface.

Figure 5.25 (c) suggested to approximate the iso-surface by long rectangles with
their major edges given by the line de�ning the swept surface. This, however, is

only possible for cuboidal cells. Figure 5.26 (a) shows a cell with a more compli-
cated geometry (e.g., as resulting from a splitting operation during the polyhedral
subdivison).

Intersection point

Polyline

0.5 iso-surface

Polygon

a) b)

Figure 5.26. The subspace polygonization for a quasi-convolutionally smoothed intersec-

tion of two half-spaces is part of the convex hull of the intersection points.

Since the iso-surface is convex an optimal polygonization must be convex as well.

Also, in order to achieve continuity, the polygonization must intersect the cell's

5.7 Intersection of Two Half-spaces 109

faces in the precomputed polygon edges, i.e., it is a tessellation of the topological

polygons formed by connecting the precomputed polygon edges. The improved

subspace polygonization is therefore de�ned as a convex tesselation of the topological

polygons.

Recall that a polygon is given as a list of its vertex points in anti-clockwise

order. A convex tesselation of a topological polygon is given as its convex hull with

all polygons removed, which have an opposite orientation to the topological polygon.

Figure 5.26 (a) shows an iso-surface and (b) the resulting subspace polygonization.

We present here an alternative algorithm with expected running time O(n logn),

which produces the tesselation directly.

5.7.1 Convex Tessellation of a Topological Polygon

As in the previous section let their be given a convex topological polygon with all its

vertices on a convex 0.5 iso-surface. Note that the centroid of a set of points always
lies inside the convex hull of the corresponding point set. Also, since the 0.5 iso-
surface is a convex swept surface, the convex tesselation of the topological polygon

has no inside polygons, i.e., all polygons of the tesselation share an edge with the
topological polygon. An algorithm for a convex tessellation is obtained by detecting
for each edge of the topological polygon a polygon of the convex tesselation.

Let T be a topological polygon with n vertices p1; : : : ; pn. Take an arbitrary
edge, say (p1; p2), and compute the vectors ~e1 = p2 � p1 and ~c = centroid � p1.

For all vertices q 2 fp3; : : : ; png of the topological polygon T compute the vector
~e2(q) = q�p1 and the normal ~n(q) = ~e1�~e2(q) of the triangle [p1; p2; q]. Figure 5.27
depicts the situation.

α

Intersection point

Polyline

0.5 Iso-surface

Polygon
p1

p2

p3

p4

p5

p7

p8

centroid

e1

e2

n

q=p6

c

Figure 5.27. The subspace polygonization for a quasi-convolutionally smoothed intersec-

tion of two half-spaces is given by a convex tessellation.

The triangle P = [p1; p2; q] is part of the convex tessellation if the angle �(q) =
6 (~n(q);~c) is maximal with respect to all points q. If there are several points q1; : : : ; qm
with maximal angle �(qi), i = 1; : : : ; n, then they form together a polygon P =

[p1; p2; q1; : : : ; qm] of the convex tessellation.

110 Triage Polygonization

Removing the points of the polygon P from the topological polygon T subdivides

T into (at most two) smaller topological polygons for which the algorithm is called

recursively. The subdivision is performed by taking all points enclosed by two lists of

consecutive points of P including the two points next to the enclosed list of points.

The following example illustrates the process.

Example 5.8 Figure 5.27 shows a topological polygon T = [p1; : : : ; p8]. For the

edge (p1; p2) there is only one point q = p6 with maximum angle �(q). The lists

of points of the polygon P = [p1; p2; q] consecutive in T are [p1; p2] and [q]. The

lists of points enclosed by these lists of consecutive points are [p3; p4; p5] and [p7; p8].

Removing the polygon P from the topological polygon leaves two new topological

polygons [p2; p3; p4; p5; p6(= q)] and [p6(= q); p7; p8; p1]. Applying the tessellation

algorithm recursively to these topological polygons yields a polygonization as shown

in �gure 5.26 (b).

The complete algorithm for a convex tessellation is given in �gure 5.28. Note
that we assume that no three point of the topological polygon are collinear.

The function ConvexTessellation takes as input a (convex) topological polygon
and returns a list of polygons forming a convex tessellation. If the topological poly-

gon is a triangle no tessellation is necessary. If the topological polygon has less than
three vertices it is a degenerate polygon (i.e., a line or a point) and the tessellation is
empty. Otherwise the algorithm takes the edge given by the �rst two vertices p1 and

p2 of the polygon and computes the angle �(q) for all vertices q 6= p1; p2. The maxi-
mum angle �(q) is called maxAngle. The function ExtractPolygonPoints takes the list
of vertices of the topological polygon with their angle �(q) and returns all vertices q

with maximum angle �(q) and a list of topological polygons lying between any two
lists of consecutive points with maximum angle. For computational reasons we move

the �rst point p1 of the topological polygon to its end. The algorithm ConvexTessel-

lation is applied recursively to the newly created topological polygons. The vertices
with maximum angle form together a new polygon of the convex tessellation.

The function ExtractPolygonPoints takes as input an angle maxAngle and a list of
vertices q of the topological polygon with angle �(q). The �rst point pi of the list

must ful�ll �(pi) = maxAngle. The list is then divided into a list of maximal length of

points with maximum angle (polygonPoints), a list of maximal length of points with
angle smaller than maxAngle (smallerPoints), and a list of remaining points starting

again with a point with maximum angle (restPoints). If the list of remaining points
is empty only the vertices with maximum angle are returned (they are part of the

new polygon of the tessellation). Otherwise the list smallerPoints is enclosed by

two lists of consecutive points with maximum angle and forms together with the
end point of the �rst list and the start point of the second list a new topological

polygon. Since in this case the list of remaining points is not empty the function
is called recursively to �nd more points with maximum angle. Note that the �rst

point of the list of remaining points (restPoints) is guaranteed to have the maximum

angle maxAngle.

5.7 Intersection of Two Half-spaces 111

ConvexTessellation :: Polygon -> [Polygon]

ConvexTessellation polygon=:[p1,p2:points]

| #polygon < 4 = if (#polygon < 3) [] [polygon]

= [newPolygon:restPolygons]

where

centroid = ArithmeticMiddle polygon

pointsWithAngle = [(q,Alpha q) \\ q <- points]

maxAngle = Maximum (>) (map snd pointsWithAngle)

(polyPoints,convexTPolys) = unzip (ExtractPolygonPoints maxAngle

([(p2,maxAngle):pointsWithAngle] ++ (p1,maxAngle)))

newPolygon = flatten polyPoints

restPolygons = flatten (map ConvexTessellation convexTPolys)

Alpha q = Angle ((q - p1) Cross (p2 - p1) , centroid - p1)

ExtractPolygonPoints :: Real [(Point,Real)] -> [([Point],Polygon)]

ExtractPolygonPoints maxAngle pointsWithAngle

| isEmpty restPoints = [(polygonPoints,[])]

= [(polygonPoints,newTPolygon) : ExtractPolygonPoints maxAngle restPoints]

where

(polygonPoints`,restPoints`) = DecomposeWhile equalToMaxAngle pointsWithAngle

(smallerPoints`,restPoints) = DecomposeWhile smallerThanMaxAngle restPoints`

polygonPoints = map fst polygonPoints`

smallerPoints = map fst smallerPoints`

newTPolygon = [(fst (hd restPoints)),(last polygonPoints):smallerPoints]

smallerThanMaxAngle (,d) = d < maxAngle

equalToMaxAngle (,d) = d == maxAngle

Figure 5.28. Convex tessellation of a topological polygon.

112 Triage Polygonization

The algorithm employs a divide and conquer tactic resulting in a worst case

running time of O(n2) and an expected running time O(n logn). The solution in

�gure 5.26 (c) was constructed with this algorithm. Note that the algorithm yields

polygons with maximum size. That means, e.g., a rectangle on the convex hull is

never replaced by two triangles.

5.8 Summary

This chapter introduced Triage Polygonization, a polygonization scheme designed

for quasi-convolutionally smoothed objects. Triage Polygonization is performed in

three steps: polyhedral subdivision, computation of tree polygons, and a subspace

polygonization. All algorithms required to achieve these tasks were presented in

this chapter. Where appropriate the algorithms were given directly in executable

functional code. To conclude this chapter we summarize the algorithm for Triage
Polygonization. Figure 5.29 shows the result.

TriagePolygonization :: Real CSGObject -> [Polygon]

TriagePolygonization radius csgObject = treePolygons ++ subspacePolygons

where

dbspTree = (DCSG2DBSP o (CSG2DCSG radius)) csgObject

// DBSP tree with local density fields

boundingBox = BoundingBox csgObject

treePolygons = TreePolygons dbspTree boundingBox

subspacePolygons = SubspacePolygonization dbspTree boundingBox

Figure 5.29. Triage Polygonization.

The composition of the functions CSG2DCSG and DCSG2DBSP subdivides the density

�eld de�ning a quasi-convolutionally smoothed CSG object in a BSP-like manner

into low, high, and unclassi�ed polyhedral cells. All points in a low and high cell

lie inside and outside the 0.5 iso-surface, respectively. The points in an unclassi�ed
cell may lie on either side of the 0.5 iso-surface or on it. The 0.5 iso-surface lies

therefore either between low and high cells or inside of unclassi�ed cells. The parts

of the 0.5 iso-surface separating low from high cells are called tree polygons and are
extracted by the function TreePolygons. The function SubspacePolygonization yields

the subspace polygons approximating the iso-surface inside of unclassi�ed cells. The

tree polygons and the subspace polygons form the polygonization of a quasi-convo-

lutionally smoothed object.

The quality of the polygonization is improved by re�ning the precomputed poly-
gon edges and the subspace polygons. Section 5.5 introduced an algorithm for the

re�nement of polygon edges, which we used in the implementation of the function

PrecomputePolygonEdges. We indicated that our re�nement scheme is su�cient for

5.8 Summary 113

most quasi-convolutionally smoothed scenes but mentioned that also a more ad-

vanced adaptive re�nement scheme can be employed.

E�ciency is improved by computing local density �elds for the unclassi�ed cells

of the polyhedral subdivision. A positive side-e�ect is that the complexity of the 0.5

iso-surface inside a cell can be determined. Unclassi�ed cells containing a quasi-con-

volutionally smoothed intersection of two half-spaces are identi�ed and polygonized

with an improved subspace polygonization scheme. The improved method uses the

fact that a quasi-convolutionally smoothed intersection of two half-spaces is convex.

C H A P T E R 6

Implementation Details

The previous chapter introduced Triage Polygonization, a new polygonization
method developed for quasi-convolutionally smoothed objects. Most of the algo-

rithm was given directly in executable functional code. This chapter explains some
implementation details, deals with numerical problems, and adapts Triage Polygo-

nization to an extended object model.
We �rst present some implementation details for the polyhedral subdivision and

the subspace polygonization of Triage Polygonization. A description of the imple-

mentation of two important subtasks of Triage Polygonization follows: the root
search used to �nd the 0.5 iso-surface intersection with a line and the computation

of the gradient of a density �eld used in the de�nition of a linear search space.
An interesting question is whether the polygonized surface is continuous. We

show under which circumstances discontinuities can arise and that in most cases

they can be recognized during polygonization.
We then extend the object model with clipping planes and allow di�erent round-

ing radii for a quasi-convolutionally smoothed object. The resulting changes for

Triage Polygonization are only minor and are explained briey.
The next section deals with the problem of numerical stability. To increase nu-

merical stability we test for iso-surface intersections against a displaced iso-surface.

Problems due to the use of logical alternatives are reduced by using �-intervals.

The chapter concludes with a description of the polygonization of a complete

scene. A scene is usually composed of several smoothed and unsmoothed objects.

Triage Polygonization polygonizes only quasi-convolutionally smoothed objects. A
scene is polygonized by using a b-rep algorithm for unsmoothed CSG objects and

Triage Polygonization for quasi-convolutionally smoothed CSG objects.

115

116 Implementation Details

6.1 Implementation of the Polyhedral Subdivision

The �rst step of Triage Polygonization is a polyhedral subdivision of a density �eld

in a BSP-like manner. The density �eld is de�ned by transforming a quasi-convo-

lutionally smoothed CSG object with a given smoothing radius into an arithmetic

tree. The result of the polyhedral subdivision is a DBSP tree which partitions the

density �eld into zero, low, high, one, and unclassi�ed cells. The DBSP tree is built

by replacing each primitive object of the CSG object with polyhedral cells de�ning

regions of non-zero density in the density �eld. The resulting object is called a

DCSG object and is transformed into a DBSP tree with the algorithm DCSG2DBSP

described in detail in section 5.3.

Fragmentation of the Density Field

When reviewing the polyhedral subdivision algorithm it becomes apparent that the
DBSP tree for a DCSG object heavily subdivides the corresponding density �eld.

This means that a convex region with a constant density class, e.g., a low region,
is often fragmented into several cells. The reason for this is that every face of
a cell of the DCSG object de�nes a partitioning plane in the DBSP tree. Many

partitioning planes are unbounded and lead to fragmentation of the density �eld. A
small number of unbounded partitioning planes is hence desirable. The number of

unbounded partitioning planes depends strongly on the order in which the faces of
a cell are chosen if de�ning partitioning planes for a DBSP tree.

rounded object

cell {
one

high

unclassified

low

zero

partitioning plane

a)
d)b) c)

Figure 6.1. A quasi-convolutionally smoothed primitive object (a) and the corresponding

DCSG object (b). Two possible DBSP trees for the DCSG object are given in (c) and (d).

The number of unbounded partitioning planes in the DBSP tree can vary strongly. For the

quasi-convolutionally smoothed square in (a) the worst case are 12 unbounded partitioning

planes (c) and the best case are 4 unbounded partitioning planes (d).

6.1 Implementation of the Polyhedral Subdivision 117

Example 6.1 Figure 6.1 shows a quasi-convolutionally smoothed square (a) and

the corresponding DCSG object (b). For better illustration, we have used a 2-

dimensional object. The following results are similar for a cube (the corresponding 3-

dimensional object) and are given in brackets. The DCSG object consists of 52 = 25

(53 = 125 for a cube) non-zero cells. Transforming the DCSG object into a DBSP

tree produces, in the worst case, a partitioning of the density �eld with 12 (15)

unbounded partitioning planes, shown in (c), and in the best case a partitioning

with 4 (5) unbounded partitioning planes, shown in (d).

Bounding a DCSG Object

The solution to the fragmentation problem is found by recognizing that the non-zero

regions of the density �eld of a quasi-convolutionally smoothed primitive object are

bounded by the r-ohs-planes of the object. Hence the density �eld is �rst partitioned

with the r-ohs-planes and only the region inside all r-ohs-planes is partitioned ac-
cording to the DCSG object. Since a primitive object is convex, its r-ohs-planes

form a linear DBSP tree. Figure 6.1 (d) shows the result obtained by forming a
linear DBSP tree from the r-ohs-planes (the planes separating regions with zero and
non-zero density values) of a DCSG object before inserting the DCSG object itself.

In many cases a quasi-convolutionally smoothed object consists of several prim-
itive objects. With above discussion the corresponding DCSG object must have

bounding planes for each of its primitive objects. During DBSP tree construction
a DCSG object is inserted into an already existing DBSP tree. This means the
DCSG object is split on partitioning planes. To retain the r-ohs-planes of a quasi-

convolutionally smoothed primitive object as bounds for the corresponding DCSG
object we extend the data structure for a DCSG object by a set of bounding faces.
The bounding faces must bound the non-zero density �eld of a quasi-convolutionally

smoothed primitive object. Since a primitive CSG object is convex the bounding
faces are given as the faces of the polyhedral region, which lies inside all r-ohs-planes

of the primitive object. Figure 6.2 gives the new data structure for a DCSG object.

:: DCSGObject = DUnion DCSGObject DCSGObject

| DIntersection DCSGObject DCSGObject

| DSetDifference DCSGObject DCSGObject

| DPrimitive Polyhedron DensityClass

| DAssembly [Face] [DCSGObject]

Figure 6.2. New data type of a DCSG object.

Here a polyhedral primitive of a quasi-convolutionally smoothed CSG object is
given as a \DCSG assembly". This is a list of DCSG objects (representing the non-

zero cells in the density �eld of the quasi-convolutionally smoothed CSG object)

and the list of bounding faces of the non-zero density �eld. The function CSG2DCSG

118 Implementation Details

from �gure 5.6 must be adapted to the new data type. The only change required is

the transformation of a quasi-convolutionally smoothed primitive CSG object into

a DCSG assembly. To do this compute additionally to the classi�ed cells the faces

bounding the non-zero density �eld of the quasi-convolutionally smoothed primi-

tive CSG object. Figure 6.3 gives the extended function CSG2DCSG. The function

ClassifiedCell is the same as de�ned in �gure 5.6.

CSG2DCSG :: Real CSGObject -> DCSGObject

CSG2DCSG r (Union obj1 obj2)

= DUnion (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (SetDifference obj1 obj2)

= DSetDifference (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (Intersection obj1 obj2)

= DIntersection (CSG2DCSG r obj1) (CSG2DCSG r obj2)

CSG2DCSG r (Primitive (Intersection hs Planes))

= DAssembly boundingFaces classifiedCells

where

r ohs Planes = map (Translation r) hs Planes

r ihs Planes = map (Translation (-r)) hs Planes

outerPolyhedron = MakePolyhedron r ohs Planes

polyhedra = PartitionWith outerPolyhedron (hs planes ++ r ihs Planes)

boundingFaces = FacesOf outerPolyhedron

classifiedCells = map (ClassifiedCell r hs Planes) polyhedra

Figure 6.3. Transforming a quasi-convolutionally smoothed CSG object into a DCSG

object.

Next we have to adapt the function DCSG2DBSP from �gure 5.8 to the extended data
structure of a DCSG object. To form a DBSP tree a DCSG object is inserted into an
initially empty DBSP tree. Recall that a DCSG object is split or transformed into

a DBSP tree by splitting or transforming, respectively, its child objects. A DCSG

assembly is split on a partitioning plane by splitting its (primitive) DCSG objects

and the bounding faces. The DCSG assembly is transformed into a DBSP tree by
building a linear tree from its bounding faces and then inserting its (primitive) DCSG

objects with a union operation. The new de�nition of the function DCSG2DBSP is given

in �gure 6.4. The function LinearDBSPTree has already been de�ned in �gure 5.8.

6.2 Implementation of the Subspace Polygonization

The subspace polygonization forms the third and last step of Triage Polygoniza-

tion and polygonizes the 0.5 iso-surface inside all unclassi�ed cells of the polyhedral

6.3 Root Search 119

DCSG2DBSP :: DCSGObject -> DBSPTree

DCSG2DBSP (DUnion obj1 obj2) = UnionDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DIntersection obj1 obj2) = IntDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DSetDifference obj1 obj2) = SetDifDBSP DCSG (DCSG2DBSP obj1) obj2

DCSG2DBSP (DAssembly bounds primitiveDCSG objects)

= foldl UnionDBSP DCSG (LinearDBSPTree Zero bounds) primitiveDCSG objects

DCSG2DBSP (DPrimitive (Polyhedron faces) densityClass)

= LinearDBSPTree densityClass faces

Figure 6.4. Transforming a DCSG object into a DBSP tree.

subdivision. Section 5.4 has presented the corresponding algorithm. We only make

one remark with regard to the precomputation of polygon edges.

Recall subsection 5.4.2 where a polygon edge is computed for an unclassi�ed face
by computing density values in the density �eld. Section 5.6 introduced for each

cell a local density �eld. Since the global density �eld is continuous, the local den-
sity �elds of two adjacent cells are identical on the face common to those two cells.
Therefore the computation of density values on a face can be made with either of

the density �elds of the cells sharing the face. For e�ciency reasons the density �eld
with a simpler arithmetic tree is taken. The simplicity of a arithmetic tree is given

by the number of its density half-spaces.

6.3 Root Search

An important part of Triage Polygonization is the computation of the 0.5 iso-surface
intersection with a linear search space. Such a computation is necessary for the
computation of intersection points on a face (subsection 5.4.2), for the re�nement

of topological polygons (subsection 5.4.3), and for the re�nement of polygon edges
(section 5.5).

We compute in Triage Polygonization the 0.5 iso-surface intersection with a linear

search space with a root search. A precondition for the root search is that the

endpoints of the linear search space lie on di�erent sides of the 0.5 iso-surface. A

(bounded) linear search space is a line segment p(t) with a start point pstart and an
end point pend and is parameterized as

p(t) = pstart + t(pend � pstart); t 2 [0; 1] (6.1)

The density values on the linear search space are translated by the 0.5 iso-surface

threshold to give a parameterized density �eld

�search : [0; 1]! IR

�search(t) = �(p(t))� 0:5 (6.2)

120 Implementation Details

The root of �search is then the parameter for the 0.5 iso-surface intersection with

the linear search space. As root search we choose a regula falsi method [PVTF92].

To accelerate worst case convergence we interleave it with a binary search. Figure 6.5

gives the function IsosurfaceIntersection to �nd the 0.5 iso-surface intersection with

a linear search space. Inputs are the start and the end point of the linear search

space and a density �eld.

IsosurfaceIntersection :: Point Point DensityField -> Point

IsosurfaceIntersection start point end point densityField = intersectionPoint

where

searchDirection = end point - start point

RayAt parameter = start point + (parameter * searchDirection)

DensityOnRayAt t = (Density (RayAt t) densityField) - 0.5

intersectionParameter = SecantRoot False tolerance DensityOnRayAt

(0.0, DensityOnRayAt 0.0) (1.0, DensityOnRayAt 1.0)

tolerance = GeometricTolerance * 0.5 / (length searchDirection)

intersectionPoint = RayAt intersectionParameter

SecantRoot :: Bool Real (Real -> Real) (Real,Real) (Real,Real) -> Real

SecantRoot flag tolerance f left=:(t left, f left) right=:(t right, f right)

| lengthParameterInterval <= tolerance = t new

fif search interval small enough, return new parameterg

| (abs f left) <= RootTolerance = t left

fif density in left point is small enough, return its parameterg

| (abs f right) <= RootTolerance = t right

fif density in right point is small enough, return its parameterg

| (f left * f new) < 0.0 = SecantRoot (not flag) tolerance f left new

= SecantRoot (not flag) tolerance f new right

where

t new = t left + (lengthParameterInterval * ratio)

f new = f t new

new = (t new, f new)

ratio = if flag (0.5) (f left / (f left - f right))

fbinary subdivision every second iterationg

lengthParameterInterval = t right - t left

Figure 6.5. Root �nder for a linear search space.

The function RayAt implements equation 6.1 and DensityOnRayAt gives the param-

eterized density �eld �search for the linear search space. The function Secant Root

�nds the root of a function f in an interval [tleft; tright]. In our case f is the param-
eterized density �eld �search and the interval [tleft; tright] gives the parameters of a

subsegment of the linear search space pstartpend. Initially tleft = 0 and p(tleft) = pstart

6.3 Root Search 121

and similarly tright = 1 and p(tright) = pend. By assumption the parameterized den-

sity �eld �search has di�erent signs in the end points of the parameter interval. Since

the density �eld is continuous a root exists.

A root is found, if the length of the linear search space is not bigger than half a

prede�ned constant cgeometric tolerance, i.e.,

kp(tright)� p(tleft)k �
cgeometric tolerance

2
(6.3)

which is implemented in SecantRoot as

jtright � tleftj �
cgeometric tolerance

2kpstart � pendk

As result the parameter computed with the next iteration of SecantRoot is returned.

Similarly a root is found if the value of the parameterized density �eld in the end

points of the search interval is not larger than a prede�ned constant RootTolerance,
i.e.,

j�search(tleft)j � croot tolerance _ j�search(tright)j � croot tolerance (6.4)

The corresponding parameter (tleft or tright) is returned as the parameter of the
0.5 iso-surface intersection of the linear search space. The next subsections o�er

an explanation for these stopping conditions and suggests values for the constants
cgeometric tolerance and croot tolerance.

If no root is found SecantRoot computes the zero crossing

tnew = tleft +
tright � tleft

f(tleft)� f(tright)
f(tleft) (6.5)

of the secant through f(tleft) and f(tright). The point tnew subdivides the inter-
val [tleft; tright] and dependent on the sign of f(tnew) the root search is recursively

performed on the interval [tleft; tnew] or [tnew; tright].
To guarantee convergence at every other iteration of SecantRoot a binary search

is performed. This is achieved by choosing tnew as the mid point between tleft and

tright.

Geometric Tolerance

An important aspect of the root search is the quality of the approximation to the
0.5 iso-surface intersection. This becomes important in the subspace polygonization

of an unclassi�ed cell. If the intersection points are not computed exactly the pre-
computed polygon edges for a cell can not be connected to form a closed topological

polygon.

Figure 6.6 shows as an example two neighbored faces F1 and F2 with collinear
but not identical edges. Such a case can result from face fragmentation during

DBSP tree construction. Though the 0.5 iso-surface intersections are identical for

122 Implementation Details

pintpapp,2

F1

F2

e1
papp,1

0.5 iso-surface intersection of edge

Approximation to the 0.5 iso-surface
intersection of the edge

0.5 iso-surface

Face

Face edge

Polygon edge

e2

Figure 6.6. Face fragmentation can lead to faces F1 and F2 with collinear but not identical

edges e1 and e2. Though the iso-surface intersections of e1 and e2 are identical the root

�nder yields di�erent results papp;1 and papp;2, respectively.

the edges e1 and e2 the root �nder yields di�erent approximations papp;1 and papp;2,

respectively.

Both points are part of a polygon edge on the corresponding face. For the sub-
space polygonization the polygon edges are connected to form a topological polygon.

The points papp;1 and papp;2 are only recognized as equal if their distance is less than
a prede�ned tolerance cgeometric:

kpapp;2 � papp;1k � cgeometric (6.6)

which under idealized conditions is ful�lled if

kpapp;i � pintk �
cgeometric

2
, i 2 f1; 2g

The latter condition motivates equation 6.3.
Note that the problem of di�erent approximations to identical intersection points

is avoided by computing the 0.5 iso-surface intersection only once for an edge shared
by two faces. Wyvill, McPheeters, and Wyvill [WMW86b] introduce an e�cient data

structure for this scheme based on hash tables. Unfortunately we could not imple-
ment this data structure because the current implementation of Clean provides
neither a working array data type nor pointers. Note though, that our approach

simpli�es Triage Polygonization and we can reuse selected existing libraries.

Root Tolerance

If the derivative of the parameterized density �eld �search is close to zero, the denom-
inator of equation 6.5 becomes very small (theorem A.10). Since we assume that

the density values in the end points of the parameterized linear search space have
di�erent signs, the denominator of equation 6.5 is only zero if the density values are

themselves zero.

To prevent division by zero in the root search it is su�cient to test whether the
density values in the end points of the search interval are within a so-called root

tolerance troot of zero (see equation 6.4). In this case the iteration of the root search

6.4 Gradient of a Density Field 123

is stopped and the corresponding point is returned as root of the parameterized

density �eld. Note that the error in the position of the root can be arbitrarily large

if the gradient in the vicinity of the root goes to zero.

Results

We tested Triage Polygonization with the example scenes introduced in section 2.5.

In our implementation we chose:

cgeometric = 10�6

croot = 10�9

The root search was applied to linear search spaces between 0:0001 and 10 units

long. Dependent on the complexity of the quasi-convolutionally smoothed object we

measured 5{12 iterations on average. In the best case one iteration was su�cient to
�nd the root and in the worst case 21 iterations were necessary.

In most cases the root search terminated because equation 6.4 was ful�lled rather
than equation 6.3. However equation 6.6 always proved valid for our test scenes.

Remarks

Note that the rate of change of the density �eld and its gradient is limited by two
Lipschitz constants L and G, respectively. The 0.5 iso-surface of a quasi-convolu-
tionally smoothed object is therefore a so-called \LG-implicit surface".

Kalra and Barr [KB89] give an algorithm guaranteed to numerically �nd all
intersections of an LG-implicit surface with a ray, which may be unbounded.

6.4 Gradient of a Density Field

The gradient of a density �eld is used to de�ne a linear search space for the edge

re�nement (section 5.5) and for the re�nement of a topological polygon (subsec-

tion 5.4.4). Additionally section 6.8 will show that the gradient of a density �eld is

computed at each vertex of a polygon to enable Gouraud shading of a polygonized

scene. We obtain the gradient of a density �eld by di�erentiating the arithmetic

tree de�ning the density �eld (see de�nition 2.5).

Corollary 6.1 (Gradient of a density �eld) Let be given the density �eld of a

quasi-convolutionally smoothed object Obj as de�ned in de�nition 2.5. Then the

gradient of the density �eld �rObj at a point x is de�ned as

124 Implementation Details

r�rH(x) =

8><
>:
~0 � � 1
~0 � � �1

� 3
4r
(1� �2)~nH otherwise

(6.7)

r�rA[B(x) = r�rA(x) +r�rB(x) (6.8)

r�rA\B(x) = �rA(x)r�
r
B(x) + �rB(x)r�

r
A(x) (6.9)

r�rAnB(x) = r�rA(x)�r�rB(x) (6.10)

where � = d=r, d =< x;~nH > is the distance of point x to the plane of the half-

space H, ~nH is H's surface normal, ~0 is the zero vector, < :; : > is the dot product

(inner product) of two vectors, and A and B are CSG objects.

6.5 Continuity

This section examines whether continuity can be achieved in the polygonization
produced by Triage Polygonization. In section 4.3.3 we encountered three conditions

su�cient to ensure continuity of a polygonized surface:

1. Cells that meet at a common cell edge share a common intersection point (edge
continuity).

2. Cells that meet along a common face share common polygon edges (face con-
tinuity).

3. The subspace polygonization inside a cell is continuous, i.e., every polygon
edge inside a cell is shared by a neighbored polygon.

Since the subspace polygonization performs only a triangulation or convex tes-

sellation of a topological polygon formed from the polygon edges, the third condition

is always ful�lled.

6.5.1 Face Continuity

Face continuity is given if cells that meet along a common face share common polygon

edges. Three cases for cells sharing a common face occur. If two unclassi�ed cells
share a common face then face continuity is automatically ful�lled since polygon

edges are precomputed and shared by the cells sharing the face.
If two classi�ed (i.e., low, high, zero, or one) cells share a common face, then

either the common face is a tree polygon or no polygon edges are computed. In both

cases face continuity is given.

6.5 Continuity 125

The third case occurs for a face shared by an unclassi�ed cell and a classi�ed

cell (a simple unclassi�ed face). A classi�ed cell is not intersected by the 0.5 iso-

surface, but may have a tree polygon lying on its boundary. Hence all polygon edges

lie on edges of the shared face. The algorithm for the 0.5 iso-surface intersection

with a simple unclassi�ed face tests all edges whether they lie on the 0.5 iso-surface.

Therefore the correct polygon edges are found and face continuity exists.

6.5.2 Edge Continuity

Edge continuity is given if two cells sharing the same edge have the same intersection

point with the 0.5 iso-surface. This might not be the case if an edge is subdivided

during the polyhedral subdivision. Then, since edges are not shared by neighbored

cells, di�erent intersection points with the 0.5 iso-surface can be computed for the

edge separating two adjacent faces. The consequence is a discontinuity in the poly-

gonized surface. An example is shown in �gure 6.7.

}

C

C1

C2

e1

e e2

Intersection point

Vertex

low density value

high density value

on 0.5 iso-surface

Edge of cell

0.5 iso-surface

Figure 6.7. The edges e1 and e2 are not shared by the cell C, which has instead the edge

e. Both the edge e1 and the edge e2 have an iso-surface intersection, but for the edge e no

intersection point is found, because both end points of e have a high density value. As a

result the polygonized iso-surface is not continuous.

Example 6.2 In �gure 6.7 the edges e1, e2, and e belong to the cells C1, C2, and C,

respectively. Since the edges e1 and e2 are not shared by the cell C the edges may

have intersection points with the 0.5 iso-surface which are not found for the edge e.
As a result the polygonized iso-surface has a discontinuity along the edge e.

126 Implementation Details

6.5.3 Discontinuities

The previous subsection has shown that edge continuity can not be guaranteed. The

described discontinuities are due to edge fragmentation and can only be detected by

visually checking the polygonized surface. Note, though, that these discontinuities

can only occur if a cell's edge has two or more iso-surface intersections. We think

this is very unlikely for our polyhedral subdivision.

Since neighbored faces do not share a common edge, di�erent intersection points

may be computed for the edges where two faces meet. This might result in an

unclosed topological polygon in the subspace polygonization (see the discussion of

the geometric tolerance on page 121). In the current implementation Triage Poly-

gonization stops if a topological polygon can not be closed (compare �gure 5.18).

In all scenes tested by us the polygonized surface was always continuous and we

think discontinuities are extremely rare.

6.5.4 Guaranteeing Continuity

Above problems can be avoided by sharing edges between adjacent faces. Wyvill et

al. (see subsection 4.2.2) use a hash table for all edges where the rational edge vertex
coordinates are the keys. Edge intersections are stored for each edge. Note however,
that implementing above method destroys the simplicity of the BSP partition, and

for our polyhedral subdivision we can expect many edges (e.g., edges shared with
tree polygons) to lie exactly on the 0.5 iso-surface. Additionally we would have had
implementation problems1.

6.6 Model Extensions

The object model described in chapter 2 is a quasi-convolutionally smoothed CSG
object with polyhedral primitives. The CSG object is smoothed with a spherical

�lter of constant radius. Though this object model is su�cient to represent many

natural scenes a more general approach is desirable.

A useful feature of a CSG modeler is support for clipping planes. With the help
of clipping planes it is easy to produce a smoothed object with some sharp edges. An

example is given in �gure D.5. Here we have clipped a rounded cube in its middle

and subtracted the result from an unrounded cube. The resulting shape is shown in

detail in the top enlargement of the �gure.

Another desirable feature is to de�ne di�erent rounding radii for the edges of
an object. Though this e�ect is not possible for quasi-convolutionally smoothed

objects, a similar e�ect is obtained by de�ning di�erent smoothing radii for the

half-spaces which form a polyhedral primitive. This technique was used to produce

1The current version of the Clean language provides neither an array data type nor pointers.

6.6 Model Extensions 127

the cylindrical metal pins with smoothly attened ends in �gures D.2 (see also the

enlargements).

6.6.1 Clipping Planes

Support for clipping planes is a useful feature of a CSG modeler. They provide the

possibility to cut o� (possibly rounded) edges and corners of an object or to cut an

object open to provide an inside view. Therefore clipping planes simplify and enrich

modeling capabilities.

For our object model clipping planes can be straightforwardly applied as a post-

processing step by simply clipping all polygons of the polygonized object. An ex-

ample for this approach is seen in �gure 6.8 (b).

Rounded object

Clipping plane

Polygonized object

b) First polygonization,
 then clipping

c) First clipping,
 then polygonization

a) {cell

one

high
unclassified

low
zero

Figure 6.8. A rounded object with a clipping plane (a). The straight forward method

is to clip the polygonized object (b). A better solution is to clip the density �eld of the

quasi-convolutionally smoothed object before polygonization (c).

128 Implementation Details

Clipping the Density Field

Though clipping the polygonized object is a straightforward approach it has several

disadvantages. Firstly note that many smoothed edges and corners are polygonized

though they are clipped o� in the post-processing step. Secondly note that the

clipping plane forms a face where it intersects the object. This face must be gen-

erated in an additional post-processing step. An approach coherent with Triage

Polygonization is more desirable.

The solution is to clip the quasi-convolutionally smoothed object before polygo-

nizing it. This is achieved by clipping the corresponding DCSG object. The clipped

DCSG object is then transformed into a DBSP tree, which partitions the density

�eld de�ning the clipped quasi-convolutionally smoothed object. The region outside

the clipping plane has the density class zero. The subspace polygonization is only

required for the remaining unclassi�ed cells.

An example for this approach is shown in �gure 6.8 (c). Note that clipping the

object before polygonizing it, halves the number of unclassi�ed cells. The polygo-
nization of a clipped object is di�erent from the original polygonization if an unclas-

si�ed cell is clipped. In this case, since subspace polygonization and edge re�nement
is independent of the size of an unclassi�ed cell, a more accurate polygonization

results.

Implementation

To implement the clipping algorithm observe that clipping the DCSG object pro-
duces a discontinuity of the corresponding density �eld along the clipping plane.
Since the subspace polygonization is applied only to cells inside the clipping plane,

the discontinuity a�ects only the computation of tree polygons and not the subspace
polygonization.

Recall that a tree polygon is de�ned as a polygon which separates a cell outside

the 0.5 iso-surface from a cell inside the 0.5 iso-surface. In a clipped DBSP tree a
high or one cell can be adjacent to a zero or low cell2. To take this into account,

the function SingleSideTreePolygons de�ned in �gure 5.10 is changed by calling the
function InsertInDCells �rst with a low and zero density class in its �rst argument
and then with a high and one density class in its �rst argument (compare �gure 5.11).

The function InsertInDCells must be extended by allowing a list of density classes

in its �rst argument. The second and third argument do not change, i.e., they

remain a DBSP tree and a list of faces. The speci�cation of the extended function
InsertInDCells is then that all faces are inserted in the DBSP tree and the face
fragments reaching a cell having any of the given density classes are returned.

Note that part of the 0.5 iso-surface might lie on a clipping plane without be-

ing a tree polygon. This is the case if clipping an unclassi�ed cell as is shown in
�gure 6.8 (c). The polygons on the clipping plane must be produced during the

2A one cell is never adjacent to a low cell, but allowing this case makes the implementation
easier.

6.6 Model Extensions 129

subspace polygonization. The solution is to extend the function TraverseTree (see

�gure 5.19), which traverses a DBSP tree and performs a subspace polygonization

for all unclassi�ed cells. The new version of TraverseTree is shown in �gure 6.9.

TraverseTree :: DBSPTree Plane Polyhedron -> [Polygon]

TraverseTree (DBSPNode plane inDBSPTree outDBSPTree) clippingPlane boundingBox

= inSubspacePolygons ++ outSubspacePolygons

where

(inBox,outBox) = SplitPolyhedron plane boundingBox

inSubspacePolygons = TraverseTree inDBSPTree clippingPlane inBox

outSubspacePolygons = TraverseTree outDBSPTree clippingPlane outBox

TraverseTree dbspLeaf=:(DBSPLeaf densityClass) clippingPlane boundingBox

| densityClass != Unclassified = []

= polygonsInClippedCell ++ polygonsOnClippingFace

where

clippingFace = Intersection boundingBox clippingPlane

polygonsInClippedCell = SubspacePolygonsOfCell dbspLeaf

polygonsOnClippingFace = if (IsVoid clippingFace) [] (InsertInCells IN

(Faces2BSPTree polygonsInClippedCell) clippingFace)

Figure 6.9. A plane clipping an unclassi�ed cell might contain parts of the object surface.

The subspace polygonization is extended to �nd the corresponding polygons.

The function TraverseTree is extended by computing for every intersection of the

clipping plane with an unclassi�ed cell the polygons on the clipping plane inside
the cell. Since we assumed that the DBSP tree is built from the clipped DCSG
object, the clipping plane can only lie on the boundary of an unclassi�ed cell. In

that case the intersection of the clipping plane with the unclassi�ed cell in non-void
and is given by a boundary face (clippingFace) of the cell. The subspace polygons on

the clipping plane are obtained by clipping the face clippingFace with all subspace

polygons of the cell. This is most easily achieved by forming a BSP tree from
the subspace polygons3 and inserting the face into the tree. Only fragments of the

clipping face that lie in IN cells are retained. The insertion is done with the function
InsertInCells from �gure 3.13.

6.6.2 Rounding Radius of a Half-space

As mentioned in the introduction to this section it is not possible to de�ne di�erent

rounding radii for the edges of a quasi-convolutionally smoothed object. The reason

3If the list of subspace polygons is empty the BSP tree is either an IN cell or an OUT cell
depending on the density class of the center of the cell.

130 Implementation Details

lies in the de�nition of a quasi-convolutionally smoothed object which is a CSG

object with convex polyhedra as primitives. The polyhedral primitives are modeled

as intersection of half-spaces. The smallest primitive in the description of a quasi-

convolutionally smoothed object is hence a half-space. Edges are not explicitly

described.

However, interesting e�ects are obtained by smoothing the half-spaces of a poly-

hedral primitive with di�erent rounding radii. The enlargements in �gures ?? and ??

show as an example two metal pins of a hole punch. A metal pin is modeled as a

cuboid with a diameter of one unit. Smoothing it with a spherical �lter of radius 0.5

produces a cylinder. The at right end of a metal pin is obtained by using a spheri-

cal �lter of radius 0.1 for the corresponding half-space. The metal pin is clipped on

the left end to �t it smoothly to the hinge of the hole punch. Figure 6.10 gives the

scene description of a metal pin.

metalPin = Clipped

(Rounded 0.5 (Intersection

[Rounded 0.1 leftPlane, rightPlane,topPlane,

bottomPlane, frontPlane, backPlane]))

(Translate (-0.5) rightPlane)

Figure 6.10. Scene description of a metal pin.

To allow di�erent rounding radii for the half-spaces of an object the object model
is extended by allowing rounding attributes at every position of a CSG object.

The interpretation is that a rounding radius de�ned nearer to a primitive object
overwrites a previously de�ned rounding radius. Hence every half-space of a rounded
object is associated with the rounding attribute de�ned nearest to it in the tree

structure of a CSG object.
The only change necessary in the implementation of Triage Polygonization is to

de�ne for every half-space of a primitive object the associated rounding attribute
and to use it for all computations involving a half-space (e.g., computation of a
density value, polyhedral subdivision). The algorithm itself is not changed. Note

that we introduced the idea of di�erent rounding radii for two half-spaces already

in �gure 5.2.

6.7 Numerical Stability

The implementation of Triage Polygonization on a machine with �nal precision arith-

metic leads to the occurrence of numerical errors. Though numerical errors in general
can not be prevented it is often possible to limit the consequences of numerical er-

rors. That means, a small error in the computation should lead only to a small error

in the result.

6.7 Numerical Stability 131

The critical parts in Triage Polygonization are the using of logical alternatives.

We identify two cases: The �rst case occurs when classifying the vertices of a face

as outside, inside, or on the 0.5 iso-surface. The second case occurs during the

construction of a DBSP tree when classifying an object as inside, outside, or on a

plane. The following subsections describe these problems in more detail and present

our solutions.

Precomputation of Polygon Edges

Initial results suggested that the error prone part of Triage Polygonization is the

classi�cation of a point in a density �eld into inside, outside, or on the iso-surface.

The \on" case is needed to compute the face intersection with a simple unclassi�ed

face of the polyhedral subdivision (compare section 5.4 on page 91). The de�nition of

the polyhedral subdivision implies that many vertices of unclassi�ed cells lie exactly

on the 0.5 iso-surface (also compare �gure 5.2). The fact that face vertices are not

shared only increases this problem.
The solution is to classify vertices against a displaced iso-surface with a threshold

value of 0:5 + �. We chose � = 0:001 to polygonize the example scenes given in

section 2.5 and never detected a vertex lying on the 0:5+ � iso-surface. A continuity
argument yields that if an edge intersects the 0:5 + � iso-surface the 0.5 iso-surface
intersection is near. The exact 0.5 iso-surface intersection is computed by a root

search.
For simple unclassi�ed faces the vertex densities are either all greater than or

equal to 0.5 (high cell on opposite side) or all smaller than or equal to 0.5 (low cell on
opposite side). For the latter case the iso-surface does not intersect the face (since a
low cell lies completely outside the 0:5 + � iso-surface). In the �rst case all vertices

classi�ed as low are considered as intersection points with the 0.5 iso-surface. We
show that their density values di�er less than � from 0.5.

Proof: A simple unclassi�ed face bounds a high cell. Its vertices hence

have density values greater or equal to 0.5. On the other hand the low
vertices lie outside the 0:5+ � iso-surface and hence have a density value
smaller then 0:5 + �. 2

The polygon edges on a simple unclassi�ed face are produced by connecting the

intersection points with the same method as for a fully unclassi�ed face (see page 92).

A potential pitfall in using the 0:5+ � iso-surface is that the displaced iso-surface

can also intersect high cells. This is, for example, the case for a concave three

plane corner as shown in the bottom enlargements of �gure D.5 (a) and (b). Since

the subspace polygonization is only performed for unclassi�ed cells, regions of the

iso-surface inside a high cell are not polygonized. This can result in holes in the

polygonization. However, the goal of Triage Polygonization is to approximate the

0:5 iso-surface, which lies completely outside the high regions. Hence the missing

polygons are exactly the parts of the simple unclassi�ed face, which lie outside the

132 Implementation Details

0:5 + � iso-surface4.

The missing polygons are de�ned by the intersection points of the face edges

with the 0.5 iso-surface, and the low vertices of the face. The orientation of such a

polygon is given by recognizing that the high cell must lie on its inside.

Vertex
}

low density value

on 0.5 iso-surface

high density value

Polygon edge

Intersection point

p1

p2 p3

p4

0.5 iso-surface

0.5+ε iso-surface

Polygon

p5

pint1

pint2

pint3

pint1

pint2

pint3

a)

b) c) d)

high

unclassified

p3p3

Figure 6.11. Using the 0:5+� iso-surface for vertex classi�cation (b) might produce holes

during the subspace polygonization (c). The missing polygons are produced in an additional

step as part of a simple unclassi�ed face separating a high cell and an unclassi�ed cell (d).

Example 6.3 Figure 6.11 (a) shows an unclassi�ed cell and a high cell separated

by a simple unclassi�ed face. The 0.5 iso-surface is depicted transparent, the 0:5+ �

iso-surface shaded. The subspace polygonization is restricted to the unclassi�ed

cell shown in pictures (b) - (d). Picture (b) shows the classes of the cell's vertices.

The result of our subspace polygonization is shown in (c). The produced polygon

represents only part of the 0.5 iso-surface inside the cell. In picture (d) we apply the

method introduced above and de�ne an additional polygon from the intersection

points pint1 and pint2 and the low vertex p3. Both polygons together provide the
desired approximation to the 0.5 iso-surface.

4In rare cases the exact 0.5 iso-surface might actually not intersect the simple unclassi�ed face.
However, the error is smaller than � and our solution guarantees continuity.

6.8 Polygonizing a Scene 133

6.7.1 DBSP Trees

The numerical problems occurring during DBSP tree construction are identical to

the problems occurring for a simple BSP tree. We mention two problems. The �rst

problem occurs if classifying an object as inside, outside, or on a plane. Here small

errors in the de�nition of the object might lead to di�erent classi�cations and hence

completely di�erent results. We use �-intervals to discriminate whether a real value

x is smaller, bigger, or equal to another value y, e.g., x = y if and only if jx�yj � �.

Other boolean expressions are computed similarly.

A related problem arises if splitting an object with a partitioning plane. Numer-

ical errors or bad input data can lead to extremely small bits as result of a splitting

operation, which makes subsequent BSP operations unstable. We avoid this problem

by ignoring results of a splitting operation with a size below a given threshold.

A more detailed discussion of the numerical robustness of BSP tree algorithms

is given by Naylor et al. [NAT90].

6.8 Polygonizing a Scene

A scene is de�ned as a CSG object with quasi-convolutionally smoothed and un-
smoothed polyhedral objects as primitives. Additionally the de�nition of clipping

planes is allowed. The scene is polygonized by �rst pushing the clipping planes down
the tree structure of the CSG object until they either reach a quasi-convolutionally
smoothed object or a convex polyhedral primitive of an unsmoothed object. A clip-

ping plane is pushed down the tree structure of a CSG object by recalling that a
clipping operation is modeled as an intersection with a half-space H and by using

the set equivalence

(A�?B)\?H = (A�?H)\?(B�?H); (�? 2 f[?;\?; n
?
g)

where A and B represent CSG objects. The clipping of a quasi-convolutionally

smoothed object is part of Triage Polygonization (subsection 6.6.1). A convex poly-

hedral primitive is clipped by adding the half-space de�ned by the clipping plane to
the list of half-spaces whose intersection de�nes the polyhedron.

The scene is then polygonized by polygonizing its quasi-convolutionally smooth-

ed and unsmoothed polyhedral primitives. A quasi-convolutionally smoothed poly-
hedron is polygonized with Triage Polygonization. A polygonization for an un-

smoothed polyhedron is given by its b-rep (see chapter 3). Set operations between

unsmoothed and smoothed objects are performed by building BSP trees from the

polygonized objects and merging them as described in section 3.4. Note that the

b-rep of an unsmoothed object is already represented as a BSP tree. A BSP tree
for a quasi-convolutionally smoothed object can be obtained either from the DBSP

tree for its polyhedral subdivision or by inserting the polygons obtained with Triage

Polygonization into an initially empty BSP tree.

134 Implementation Details

To gain e�ciency, only disjoint unions are allowed in the scene description. Then

two objects forming a union are polygonized independently and no merging operation

for the polygonized objects is necessary.

Gouraud Shading

A polygonized scene is naturally everything but smooth. To obtain a pleasant image

of a polygonized scene we render it using Gouraud shading. To do this the vertex

normals of each polygon must be known.

The vertex normals of the polygons of unsmoothed objects and of tree polygons

are given by the surface normal of the corresponding polygon (recall that tree poly-

gons describe planar areas of the object surface). The vertex normal ~npi of a vertex

pi of a subspace polygon is given by the gradient of the density �eld in the vertex

~npi =
r�(pi)

kr�(pi)k

Again the local density �eld of the corresponding cell can be used to compute the

gradient. Section 6.4 describes the computation of the gradient of a density �eld.

C H A P T E R 7

Results

7.1 Introduction

In this chapter we present a number of �ndings obtained from analyzing Triage
Polygonization. We start this chapter with a look at a few color images showing the

polygonization process and the achieved results.
The next two sections give a performance analysis of Triage Polygonization.

We perform a complexity analysis and present statistical results obtained for the

example scenes from section 2.5. The statistical results are discussed and compared
with the more theoretical results from the complexity analysis.

The chapter concludes with a comparison of Triage Polygonization and the gen-
eral polygonization methods presented in chapter 4. We implemented the Marching
Cubes algorithm and the obtained statistics are compared with the corresponding

results achieved with Triage Polygonization. It will be seen that for the complex
scenes Triage Polygonization is considerably faster and produces far fewer polygons
than the Marching Cubes algorithm.

7.2 Images of Polygonized Scenes

This section explains the color images given in appendix D. We �rst try to visualize
the three steps of Triage Polygonization: polyhedral subdivision, extraction of tree

polygons, and subspace polygonization. We then present images of the example

scenes presented in section 2.5. All images were produced by polygonizing the ex-

ample scenes with Triage Polygonization (or the Marching Cubes algorithm where

noted) and rendering the resulting set of polygons with the program Spin 1.0 using
Quickdraw3d on a Power Macintosh 9500/120.

135

136 Results

Visualization of the Polygonization Process

Figure D.1 shows the result of visualizing the three steps of Triage Polygonization.

The �gure shows a simple scene constructed by quasi-convolutionally smoothing the

set di�erence of a big and a small cube. The resulting object is shown in part (h)

of the �gure.

The �rst step of Triage Polygonization is a polyhedral subdivision of the density

�eld into zero, low, high, one, and unclassi�ed cells. Figure D.1 (a) { (c) give the

low, high, and unclassi�ed cells, respectively, of the resulting subdivision. Note the

small size of the unclassi�ed cells in part (c) of the �gure as compared to the size of

the object. Only for these cells must a subspace polygonization be performed.

The second step of Triage Polygonization is the extraction of tree polygons, which

separate low from high cells. The low and high cells are shown in part (a) and (b) of

the �gure and the resulting tree polygons separating the cells are given in (d). Back

facing polygons are illuminated only with an ambient light source and are hence

shaded in reddish black.
The third and last step of Triage Polygonization is the subspace polygonization

of the density �eld inside unclassi�ed cells. The resulting subspace polygons are
shown in (e). Note that for almost all unclassi�ed cells in (c) subspace polygons are
found, which suggests that our polyhedral subdivision correctly identi�es regions of

space containing a curved iso-surface.
The complete polygonization output by Triage Polygonization is given in (f) at

shaded, in (g) as a wire-frame representation and in (h) Gouraud shaded. For better

understanding of the images in this and all following wire-frame representations the
back-faces are removed.

Polygonization Quality

The �gure D.2 shows a quasi-convolutionally smoothed and polygonized hole punch
Gouraud shaded and in a wire-frame representation, respectively. The base of the

hole punch is rounded with a smoothing radius considerably smaller than the base
itself. As a result Triage Polygonization extracts most of the object's surface as large

rectangles. A smoothed edge and corner is represented with two long rectangles and
6 triangles, respectively. The Gouraud shaded picture in �gure D.2 (b) shows that
the produced polygons are su�cient to achieve the visual impression of a smoothed

surface.

The enlargements of �gure D.2 depict the punch, part of the hinges, and some
metal pins in detail. Note that the punch is clipped on the top and that Triage

Polygonization correctly polygonizes the clipped surface. The clipping algorithm,
introduced in subsection 6.6.1, needs only four quadrilaterals to represents the sur-

face formed by clipping. Four quadrilaterals are produced because the clipping

plane intersects four unclassi�ed cells of the polyhedral subdivision of the density
�eld de�ning the quasi-convolutionally smoothed punch. The clipping algorithm

clips all four unclassi�ed cells, for each of which the cells' surface resulting from

7.2 Images of Polygonized Scenes 137

clipping is given by one quadrilateral.

The two metal pins at the bottom right corner of the enlargement are constructed

from half-spaces with di�erent rounding radii (see subsection 6.6.2). This gives the

impression of a cylinder with a smoothly attened end. Observe that the cylindrical

part of a smoothed metal pin is approximated with rectangles whereas the more

complicated end of a pin is represented by triangles.

Figure D.3 shows a quasi-convolutionally smoothed and polygonized stapler in a

wire-frame representation (a) and Gouraud shaded (b). Note that very thin objects

such as the side plates of the hinge are polygonized without problems. The front

left side of the stapler is polygonized by long triangles. Inspecting the corresponding

DBSP tree reveals that in this area the local density �eld is given as the intersection

of two smoothed half-spaces, but that the corresponding cells in the polyhedral

subdivision are not cuboids. The polygons in this area form a convex tessellation of

a topological polygon as introduced in subsection 5.7.1.

a) b)

Figure 7.1. The base of a stapler is a union of two cuboids (a) with the top edges clipped

o� at the front and the sides (b).

The base part of the stapler is modeled as a union of two cuboids with the top

edges clipped o� at the front and the sides of the union. Figure 7.1 gives the resulting
object before it is quasi-convolutionally smoothed. The magni�ed part of �gure D.3

depicts the region where both objects forming the base of the stapler touch. It can
be seen that our polygonization method also handles such a complex region without
problems.

Figure D.4 shows 27 blended cubes modeled as a quasi-convolutionally smoothed

union of 27 cubes. Observe that the resulting polygonization is su�ciently �ne to

give the impression of smoothly blended cubes. The polygonization is coarsest at the
outer corners of the object, such as the top back corner, depicted in the enlargement

of the �gure. The reason for the coarse polygonization is that in the corners of

the object the corresponding density �eld is given as the intersection of only three
rounded half-spaces. The corresponding polyhedral subdivision has larger cells in

these regions, which leads to a coarser polygonization.

Figure D.5 shows the polygonized \CSG Example" scene. The scene is modeled

as a union of six objects each derived by applying various combinations of rounding

operations and a set operation to a cube and a small cuboid. Two interesting cases
are shown as enlargements. The top enlargements of both parts of the �gure de-

picts a clipped quasi-convolutionally smoothed small cube subtracted from a bigger

unsmoothed cube. The object is polygonized by computing the b-rep of the un-

138 Results

rounded object and polygonizing the clipped quasi-convolutionally smoothed object

with Triage Polygonization. The resulting polygonized objects are transformed into

BSP trees (the b-rep is already given as a BSP tree) and merged with a set di�erence

operation. The merging of BSP trees according to a set operation is achieved with

the merged BSP tree algorithm from section 3.4.

The bottom enlargements of �gure D.5 (a) and (b) give an example of a concave

three plane corner. The corner results from a quasi-convolutionally smoothed union

of a big cube and a small cuboid. It can be seen that the corner is nicely polygonized

with only 26 triangles. This corner is a case where the displaced 0:5 + � iso-surface

lies inside a high cell (see section 6.7 on page 131 for an explanation of the resulting

problem and a solution for it).

Figure D.6 gives as a �nal example the \Variable Radius" scene, which shows

an object constructed as a set di�erence of a cube and a small cuboid smoothed

with varying rounding radii. The object in part (a) was polygonized with Triage

Polygonization whereas for (b) the Marching Cubes algorithm was used. Note that

our algorithm achieves a good polygonization for all objects, independent of the

rounding radius. The polygonization for the objects with small rounding radius can
be considered as optimal. For the objects rounded with a rather large smoothing

radius some \bands" are visible where the object is polygonized more �nely. This
is due to small cells in the polyhedral subdivision of the density �elds de�ning the
quasi-convolutionally smoothed objects.

A comparison of the Triage Polygonization results with the Marching Cubes
results is deferred to section 7.5.

7.3 Complexity Analysis

In this section we examine the time and space complexity of Triage Polygonization.

The space complexity gives the number of polygons of the resulting polygonization.

For all results obtained it is important to di�erentiate between quasi-convolu-

tionally smoothed scenes and quasi-convolutionally smoothed objects. A quasi-con-

volutionally smoothed scene is built from quasi-convolutionally smoothed objects

and unsmoothed objects. In most cases the scene objects are disjoint, but they may
also be obtained by applying set operations to more primitive scene objects. The

object model and the example scenes are described in chapter 2.

In the following discussions we assume a scene is built predominantly from dis-

joint quasi-convolutionally smoothed objects of relatively low complexity. We con-

centrate on the polygonization of a quasi-convolutionally smoothed object and then
remark on the polygonization of a quasi-convolutionally smoothed scene.

7.3 Complexity Analysis 139

7.3.1 Triage Polygonization

Triage Polygonization builds a DBSP tree from a CSG object, extracts tree polygons,

and performs a subspace polygonization on the unclassi�ed cells of the polyhedral

subdivision. We show in the next paragraphs that this process is analog to the lazy

b-rep algorithm introduced in section 3.3 and therefore has a similar asymptotic

time complexity as it.

Time Complexity

The polyhedral subdivision builds a DBSP tree from a CSG object. The operation

is similar to the lazy BSP tree algorithm (see subsection 3.3.1) except that cells

are di�erently labeled and local density �elds are produced. The input size to the

polyhedral subdivision is three times the input size to the lazy b-rep algorithm. The

reason for this is that Triage Polygonization uses for the polyhedral subdivision, not
only the half-space planes of a scene, but also the half-space planes translated in
positive and negative normal direction by the rounding radius of the scene. Since

the lazy b-rep algorithm has a polynomial time complexity and the input size of the
polyhedral subdivision increases only by a constant factor the polyhedral subdivision

has a similar time complexity to the lazy BSP tree algorithm.
The extraction of tree polygons corresponds to the boundary extraction for a

BSP tree and therefore can be expected to have a similar time complexity.

The subspace polygonization is performed by precomputing polygon edges for all
unclassi�ed faces and then performing a constant time operation on all unclassi�ed
cells. The number of unclassi�ed cells is bounded by the size of the polyhedral subdi-

vision. The precomputation of polygon edges takes constant time for an unclassi�ed
face. The extraction of unclassi�ed faces, in turn, is an operation equivalent to the

extraction of boundary faces. Therefore we expect the subspace polygonization to
have a similar time complexity to the lazy b-rep algorithm.

Above analysis suggests that overall Triage Polygonization has a similar time

complexity to the lazy b-rep algorithm.
In section 3.6 we suggested that the lazy b-rep algorithm has a best case time

complexity of �(n log2 n), an average case time complexity of �(nlog2 +1), and a

lower bound for the worst case time complexity of
(n3). The factor gives the
average size increase of a face split on a partitioning plane.

Since the polyhedral subdivision uses for each half-space plane two additional
orthogonally translated duplicates (the r-ihs-planes and r-ohs-planes), we expect a

higher face fragmentation than for the lazy b-rep algorithm, but not a signi�cant

change of the complexity class.
We suggest therefore for Triage Polygonization the same best case and worst case

time complexity as for the lazy b-rep algorithm, and in the average case a still sub-
quadratic time complexity but with a worse asymptotic behavior than the �(n1:1)

measured for the lazy b-rep algorithm.

140 Results

Space Complexity

For a rounded object most of the polygons produced with Triage Polygonization can

be expected to be subspace polygons. Since the cells of a polyhedral subdivision

usually have a bounded number of faces, the number of subspace polygons produced

for each unclassi�ed cell can be assumed as constant. Then the size of the polygo-

nization of a quasi-convolutionally smoothed object is proportional to the number

of unclassi�ed cells and the space complexity of Triage Polygonization is similar to

its time complexity.

7.3.2 Polygonization of a Scene

We assume that a quasi-convolutionally smoothed scene is built predominantly from

disjoint quasi-convolutionally smoothed objects of low complexity. Therefore the

objects in the scene can be polygonized independently from each other and only in

rare cases must set operations be performed between polygonized objects. Hence we
expect that the time complexity of Triage Polygonization is nearly linear in the size
of the scene. A similar argument suggests that the number of produced polygons

increases nearly linearly with the size of a scene.

7.4 Statistical Results

7.4.1 Introduction

We have implemented Triage Polygonization and the Marching Cubes algorithm in
Clean 1.0. The following statistical results were achieved on an Apple Macin-

tosh Quadra 700 with 9 MByte heap space and 1 MByte stack space.

The results are given in separate graphs for the complex scenes and the n3 blended

cubes. The complex scenes represent examples of quasi-convolutionally smoothed

scenes. We mentioned previously that complex scenes are built predominantly from
disjoint quasi-convolutionally smoothed objects of relatively low complexity.

The n3 blended cubes represent an example of a quasi-convolutionally smoothed

object with increasing complexity. This object is atypical for a quasi-convolutionally
smoothed object, since it is totally rounded, i.e., it has no planar surfaces. However,

the object illustrates that Triage Polygonization also performs well on complicated

fully smoothed objects.

Note that the execution time, where given, does not include garbage collection.

For scenes where the polygonization method uses a large DBSP tree (in the case of
Triage Polygonization) or a large grid (in the case of the Marching Cubes algorithm)

the garbage collection time can exceed the execution time. However, we have recog-

nized that the garbage collection time is strongly inuenced by the evaluation order

7.4 Statistical Results 141

used by Clean and on the memory space available. Furthermore the garbage col-

lection time may be regarded as an artifact of a functional language implementation.

It would have no counterpart in an optimal imperative language implementation.

7.4.2 Triage Polygonization

The main performance measures for Triage Polygonization are its execution time

and the number of output polygons. Figure 7.2 gives these values as obtained for

the complex scenes and the n3 blended cubes.

#polygons

t_execution (in secs)

Size of scene (#half-spaces)

1

10

100

1000

10000

100000

1 10 100 1000 10000

Complex Scenes n^3 Blended Cubes

Size of scene (#half-spaces)

1

10

100

1000

10000

100000

1 10 100 1000

Execution time and number of output polygons of Triage Polygonization vs. size of scene

Figure 7.2. The number of output polygons and the execution time of Triage Polygoni-

zation.

The left graph, given with a double logarithmic scale, suggests that the number of
output polygons and the execution time of Triage Polygonization is approximately
linear in the size of a scene. Though in some of the scenes set operations are

performed with polygonized objects, this does not seem to inuence the asymptotic
behavior. This indicates that Triage Polygonization produces a tessellation such

that set operations involving polygonized objects are not more expensive than the
polygonization itself.

For the n3 blended cubes, which represent a quasi-convolutionally smoothed

object, the number of output polygons and the execution time of Triage Polygoni-

zation is clearly increasing at a more than linear rate but less than quadratic in the
size of the object. The graph suggests for Triage Polygonization a space complexity

(i.e., number of output polygons) of about �(n1:2) and a time complexity of about
�(n1:3).

Table 7.1 gives the total number of polygons for the polygonized example scenes.

For some complex scenes the total number of polygons is larger than the sum of
its tree and subspace polygons, given in the following subsections. We identify two

reasons for this size increase: the \Cube In Cube" scene and the \CSG Example"

142 Results

Scene #polygons Number of vertices

3 4 5 6 � 7

Cube 78 61.54 38.46 0 0 0

Cube in Cube 396 90.63 8.85 0 0 0.52

Stapler 1254 87.78 11.90 0.16 0.16 0

CSG Example 876 80.10 19.37 0.53 0 0

Variable Radius 2521 93.38 5.99 0.48 0 0.16

Hole Punch 2951 89.72 9.97 0.21 0.10 0

Many Staplers 30096 87.78 11.90 0.16 0.16 0

1 blended Cube 48 100.00 0 0 0 0

8 blended Cubes 2496 100.00 0 0 0 0

27 blended Cubes 11952 100.00 0 0 0 0

64 blended Cubes 33024 100.00 0 0 0 0

Table 7.1. Percentage of polygons by number of vertices.

scene also contain unrounded objects, which are polygonized with the lazy b-rep

algorithm; the \Hole Punch" scene and again the \CSG Example" scene use the
merging BSP tree algorithm to perform set operations between polygonized objects.
The merging of BSP trees leads to fragmentation of polygons and hence usually

increases the size of a polygonization.
The table shows that the majority of the output polygons are triangles. However,

a signi�cant number of polygons have more than three vertices. We show in the

following subsections that most polygons with more then three vertices are tree
polygons.

An interesting question is what proportion of the total execution time is spent on
the three steps of Triage Polygonization. Figure 7.3 indicates that for complex scenes
the polyhedral subdivision is the most complex task. The subspace polygonization

still takes on average about a quarter of the computation time and the extraction
of tree polygons about 5{10% of the time.

For the n3 blended cubes the polyhedral subdivision and the subspace polygo-

nization both seem to take almost half of the total execution time, independent of

the size of the object. We omit here the results obtained for the case where n equals

one because one blended cube represents a primitive object. The precomputation of

the face intersections takes only a minor amount of the computation time, but its
percentage seems to be fairly constant at about 5%.

The results for both complex scenes and the n3 blended cubes indicate that the

three steps of Triage Polygonization have similar asymptotic time complexities. This

observation corresponds to results of the complexity analysis in the previous section.

In the following subsections we examine the three steps of Triage Polygonization
in more detail.

7.4 Statistical Results 143

Subspace

polygonization

Extract tree

polygons

polyhedral

subdivision

Execution time by subtasks

Complex Scenes

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

0%

20%

40%

60%

80%

100%

n^3 Blended Cubes

0%

20%

40%

60%

80%

100%

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

Figure 7.3. Distribution of execution time by subtasks of Triage Polygonization.

7.4.3 Polyhedral Subdivision

Size and Execution Time

The polyhedral subdivision partitions a density �eld in a BSP-like manner into zero,
low, high, one, and unclassi�ed cells. For each unclassi�ed cell a reduced arithme-

tic tree is computed de�ning a local density �eld, which is identical to the original
density �eld, inside the cell.

The size of the polyhedral subdivision of a quasi-convolutionally smoothed ob-
ject is de�ned as the number of partitioning planes in its DBSP tree. The size of
the polyhedral subdivision of a scene is given as the total size of the polyhedral

subdivisions of all quasi-convolutionally smoothed objects in the scene. We de�ne

the size of a scene as the number of half-spaces de�ning primitive objects.

Figure 7.4 gives the size of the polyhedral subdivisions of the example scenes and
the time necessary to compute them.

Complex scenes are constructed predominantly as disjoint unions of quasi-con-

volutionally smoothed objects of relatively low complexity. As suggested in the
complexity analysis, the size of the polyhedral subdivision (i.e., the number of parti-

tioning planes in the corresponding DBSP tree) for a complex scene seems to depend

linearly on the size of the scene. The graph suggests that the subdivision consists

of about 20 times more partitioning planes than the corresponding CSG object has

primitive half-spaces.
More interesting is the size of the polyhedral subdivision for a quasi-convolution-

ally smoothed object. For the n3 blended cubes the size of the polyhedral subdivision

seems to increase more than linearly. Interpolating the values in �gure 7.4 suggests

144 Results

Size of scene (#half-spaces)

Execution time and size of polyhedral subdivision vs. size of scene

Size of polyhedral subdivision
(#partitioning planes)

10000

1

10

100

1000

10000

100000

1 10 100 1000

Complex Scenes

Size of scene (#half-spaces)

0.1

1

10

100

1000

10000

1 10 100 1000

n^3 Blended Cubes Cubes

t_execution (in secs)

Figure 7.4. Size and execution time of the polyhedral subdivision vs. size of the scene.

a space complexity of the polyhedral subdivision of about �(n1:1). For the time
complexity of the polyhedral subdivision the �gure suggests a value of about �(n1:3).

Density Classes

Distribution of density classes in polyhedral subdivision

Complex Scenes

0%

20%

40%

60%

80%

100%

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

n^3 Blended Cubes

0%

20%

40%

60%

80%

100%

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

one cell

high cell

unclassified cell

low cell

zero cell

Unclassified cells with iso-
surface intersection (in per-
cent of unclassified cells)

Figure 7.5. Distribution of density classes in the polyhedral subdivision and percentage

of unclassi�ed cells with 0.5 iso-surface intersection.

An important aspect for the e�ciency of Triage Polygonization is the number of

7.4 Statistical Results 145

low, high, and unclassi�ed cells in the polyhedral subdivision. Faces separating low

and high cells are immediately extracted as part of the 0.5 iso-surface, whereas for

unclassi�ed cells a comparatively expensive subspace polygonization is performed.

Figure 7.5 shows that for complex scenes only about 25% of all cells are unclassi-

�ed. The complexity of the polyhedral subdivision of the n3 blended cubes increases

with n and therefore the proportion of unclassi�ed cells increases, too. Recall that

the n3 blended cubes are completely rounded (i.e., the rounding radius of the object

is half the diameter of a cube), which is atypical for a quasi-convolutionally smooth-

ed object. As a consequence the polyhedral subdivision for the n3 blended cubes

has no high or one cells.

The overlay graph in �gure 7.5 gives the actual percentage of unclassi�ed cells

intersected by the 0.5 iso-surface. For most complex scenes, on average 75% of

all unclassi�ed objects are intersected by the 0.5 iso-surface. Note that for the n3

blended cubes the subspace polygonization is still successful in at least half of the

cases.

Summarizing, we demonstrated that for a quasi-convolutionally smoothed scene

only a small percentage of the cells of a polyhedral subdivision is unclassi�ed. The
majority of the unclassi�ed cells are indeed intersected by the 0.5 iso-surface. Even

for an atypical quasi-convolutionally smoothed object, such as the n3 blended cubes,
more than half of its unclassi�ed cells are intersected by the 0.5 iso-surface. These
results suggest that the polyhedral subdivision is very e�ective.

Density Fields

>=6 half-spaces

5 half-spaces

4 half-spaces

3 half-spaces

2 halfspaces

n^3 Blended Cubes

0%

20%

40%

60%

80%

100%

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

Distribution of local density fields (of unclassified cells) in polyhedral subdivision

Complex Scenes

0%

20%

40%

60%

80%

100%

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

Figure 7.6. Size distribution of the local density �elds for unclassi�ed cells.

The polyhedral subdivision computes a local density �eld for each cell simultane-

ously with its density class. The complexity of a local density �eld is important for

146 Results

two reasons: �rstly, for a local density �eld de�ned as the product of two half-spaces

the 0.5 iso-surface is convex. This allows us to apply a specialized, more e�cient

polygonization method. Secondly, the density �eld is frequently evaluated during

the subspace polygonization (for the root search). The evaluation time for the local

density �eld is proportional to the size of the arithmetic tree de�ning it. Since the

density computation for a smoothed half-space is the most complex operation in an

arithmetic tree, we quantify the size of a local density �eld by the number of density

half-spaces in the corresponding arithmetic tree.

Figure 7.6 shows the size distribution of the local density �elds for all unclassi�ed

cells of a polyhedral subdivision. For the complex scenes hardly any cell has an arith-

metic tree with a size greater than �ve. It can be said that a local arithmetic tree

is of constant size. About 30% of all unclassi�ed cells have a local density �eld that

is the product of two density half-spaces. This means that in about 30% of all cases

the 0.5 iso-surface inside an unclassi�ed cell is polygonized with the algorithm for a

convex tessellation (section 5.7). Additionally we found that the size of these cells is

generally bigger than the of size of those cells with a more complex density object.

For example, consider a simple smoothed cube. The unclassi�ed cells containing the
smoothed edges are bigger than the cells containing the smoothed corners. These

results suggest that was worthwhile to �nd an optimal polygonization for cells with
an intersection of two half-spaces.

The graph for the n3 blended cubes suggests that the complexity of a local arith-

metic tree increases with the size of a quasi-convolutionally smoothed object. This
result is not surprisingly, since with the increasing size of a quasi-convolutionally

smoothed object, a region of space is likely to be in the vicinity of more half-spaces
de�ning the object.

Summarizing we have seen that the density �eld inside an unclassi�ed cell is usu-

ally extremely simple, and that in fact we can expect to evaluate the corresponding
arithmetic tree in constant time. About 30% of all unclassi�ed cells contain a simple
convex surface, which justi�es the development of a more e�cient subspace polygo-

nization method for these cells.

7.4.4 Extraction of Tree Polygons

The second step of Triage Polygonization extracts tree polygons, which are faces

separating low and high cells in a polyhedral subdivision. Table 7.2 shows the

number and size distribution of the extracted tree polygons. The majority of the

tree polygons are quadrilaterals, and when examined most of them prove to be

rectangles. This should be expected since most polyhedral primitives of quasi-con-

volutionally smoothed objects are cuboids.

Though the tree polygons make up only 1{2% of the output polygons we found

that they represent in average about 80% of the area of a polygonized surface.

A small proportion of the tree polygons has �ve or even six vertices This indi-

cates that some cells in the polyhedral subdivision have a complicated non-regular

geometry.

7.4 Statistical Results 147

Scene #tree Number of vertices

polygons 3 4 5 6 � 7

Cube 6 0 6 0 0 0

Cube in Cube 12 0 12 0 0 0

Stapler 36 2 30 2 2 0

CSG Example 46 0 46 0 0 0

Variable Radius 49 0 49 0 0 0

Hole Punch 50 0 45 4 1 0

Many Staplers 864 48 720 48 48 0

n3 blended Cubes 0 0 0 0 0 0

Table 7.2. Number of tree polygons by number of vertices.

The only example scene containing tree polygons on a clipping plane is the \CSG
Example" scene, which has �ve tree polygons on a clipping plane. These polygons
result from clipping a rounded cube with a plane parallel to its top face, which forms

a zero cell adjacent to four high cells and one one cell.

t_execution (in secs)

#tree polygons

Size of scene (#half-spaces)

0.1

1

10

100

1000

1 10 100 1000 10000

Complex Scenes

Size of scene (#half-spaces)

0.01

0.1

1

10

100

1 10 100 1000

n^3 Blended Cubes

Number of extracted tree polygons and execution time vs. size of scene

Figure 7.7. The number of tree polygons and the execution time of the algorithm for the

extraction of tree polygons vs. size of the scene.

Figure 7.7 shows that the number of tree polygons and the execution time of
the algorithm for the extraction of tree polygons is linear in the size of the complex

scenes. For the n3 blended cubes no tree polygons exist because the applied rounding
radius is half the diameter of a primitive cube. The graph suggests a time complexity

of about �(n1:3), which is the same time complexity as for the polyhedral subdivision.

148 Results

7.4.5 Subspace Polygonization

The �nal step of Triage Polygonization is a subspace polygonization for all un-

classi�ed cells. The subspace polygonization �rst approximates all 0.5 iso-surface

intersections with the faces of unclassi�ed cells. The approximations form polygon

edges for the subspace polygons. The polygon edges are connected to form topolog-

ical polygons, which are then subdivided into planar polygons. In some cases the

0.5 iso-surface inside an unclassi�ed cell is convex and is polygonized with a convex

hull algorithm.

Precomputation of Face Intersections

In all cases it was possible to re�ne the precomputed polygon edges. This suggests

that all polygon edges are good approximations to the corresponding 0.5 iso-surface

intersection with the face.

Topological Polygons

Triage Polygonization connects the precomputed polygon edges to form topological
polygons. Figure 7.8 shows the distribution of the resulting topological polygons by

the number of vertices.

Complex Scenes

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

>6 polygon edges

6 polygon edges

5 polygon edges

4 polygon edges

3 polygon edges

0%

20%

40%

60%

80%

100%

Blended Cubes

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

0%

20%

40%

60%

80%

100%

Distribution of polygon edges by number of vertices

Figure 7.8. Distribution of topological polygons by number of vertices.

In the majority of cases a topological polygon has four vertices. The reason for

this is that the polyhedral subdivision produces generally cuboidal cells which usu-

7.4 Statistical Results 149

ally have four edge intersections with an arbitrary surface. In some cases topological

polygons with considerably more vertices are formed. Examining these cases reveals

that faces of a cell are fragmented during the precomputation of face intersections.

If, for example, a cell shares a face with three di�erent cells, as the cell on the left

in �gure 7.9, then the face is split into three faces and for each face a polygon edge

is formed. The topological polygon for the cell has accordingly more vertices.

0.5 Iso-surface intersection with edge

Polygon edge

0.5 Iso-surface

Figure 7.9. A face shared with several cells is split during the precomputation of polygon

edges. For each face fragment a polygon edge is computed.

Closed topological polygons were formed for all subspace polygonizations and no

discontinuities were detected. When tessellating a topological polygons in order to
form planar polygons we never discovered two topological polygons in one cell. This
indicates that the complicated procedure to avoid intersecting subspace polygons is

unnecessary.
When re�ning a topological polygon, the centroid of the topological polygons

could be moved to the iso-surface in all but two scenes: in the \Variable radius"

scene, one out of 325 topological polygons could not be re�ned with a centroid on
the 0.5 iso-surface. In the \Hole Punch" scene this worsened to 32 out of 355. All

cases occurred for very small and narrow topological polygons.
Summarized, these results suggest that the subspace polygonization usually cor-

rectly approximates the 0.5 iso-surface intersection with a cell.

Subspace Polygons

Subspace polygons are obtained either by Tessellating a re�ned topological polygons
or by applying the convex tessellation algorithm. Table 7.3 gives the size distribution

of the subspace polygons for our example scenes by the number of vertices.

The majority of polygons are triangles and their percentage seems to increase

with the complexity of a quasi-convolutionally smoothed object, as can be seen

for the n3 blended cubes. All subspace polygons with more than three vertices
are produced with the algorithm for a convex tessellation of a topological polygon

(subsection 5.7.1). Polygons with more than four edges are in general due to face

fragmentation as described in �gure 7.9.

150 Results

Scene #subspace Number of vertices

polygons 3 4 5 6 � 7

Cube 72 66.67 33.33 0 0 0

Cube in Cube 378 90.63 8.85 0 0 0.52

Stapler 1218 90.80 9.20 0 0 0

CSG Example 764 80.10 19.37 0.53 0 0

Variable Radius 2472 95.31 4.05 0.49 0 0.16

Hole Punch 2781 91.58 8.28 0.07 0.07 0

Many Staplers 29232 90.80 9.20 0 0 0

1 blended Cube 48 100.00 0 0 0 0

8 blended Cubes 2496 100.00 0 0 0 0

27 blended Cubes 11952 100.00 0 0 0 0

64 blended Cubes 33024 100.00 0 0 0 0

Table 7.3. Percentage of subspace polygons by number of vertices.

We also examined the number of subspace polygons lying on a clipping plane.
The \CSG Example" and \Hole Punch" scenes have respectively 4 and 96 subspace
polygons produced by clipping.

The number of subspace polygons in an unclassi�ed cell is not a�ected by the
size of a scene. We recognized, however, that with the increasing size of a quasi-con-

volutionally smoothed object, its polygonization seems to produce more subspace
polygons in each cell. An example is given by the n3 blended cubes for which
�gure 7.10 gives the average number of subspace polygons for a cell intersected by

the 0.5 iso-surface. The cause for the increased number of subspace polygons is given
by an the increased face fragmentation for larger quasi-convolutionally smoothed
objects, which results in topological polygons with more vertices.

Number of subspace polygons for a cell intersected by the 0.5 iso-surface

0 1 2 3 4 5 6 7 8 9 10

1 Blended Cube

2^3 Blended Cubes

3^3 Blended Cubes

4^3 Blended Cubes

Figure 7.10. Number of subspace polygons for a cell intersected by the 0.5 iso-surface.

Figure 7.11 suggests that for complex scenes the number of subspace polygons

and the execution time of the subspace polygonization increases linearly in the size
of the scene.

For the n3 blended cubes the execution time and the number of produced sub-
space polygons increases clearly more than linearly in the size of the object. We

suggest a time complexity of �(n1:3) and a space complexity of �(n1:2). These are

the same values we have suggested for the complete Triage Polygonization algorithm.

7.5 Triage Polygonization vs. Common Polygonization Methods 151

#half-spaces

0.1

1

10

100

1000

10000

100000

1 10 100 1000 10000

#half-spaces

0.1

1

10

100

1000

10000

100000

1 10 100 1000

Complex Scenes n^3 Blended Cubes

#polygons

t_execution

Execution time and number of subspace polygons of subspace polygonization vs. size of scene

Figure 7.11. Number of subspace polygons and execution time of subspace polygonization.

7.4.6 Summary

The statistical results suggest that the time and space complexity of Triage Poly-

gonization is linear in the size of a scene and sub-quadratic in the size of a quasi-
convolutionally smoothed object. We found evidence that the three steps of Triage
Polygonization have approximately the same asymptotic complexity, as suggested

in the complexity analysis.
The results suggest that the polyhedral subdivision of Triage Polygonization is

very e�ective. Most cells are correctly classi�ed into inside or outside the 0.5 iso-

surface. The subspace polygonization is only necessary for a small percentage of the
cells of the subdivision, most of which are indeed intersected by the 0.5 iso-surface.

For the subspace polygonization we have indications that it approximates the 0.5
iso-surface inside a cell correctly. In all cases the topological polygons could be closed
and no discontinuities were detected. Also polygon edges could always be re�ned,

and in most cases the same was true for topological polygons. Subspace polygons
are usually small triangles whereas tree polygons are usually big quadrilaterals.

7.5 Triage Polygonization vs. Common Polygoniza-

tion Methods

In the previous sections we analyzed Triage Polygonization both from a theoretical
and practical point of view. It remains to compare Triage Polygonization with

already existing polygonization methods for implicit surfaces. We restrict ourselves

152 Results

here to the four polygonization algorithms introduced in chapter 4. One of them,

the Marching Cubes algorithm, has been implemented by us. We polygonize the

example scenes, introduced in section 2.5, with the Marching Cubes algorithm and

compare the results with those obtained with Triage Polygonization.

7.5.1 Triage Polygonization vs. Marching Cubes

The Marching Cubes algorithm and Triage Polygonization both polygonize a den-

sity �eld by subdividing it and polygonizing the density �eld inside the resulting

subspaces. The Marching Cubes algorithm uses a �xed size array of cubes. To gain

a similar resolution as Triage Polygonization the grid size should not be larger than

half the rounding radius of a quasi-convolutionally smoothed object.

Example

Figure D.6 shows the \Variable Radius" scene polygonized with Triage Polygoniza-
tion (a) and the Marching Cubes algorithm (b). The left image of each part shows

a wire-frame representation with removed back-faces and the right image shows the
polygonization Gouraud shaded. The left object in the back of part (a) of the �gure
could not be polygonized with the Marching Cubes algorithm because of memory

problems1.
It can be clearly seen that for the three objects in the back of the image Triage

Polygonization produces considerably fewer polygons than the Marching Cubes al-
gorithm. For the three front objects Triage Polygonization produces about the
same number of polygons. Despite formed from fewer polygons the Gouraud shaded

picture obtained with Triage Polygonization has at least the same quality as that
yielded with the Marching Cubes algorithm. Note how Triage Polygonization rep-

resents the planar area of the object's surface with large polygons and similarly
rounded edges with long narrow rectangles. The Marching Cubes algorithm, on the
other hand, always produces about equal size polygons independent of the curvature

of the surface.

Statistical Results

We are interested in the execution time and the number of output polygons of

Triage Polygonization and the Marching Cubes algorithm. Figure 7.12 compares

the number of polygons of the polygonizations obtained with Triage Polygonization
and the Marching Cubes algorithm.

1For e�ciency we computed the cubic array subdividing a density �eld slice by slice, as rec-
ommended in the original paper of Lorenson and Cline [LC87]. Because we wanted to achieve a
similar resolution as for Triage Polygonization we chose the grid size to be half the rounding radius
of the represented object. The resulting grid did not �t into the memory of our machine.

7.5 Triage Polygonization vs. Common Polygonization Methods 153

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

1

10

100

1000

10000

100000

Triage Polygonization

Marching Cubes

#polygons

Complex Scenes

#polygons

10000000

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

1

10

100

1000

10000

100000

1000000

M
a
n
y

S
t
a
p
l
e
r

n/a

n^3 Blended Cubes

Number of polygons of Triage Polygonization and Marching Cubes

Figure 7.12. Number of polygons obtained with Triage Polygonization and the Marching

Cubes algorithm.

Note that we use a logarithmic scale, i.e., one unit means a di�erence of factor
ten. It can be clearly seen that the polygonization obtained with Triage Poly-
gonization has considerably fewer polygons for the complex scenes. However, the

polygonization with the Marching Cubes algorithm produces slightly fewer polygons
than Triage Polygonization for the n3 blended cubes. This is not surprising since the

n3 blended cubes are totally rounded objects, without any planar surfaces. Therefore
they are atypical for quasi-convolutionally smoothed objects and are not subject to
the special properties of Triage Polygonization.

Execution time (in secs)

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

1

10

100

1000

10000

100000

n/a

Execution time of Triage Polygonization and Marching Cubes

Complex Scenes

Execution time (in secs)

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

0.1

1

10

100

1000

n^3 Blended Cubes

Triage Polygonization

Marching Cubes

Figure 7.13. Execution Time of Triage Polygonization and the Marching Cubes algo-

rithm.

Figure 7.13 gives the execution time of Triage Polygonization and the Marching

154 Results

Cubes algorithm. It can be seen that Triage Polygonization is considerably faster

for the complex scenes and only slightly slower for the n3 blended cubes.

#polygons of

Marching Cubes /

#polygons of Triage

Polygonization

Execution time of

Marching Cubes /

Execution time of Triage

Polygonization

Complex Scenes

0

C
u
b
e

C
u
b
e

I
n

C
u
b
e

S
t
a
p
l
e
r

C
S
G

E
x
a
m
p
l
e

V
a
r
i
a
b
l
e

R
a
d
i
u
s

H
o
l
e

P
u
n
c
h

M
a
n
y

S
t
a
p
l
e
r

n^3 Blended Cubes

1

B
l
e
n
d
e
d

C
u
b
e

2
^
3

B
l
e
n
d
e
d

C
u
b
e
s

3
^
3

B
l
e
n
d
e
d

C
u
b
e
s

4
^
3

B
l
e
n
d
e
d

C
u
b
e
s

20

40

60

80

100

120

140

160

180

n/a 0

0.5

1

1.5

2

2.5

Ratio of execution time and number of ouput polygons of
Triage Polygonization and Marching Cubes

Figure 7.14. The ratio of the number of output polygons and the ratio of the execution

time of Triage Polygonization and the Marching Cubes algorithm.

The di�erences between the algorithms become clear in �gure 7.14. In average

Triage Polygonization is about 20{30 times faster than the Marching Cubes algo-
rithm and outputs only a fraction (� 1{2%) of its number of polygons. Note the

large speed advantage of Triage Polygonization for the polygonization of the \Hole
Punch" scene. In this scene the fact that Triage Polygonization produces fewer
polygons becomes especially important since the object model for the scene de�nes

several intersection and set di�erence operations on quasi-convolutionally smoothed

objects. Since these set operations are performed by merging BSP trees their cost

depends on the size of the polygonization of the corresponding quasi-convolution-
ally smoothed object. The Marching Cubes algorithm produces more polygons for

a polygonized object, which leads to a more expensive set operation involving the

object.
For the n3 blended cubes Triage Polygonization is slightly slower than the Mar-

ching Cubes algorithm, but the di�erence seems to decrease with increasing size of

the quasi-convolutionally smoothed object. We o�er as an explanation that the Mar-
ching Cubes algorithm always has to evaluate the complete density �eld if computing

the density value for a point. In contrast, Triage Polygonization constructs local den-

sity �elds during subdivision. For the subspace polygonization the density values
are computed with the local density �eld of the corresponding cell. The number of

output polygons is higher for Triage Polygonization because with increasing object

7.5 Triage Polygonization vs. Common Polygonization Methods 155

size the polyhedral subdivision becomes more fragmented. However, as a result the

polygonization approximates the quasi-convolutionally smoothed object better.

Marching Cubes
1
E
-
0
5

0
.
0
0
0
1

0
.
0
0
1

0
.
0
1

0
.
1 1

1
0

Area

0

50

100

150

200

250

300

350

400

450

#
p
o
l
y
g
o
n
s

Triage Polygonization

1
E
-
0
5

0
.
0
0
0
1

0
.
0
0
1

0
.
0
1

0
.
1 1

1
0

Area

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

#
p
o
l
y
g
o
n
s

Size distribution of output polygons

Figure 7.15. Size distribution of polygons for the polygonization of the \CSG Example"

scene.

Figure 7.15 shows the size distribution of polygons obtained with the imple-
mented polygonization methods. It can be seen that the Marching Cubes algorithm
produces many small approximately equal size polygons. Triage Polygonization pro-

duces far fewer polygons which spread over a size range greater than 104. The result
indicates that Triage Polygonization approximates the 0.5 iso-surface with large

polygons if possible and with small polygons if necessary.
Figure 7.16 examines the e�ect on the implemented polygonization methods, of

varying the rounding radius of an object. As an example we consider the \Cube In

Cube" scene, which is depicted2 in �gure D.1 (f) { (h) quasi-convolutionally smooth-
ed with a rounding radius of 0.08 units and polygonized with Triage Polygonization.
To compare the Marching Cubes algorithm with Triage Polygonization we want to

obtain polygonizations of equal quality, which is achieved by increasing the grid

resolution of the Marching Cubes algorithm proportional to the rounding radius.

It can be seen that with decreasing rounding radius the number of output poly-
gons and the execution time of Triage Polygonization changes only by a factor of

around three, whereas for the Marching Cubes algorithm the execution time grows

as the cube of the grid resolution and the number of output polygons increases

quadratically. The results indicate that Triage Polygonization is much less sensitive

to a varying rounding radius than the Marching Cubes algorithm.
For a rounding radius of around 0.25 units the Marching Cubes algorithm starts

2The original scene has a small unrounded object inside the hole in the big cube. Since the
object is unrounded it is not interesting for us and we omit it in the picture and the following
discussion.

156 Results

0.1

1

10

100

1000

10000

100000

Execution time of Triage

Polygonization (in secs)

Execution time

Marching Cubes (in secs)

0

0
.
0
0
5

0
.
0
5

0
.
0
7

0
.
0
7
5

0
.
1

0
.
1
2

0
.
1
2
5

0
.
1
4

0
.
1
5

0
.
2

0
.
2
5

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
0
1

Rounding radius

1

10

100

1000

10000

100000

0

0
.
0
0
5

0
.
0
1

0
.
0
5

0
.
0
7

0
.
0
7
5

0
.
1

0
.
1
2

0
.
1
2
5

0
.
1
4

0
.
1
5

0
.
2

0
.
2
5

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

Polygons of Marching

Cubes

Polygons of Triage

Polygonization

Tree polygons of Triage

Polygonization

Rounding radius

Statistics of Triage Polygonization and Marching Cubes for varying rounding radii

Figure 7.16. Varying the rounding radius for the \Cube In Cube" scene. The graphs

show the execution time and the number of output polygons of Triage Polygonization and

the Marching Cubes algorithm.

to produce less polygons than Triage Polygonization. This is also the threshold
value from where on the object is completely rounded, i.e., tree polygons do not ex-

ist anymore. However, for normal quasi-convolutionally smoothed objects (i.e., with
predominantly planar surfaces) Triage Polygonization outputs always fewer poly-

gons than the Marching Cubes algorithm. In the graph for the execution time the
crossover point, where the Marching Cubes algorithm becomes better than Triage
Polygonization, is a little bit earlier, namely for a rounding radius of about 0.125

units. However, with this smoothing radius the \Cube In Cube" scene has already
predominantly rounded surfaces. For a smoothing radius below the 0.125 value the
execution time of Triage Polygonization is less than that of the Marching Cubes

algorithm, indicating that for quasi-convolutionally smoothed objects with predom-
inantly planar surfaces Triage Polygonization is indeed faster than the Marching

Cubes algorithm. It can also be seen that for very small rounding radii it is not
feasible to obtain with the Marching Cubes algorithm a polygonization of similar
quality to Triage Polygonization.

Note that the number of tree polygons for Triage Polygonization decreases mono-

tonically with increasing rounding radius and that Triage Polygonization yields a
b-rep for an object quasi-convolutionally smoothed with a rounding radius of zero.

Summary

Table 7.4 summarizes some of the di�erences between Triage Polygonization and the

Marching Cubes algorithm. Additional results are given in the next subsection.
The main di�erence between Triage Polygonization and the Marching Cubes

algorithm is that Triage Polygonization uses information about a quasi-convolution-

ally smoothed object. Therefore Triage Polygonization emphasizes the polyhedral

7.5 Triage Polygonization vs. Common Polygonization Methods 157

subdivision step of a polygonization. The resulting subdivision is hence considerably

more e�cient. Large parts of the object's surface are directly extracted from the

subdivision and the number of cells in the subdivision is reduced. The subspace

polygonization is only necessary for a small percentage of the cells of the subdivision

and in general an iso-surface intersection is found.

Triage Marching
Polygonization Cubes

Execution time spent on �65% <10%

polyhedral subdivision

Successful subspace polygonizations �75% �20%
(iso-surface intersection found)

#Subspace polygons per �7 �2.4

unclassi�ed cell

Percentage of area of subspace polygons �25% �95%a

from total polygonized surface

aThe result is not 100%, as might be expected, because the total polygonized surface of a scene
includes the surfaces of unsmoothed objects, which are extracted with a b-rep algorithm.

Table 7.4. Summary of the polygonization statistics of Triage Polygonization and the

Marching Cubes algorithm for the complex scenes.

7.5.2 Comparison with Common Polygonization Methods

In this subsection we compare Triage Polygonization briey with the four general
polygonization methods for implicit surfaces reviewed in chapter 4. We restrict

the comparison to the properties and quality criteria found for the polygonization
methods and give some additional comments.

Properties

Table 4.2 on page 69 identi�ed several properties of the four polygonization methods

reviewed in chapter 4. We repeat the properties here and compare the results with

those for Triage Polygonization.

The �rst three properties concern the space subdivision:

1.1 Type of cells.

1.2 Honeycomb property ful�lled?

1.3 Adaptive subdivision used?

The next items describe the subspace polygonization:

2.1 Type of polygons.

158 Results

2.2 Does the polygonization have ambiguities?

2.3 Is the polygonization continuous?

2.4 Computation of intersection points.

Finally we are interested in the measures used to ensure continuity:

3.1 Continuity at shared edges.

3.2 Continuity at shared faces.

3.3 Disambiguation (for connection of intersection points).

Lorenson & Cline Wyvill et al. Hall & Warren Bloomenthal Triage Polygonization

(subsection 4.2.1) (subsection 4.2.2) (subsection 4.2.3) (subsection 4.2.4) (chapter 5)

1.1 Cubes Cubes Tetrahedra Cubes Convex

polyhedra

1.2 Yes Yes Yes No Yes

1.3 No No Yes Yes No

2.1 Triangles Triangles Triangles Triangles Convex

polygons

2.2 Yes No No No No

2.3 No Yes Yes Yes No
2.4 linear linear root search root search root search

interpolation interpolation (regula falsi) (regula falsi)

3.1 Interpolates Computes edge Compute edge Compute edge (no continuity)

edge intersections intersections intersections intersections

linearly only once only once only once

3.2 (no continuity) Has honeycomb Has tetrahedral Computes face Computes face

and resolves honeycomb intersections intersections

ambiguities only once only once

3.3 (not resolved) facial average (no ambiguities) central average central average

Table 7.5. Comparison of the reviewed polygonization algorithms with Triage Polygoni-

zation.

Table 7.5 compares Triage Polygonization with the general polygonization meth-

ods for implicit surfaces introduced in chapter 4. The table demonstrates that Triage
Polygonization is the only polygonization method using a polyhedral subdivision
consisting of arbitrarily complex convex polyhedral cells. The subdivision trivially

ful�lls a honeycomb property (see �gure 4.5) and does not use adaptive subdivision.
In contrast to the reviewed polygonization methods, which generate only trian-

gles, Triage Polygonization outputs arbitrarily complex convex polygons. As with
most of the other reviewed polygonization methods, Triage Polygonization has no
ambiguities. A continuous surface can not be guaranteed with the current imple-

mentation but is very likely (also see the remarks in section 6.5). The computation

of intersection points with the 0.5 iso-surface is performed with a regula falsi root
search, the same method as used by Hall and Warren.

An intended alternative implementation of Triage Polygonization (section 6.5)
allows us to use linear interpolation, which would bring Triage Polygonization more

in line with the \Soft object" method from Wyvill et al. (see subsection 4.2.2).

Our method is the only one that does not guarantee continuity at shared edges.
Section 6.5 gave reasons for this and suggested an alternative imperative language

implementation. Note, though, that with our de�nition of the polyhedral subdivision

7.5 Triage Polygonization vs. Common Polygonization Methods 159

and the assumption that a quasi-convolutionally smoothed object is intrinsically

smooth, discontinuities are unlikely, and we in fact never encountered any.

We achieve continuity at shared faces by precomputing the intersection of a face

with an iso-surface. A similar idea is used by Bloomenthal to achieve continuity over

subdivided faces (see subsection 4.2.4). Our method to disambiguate the connection

of intersection points with the central average can be understood as a generalization

of Bloomenthal's method, which only deals with square faces.

7.5.3 Quality Criteria

Section 4.4 introduced a set of desirable features of a general-purpose polygonization

method suggested by van Gelder and Wilhelms [vGW94]:

1. The algorithm should yield a continuous surface. Each polygon edge should be

shared by exactly two polygons or lie in an external face of the entire volume.

2. The iso-surface should be a continuous function of the input data. A small
change in the threshold value or some data value should produce a small change
in the iso-surface.

3. The iso-surface should be topologically correct when the underlying function
is \smooth enough".

4. The iso-surface produced should be neutral with respect to positive and nega-
tive sample data values (relative to threshold). Multiplying the samples (and

threshold) by �1 should not alter the surface.

5. The algorithm should not create artifacts not implied by the data, such as

bums and holes.

6. The algorithm should be fast.

Though in our application execution speed and a small number of output poly-

gons are the most important features, it is interesting to categorize Triage Poly-

gonization with above criteria. Table 7.6 compares Triage Polygonization with the
algorithms reviewed in chapter 4.

It can be seen that Triage Polygonization is not guaranteed to produce a continu-
ous and artifact free polygonization. However, we never had problems and section 6.5

gives some comments on how continuity might be achieved. For the remaining qual-

ity criteria Triage Polygonization is in line with the reviewed algorithms.
Note that for quasi-convolutionally smoothed scenes Triage Polygonization is

considerably faster than the Marching Cubes algorithm. Since the Marching Cubes
algorithm is known as one of the fastest polygonization algorithms available we have

reason to believe that Triage Polygonization is also faster than the other reviewed

algorithms.

160 Results

Lorenson & Cline Wyvill et al. Hall & Warren Bloomenthal Triage Polygonization

(subsection 4.2.1) (subsection 4.2.2) (subsection 4.2.3) (subsection 4.2.4) (chapter 5)

1. No Yes Yes Yes No

2. No Noa (unknown) No No

3. Yes Yes Yes Yes Yes

4. Nob Yes (unknown)c Yes

5. No Yes Yes Yes No

6. Van Gelder and Wilhelms [vGW94] (unknown) (unknown) 20{30 times fasterd

report similar speed than Lorenson & Cline

aTake an ambiguous case and change facial average value continuously from high to low.
bCase 12 in �gure 4.1.
cWith some extra e�ort this property can be achieved.
dFor typically quasi-convolutionally smoothed scenes.

Table 7.6. Quality criteria of the reviewed polygonization algorithms and Triage Polygo-

nization.

Finally note that Triage Polygonization is invariant under an a�ne linear trans-

formation, a property which is not true or which is implementation dependent for
the other reviewed algorithms. For example, our implementation of the Marching
Cubes algorithm uses an axis aligned cube array for sampling and so is not invariant

under a�ne linear transformation.

7.6 Conclusion

7.6.1 Triage Polygonization

It was shown both by images and statistical results that Triage Polygonization pro-

duces a fast and e�ective polygonization of quasi-convolutionally smoothed objects.
The algorithm for Triage Polygonization divides into three subtasks: polyhedral
subdivision, extraction of boundary faces, and subspace polygonization, all of which

have about the same asymptotic time complexities.
The polyhedral subdivision is the most expensive subtask, but it is also very

e�ective. Planar (unsmoothed) regions of a quasi-convolutionally smoothed object

are in general identi�ed and extracted without any subspace polygonization. The

statistical results show that about 75% of an object's surface is extracted directly

from the polyhedral subdivision.

The subspace polygonization is reduced to only a small fraction of the original
object volume, hence reducing computation time considerably. Most of the cells

identi�ed for the subspace polygonization are indeed intersected by the 0.5 iso-

surface, which con�rms that that the polyhedral subdivision is very e�ective.

Computation time is further reduced by computing local density �elds, which

allow a faster evaluation of density values and are used to identify convex swept
surfaces.

Triage Polygonization also performs well for the extreme cases occurring for a

7.6 Conclusion 161

quasi-convolutionally smoothed scene: for an object rounded with a spherical �lter

of zero radius Triage Polygonization performs optimally and yields the b-rep. A

quasi-convolutionally smoothed object, which is completely rounded, i.e., it has no

planar surface patches, is polygonized nicely with a computation time similar to

that of the Marching Cubes algorithm.

We gave arguments that Triage Polygonization has on average a sub-quadratic

space and time complexity. Several example scenes suggested a space complexity of

�(n1:2) and a time complexity of �(n1:3). A theoretical complexity analysis yielded

additionally a best case time complexity of �(n log2 n) and a lower bound for the

worst case time complexity of
(n3).

We can not guarantee that Triage Polygonization produces a closed continuous

polygonized surface. However, no discontinuities occured with our example scenes.

7.6.2 Triage Polygonization vs. Marching Cubes

We implemented the Marching Cubes algorithm and compared it with Triage Poly-
gonization. The statistical results obtained suggest that for general quasi-convo-

lutionally smoothed scenes Triage Polygonization is about 20{30 times faster and
outputs only 1%{2% of the polygons of the Marching Cubes algorithm.

The execution time and the number of output polygons of Triage Polygonization
proves to be almost independent of the rounding radius of a quasi-convolutionally
smoothed object. In the limit Triage Polygonization can calculate the b-rep of an

unsmoothed object. Triage Polygonization is a considerable improvement over the
Marching Cubes algorithm which has a time complexity increasing as the cube of

the reciprocal rounding radius and a space complexity increasing quadratically. The
Marching Cubes algorithm becomes infeasible for very small rounding radii.

The output polygons of Triage Polygonization can have arbitrarily many vertices

and a vastly varying size, suggesting that indeed a surface is approximated by large
polygons where possible and by small polygons where necessary. The Marching
Cubes algorithm, on the other hand, outputs a large number of very small triangles,

regardless of the shape of the polygonized surface.
The number of output polygons is especially important if complex objects are

constructed by applying intersection and set di�erence operations to quasi-convo-
lutionally smoothed objects. Since a set operation is performed by merging BSP

trees the cost of the set operation increases more than linearly in the size of the

polygonization. For this kind of scenes Triage Polygonization can be expected to

perform even better in comparison to the Marching Cubes algorithm.

C H A P T E R 8

Conclusion

In the previous chapters we presented Triage Polygonization, a new polygonization
method for quasi-convolutionally smoothed objects. In this chapter we summarize

this thesis. The main results are repeated and improvements and directions for future
research are suggested. We conclude this thesis with a summary of its achievements.

8.1 Thesis Overview

This thesis began with an introduction to the concept of CSG objects and quasi-

convolutionally smoothed polyhedra. The corresponding data structures were in-
troduced and some example scenes were presented, which we also used in various

subsequent chapters to test our algorithms.
Chapter 3 introduced BSP trees and two b-rep algorithms. We computed a b-

rep by representing a CSG object with a BSP tree, which we augmented with a

superset of the boundary of the CSG object. The boundary was extracted in a
postprocessing step. A second algorithm computed a b-rep by merging BSP trees.

The chapter concluded with a complexity analysis and statistical results, which

suggested a sub-quadratic time and space complexity of the b-rep algorithms.
Chapter 4 gave an overview of existing polygonization methods. We presented

four methods in detail and extracted three common aspects: space subdivision, sub-
space polygonization, and a continuity constraint. These aspects formed the moti-

vation for Triage Polygonization. We successfully implemented the Marching Cubes

algorithm and employed it in chapter 7 as a benchmark program for Triage Polygo-
nization. The chapter concluded with a listing of quality criteria for polygonization

methods.
Chapter 5 presented Triage Polygonization, a new fast polygonization method for

quasi-convolutionally smoothed polyhedra. The polygonization method was devel-

oped by combining concepts of CSG objects, BSP tress, and general polygonization

163

164 Conclusion

methods for implicit surfaces.

Chapter 6 gave implementation details for Triage Polygonization. We described

numerical problems in the point classi�cation and successfully solved the problems

by testing for intersection points against a displaced iso-surface. The aspect of

continuity of the polygonized surface was dealt with briey. Triage Polygonization

was successfully adapted to an object model extended by introducing clipping planes

and di�erent rounding radii for the half-spaces of an object.

Chapter 7 gave statistical results and analyzed the performance of Triage Poly-

gonization. We suggested an approximately linear time and space complexity for

quasi-convolutionally smoothed scenes and a sub-quadratic time and space com-

plexity for quasi-convolutionally smoothed objects. In comparison to the Marching

Cubes algorithm, Triage Polygonization was considerably faster and resulted far

fewer polygons.

8.2 Results

We examined the performance of Triage Polygonization for quasi-convolutionally
smoothed scenes and quasi-convolutionally smoothed objects.

8.2.1 Performance Analysis

Triage Polygonization, applied to quasi-convolutionally smoothed objects, proved to
be in the same complexity class as a b-rep algorithm. We suggested therefore that
Triage Polygonization has a sub-quadratic time and space complexity in the average

case. The best case time complexity was given as �(n log2 n) and for the worst case
a lower bound of
(n3) was obtained.

The statistical results con�rmed these results suggesting an average time com-
plexity of about �(n1:3) and an average space complexity of about �(n1:2).

We assumed that quasi-convolutionally smoothed scenes are usually assembled

from disjoint objects and gave evidence that Triage Polygonization is approximately

linear in the size of a scene.

Inuence of the Rounding Radius

Triage Polygonization performs best for quasi-convolutionally smoothed objects

smoothed with a rounding radius small in comparison to their size. Such objects
have predominantly planar surfaces with only edges and corners rounded. Triage

Polygonization extracts planar surfaces with minimum fragmentation and success-

fully approximates rounded edges and corners with a minimum number of polygons.
We believe that for the above case Triage Polygonization is superior to all general

polygonization methods for implicit surfaces known to us.

8.2 Results 165

Triage Polygonization also performs well for strongly rounded objects and in

such cases its performance is similar to general polygonization methods for implicit

surfaces.

Distribution of Execution Time

For most quasi-convolutionally smoothed scenes and objects all three steps of Triage

Polygonization seemed to have similar asymptotic complexities. This observation

was supported on a theoretical basis by an analogy to a b-rep algorithm. In absolute

terms the execution time of the polyhedral subdivision and subspace polygonization

took about 60% and 30%, respectively, of the total execution time for quasi-con-

volutionally smoothed scenes and was more closely balanced for more complicated

quasi-convolutionally smoothed objects. The extraction of tree polygons in all cases

took only about 10% of the total execution time of Triage Polygonization.

8.2.2 Comparison with the Marching Cubes Algorithm

We compared statistical results for Triage Polygonization with those obtained for
the Marching Cubes algorithm. For typical quasi-convolutionally smoothed scenes
we found out that Triage Polygonization is about 20{30 times faster and creates

only about 1{2% of the number of polygons produced by the Marching Cubes al-
gorithm. Whereas the Marching Cubes algorithm produces many small polygons of
approximately the same size, Triage Polygonization tries to adjust the polygon size

to the surface geometry. Planar areas of the object's surface are represented with
very large polygons and rounded edges with long thin rectangles or triangles.

As a result of the comparison we identi�ed di�erent \philosophies" of the algo-
rithms. Summarized, Triage Polygonization is more intelligent than the Marching
Cubes algorithm and uses information about a quasi-convolutionally smoothed ob-

ject. This results in a more e�cient subdivision. Large parts of the object's surface
are directly extracted from the subdivision, the number of cells in the subdivision is

reduced, and the subspace polygonization, if necessary, is usually successful.

8.2.3 Properties of Triage Polygonization

Independent of the Rounding Radius

The quality of the polygonization obtained with Triage Polygonization is largely

independent from the rounding radius. We noticed that varying the rounding radius
by a factor of 1000 caused variations in the execution time and the number of

produced polygons by only a factor of three. Triage Polygonization gives correct

results in the extreme cases of quasi-convolutional smoothing: the polygonization

166 Conclusion

of a quasi-convolutionally smoothed object rounded with a spherical �lter of radius

zero is its b-rep, and if the object is rounded with a su�ciently large rounding radius,

the polygonization is empty.

Invariant under A�ne Linear Transformation

Since the spatial search structure of a BSP trees is intrinsic to the object it represents

and transforms with it, Triage Polygonization is invariant under a�ne linear trans-

formations. Hence, for example, the polygonization of a rotated object is identical

to the rotated polygonization of the original object.

Continuity Aspect

Continuity of the polygonized surface can not be guaranteed. However, in all our

example scenes we obtained a continuous polygonization. We suggested a di�erent
implementation in an imperative language to reduce the possibility of a discontinuous
polygonization even further.

8.3 Future Work

8.3.1 Application Improvements

Execution Time

We implemented Triage Polygonization in non-optimized Clean code. Preliminary
results suggest that an e�cient implementation in C/C++ can be expected to be

3{10 times faster.
Using a hash table for the computation of edge and face intersections eliminates

the tree traversal for the precomputation of face intersections and avoids repeated

computations of intersection points. Since an edge is usually shared by at least two

unclassi�ed cells we expect this scheme to halve the execution time of the subspace

polygonization.

Furthermore sharing edge intersections allows us to use linear interpolation to
compute the iso-surface intersection of an edge. A considerable improvement in the

execution time, compared to the root search, can be expected.

Naylor, Amatides, and Thibault [NAT90] suggest a b-rep algorithm which di-

rectly merges BSP trees and they report that their method is more e�cient than

the conventional approach to insert a CSG object into a BSP tree. Constructing
a DBSP tree with a similar method as Naylor et al. use for BSP trees is likely to

improve the asymptotic complexity of our algorithm.

8.3 Future Work 167

The algorithm suggested by Naylor et al. is also suitable for the polygonization

of a scene when set operations on polygonized objects must be performed.

If the scene viewpoint is �xed the algorithm can be improved by pruning parts

of the DBSP tree. The subspace polygonization and the extraction of tree polygons

is not necessary for cells hidden by an already detected surface.

Quality of the Polygonization

In the current implementation we always approximate a face intersection with two

edges and re�ne a topological polygon with a point near its center. Clearly it is

more appropriate to make the re�nement process dependent on the curvature of

the surface. An adaptive re�nement process similar to that suggested by Hall and

Warren [HW90] or Bloomenthal [Blo88, BW90] can be employed.

Re�nement takes place if the surface curvature over a polygon varies strongly.

Estimations of the surface curvature could be obtained from the density gradients

in the polygon vertices. Other re�nement criteria are suggested by von Herzen and
Barr [vHB87].

The quality of the subspace polygonization could also be improved with tech-

niques common to triangulation methods (e.g., [Bow81, vHB87]). For example it
might be desired to minimize the aspect ratio of triangles.

Figure D.6 shows that the polygonization of heavily rounded objects might have

a \banded structure". This is due to very small and thin cells in the polyhedral
subdivision. It would be desirable to eliminate these cells. However, it is not clear

how this would compromise the classi�cation of cells of the polyhedral subdivision.

8.3.2 Extended Applications

We have designed Triage Polygonization to polygonize quasi-convolutionally smooth-

ed objects. Currently research is under way to adapt Triage Polygonization to
a truly convolutionally smoothed scene. Initial results are promising and suggest

that the principles used in Triage Polygonization might prove useful in many other
applications.

8.3.3 Parallelization

The subspace polygonization is limited to cells of a DBSP tree. In the implemen-
tation presented in this thesis face intersections are precomputed and therefore the

subspace polygonizations for di�erent cells are independent of each other and can be
parallelized. An implementation with shared edges and face intersections demands

a distributed system with message passing. A common hash table for edge and face

intersections would be required and would be accessed to by processes polygonizing

168 Conclusion

di�erent subspaces.

The parallelization of the polyhedral subdivision and tree extraction steps is more

di�cult. Note, however, that the two subtrees of a BSP node cover disjoint areas of

space and therefore operations on them can be performed by di�erent processes.

8.4 Summary

The starting point of the research was the work done by Dr. Richard Lobb on quasi-

convolutionally smoothed polyhedra. We developed, implemented, and analyzed

Triage Polygonization, a new polygonization method designed for quasi-convolu-

tionally smoothed polyhedra.

Triage Polygonization proved to be very successful. It identi�ed large planar sur-

faces of quasi-convolutionally smoothed objects correctly and approximated rounded

edges and corners well. In comparison to the Marching Cubes algorithm, a popular

polygonization method implemented by us as a benchmark program, Triage Poly-
gonization was 20{30 times faster and produced only 1{2% of the polygons.

Two b-rep algorithms were implemented and a complexity analysis on them was

developed. We investigated conventional polygonization methods and extracted a
common framework to act as a basis for comparison.

All the goals for this thesis were achieved and although there is much room for
improvement, the results are more than satisfactory considering the limited time
frame available. Hopefully the work has established Triage Polygonization as a new

polygonization method in the computer graphics community, which can be further
improved in the future.

A P P E N D I X A

Theorems

A.1 Series and Sequences

Theorem A.1 Let sk =
Pn

i=0 q
ii. Then

sk =

8><
>:

�(nqn) q > 1
�(n2) q = 1

�(1) q < 1

Proof:

For q = 1
nX
i=0

qii =
nX
i=0

i = �(n2)

For q 6= 1

qsn � sn =
nX
i=0

qi+1i�
nX
i=0

qii

= qn+1n+
nX
i=1

(qi(i� 1)� qii)� q00

= qn+1n�
nX
i=1

qi

= qn+1n� (
nX
i=0

qi � 1)

= qn+1n�

qn+1 � 1

q � 1
� 1

!

169

170 Theorems

= qn+1n�
qn+1 � q

q � 1

hence

sk =
qsk � q

q � 1

=
qn+1n� qn+1�q

q�1

q � 1

2

A.2 Recurrence Relations

The following recurrence relations are only given for the special case that n = bm for
some m 2 IN. It is possible to formulate them for general n 2 IN. As an example we
do this for theorem A.2 and show that the asymptotic complexity does not change.

Similar arguments apply for the other recurrence relations in this section, though
we won't proof it.

Theorem A.2 Let

T (n) = aT (
n

b
) + nk

T (1) = c

where a; b; c > 1 2 IN

Then

T (n) =

8><
>:

�(nlogba) a > bk

�(nk logn) a = bk

�(nk) a < bk

Proof: [Man95] 2

Remark A.1 The above recurrence relation is in [Man95] only de�ned for n being

a power of b. In most applications (e.g., complexity analysis) recurrence relations of

this type are formulated for arbitrary n 2 IN by choosing the next highest integer
for a fraction n

b
. The next theorem shows that this does not change the asymptotic

complexity.

A.2 Recurrence Relations 171

Theorem A.3 Let

T1(n) = aT1(
n

b
) + nk

T1(1) = c

where a; b; c > 1 2 IN

and

T2(n) = aT2(d
n

b
e) + nk

T2(1) = c

where a; b; c > 1 2 IN

Then

T2 = �(T1) =

8><
>:

�(nlogba) a > bk

�(nk logn) a = bk

�(nk) a < bk

Proof: For n de�ne n� as

n� = bdlogbne

= nbdlogbne

blogbn

= nbdlogbne�logbn

= nb where 0 � < 1

= nc for some constant c > 1

i.e., n� is the �rst natural number bigger than or equal to n being a
power of b. We can prove by strong induction on n that T2(n) � T1(n

�).

Induction bases: n = 1

If n = 1 then n� = 1 and

T2(1) = T1(1)

Induction hypotheses:

For all k < n

T2(k) � T1(k
�)

172 Theorems

Induction step: n > 1

T2(n) = aT2(d
n
b
e) + nk [De�nition of T2]

� aT2(d
n
b
e) + n�k [n� > n]

� aT1(d
n
b
e
�
) + n�k [IH., possible since b � 2 and hence dn

b
e � n]

= aT1(
n�

b
) + n�k [dn

b
e
�
= n�

b
, see below]

= T1(n
�)

It remains to show that n�

b
= dn

b
e
�

,i.e., n�

b
is next highest power of b

with respect to dn
b
e.

dn
b
e
�

= bdlogbd
n
b
ee [De�nition of �]

= bdlogb
n
b
e

"
dlogbxe = dlogbye = m for some m 2 N

() bm�1 < x; y � bm

#
= bd(logbn)�1e

= bd(logbn)e�1

= n�

b
[De�nition of n�]

From theorem A.2 we know that

T1(n
�) =

8><
>:

�(n�logba) a > bk

�(n�k logn�) a = bk

�(n�k) a < bk

Since n� = nc for some constant c > 1 we get

T1(n
�) =

8><
>:

�(nlogba) a > bk

�(nk logn) a = bk

�(nk) a < bk

and because T2(n) � T1(n
�) we get

T2(n) =

8><
>:

O(nlogbn) a > bk

O(nk logn) a = bk

O(nk) a < bk
(A.1)

Analogously we can de�ne n�� as

n�� = bblogbnc

= nbblogbnc

blogbn

= nbblogbnc�logbn

= nb� where � 1 < � � 0

= nc for some constant 0 < c � 1

A.2 Recurrence Relations 173

i.e., n�� is the �rst natural number smaller than or equal to n being a

power of b. Similarly as above we can prove by induction on n that

T2(n) � T1(n
��), and hence we get

T2(n) =

8><
>:

(nlogba) a > bk

(nk logn) a = bk

(nk) a < bk
(A.2)

Equation A.1 and A.2 together yield

T2(n) =

8><
>:

�(nlogba) a > bk

�(nk logn) a = bk

�(nk) a < bk
(A.3)

as claimed.

2

Theorem A.4 Let T (n) = aT (n
b
) + f(n) , T (1) = c. Then

T (n) = nlogba(
mX
i=1

g(bi) + c)

where

m = logbn , g(n) =
f(n)

nlogba
,

a; b; c 2 N and a; b > 1

Proof: The proof is made by induction on n. We only give it for n

being a power of b. To extend theorem A.4 for all n 2 IN see remark A.1.

Induction bases: n = 1

T (1) = c = 1logba(
0X

i=1

g(bi) + c)

Induction hypotheses: For all l < nb

T (l) = llogba(
logblX
i=1

g(bi) + c)

174 Theorems

Induction step:

T (nb) = aT (n) + f(nb) [De�nition of T (n)]

= a(nlogba(
Pm

i=1 g(b
i) + c)) + f(nb) [IH.]

= a(am(
Pm

i=1 g(b
i) + c)) + f(nb) [nlogba = alogbn]

= am+1((
Pm

i=1 g(b
i) + c) + f(nb)

am+1)

= (nb)logba((
Pm

i=1 g(b
i) + c) + f(nb)

(nb)logba
)

"
am+1 = (blogba)m+1

= (bm+1)logba = (nb)logba

#

= (nb)logba((
Pm

i=1 g(b
i) + c) + f(bm+1)

(bm+1)logba
) [nb = bmb = bm+1]

= (nb)logba(
Pm+1

i=1 g(bi) + c)

2

Theorem A.5 Let n;m 2 IN and

T (m;n) = aT (
m

b1
; d
n

b2
e) + nk , T (1; n) = f(n)

where

a; b1 2 IN, b2; k 2 IR+ and b1 > 1

Then

T (m;n) =

8>>><
>>>:

�(f(n

m
logb1

b2
) mlogb1

a + nkm
logb1

(a

bk
2

)

) a > bk2

�(f(n

m
logb1

b2
) mlogb1

a + nk logb1m) a = bk2

�(f(n

m
logb1

b2
) mlogb1

a + nk) a < bk2

Proof: The proof is made by induction on m. We only give it for m

being a power of b1. Furthermore, with an argument similar to theo-

rem A.3, it is su�cient to compute

T (m;n) = aT (
m

b1
;
n

b2
) + nk , T (1; n) = f(n)

where

a; b1 2 IN, b2; k 2 IR+ and b1 > 1

We show

T (m;n) = f(
n

mlogb1
b2
) alogb1m + nk

logb1
m�1X

i=0

a

bk2

!i

A.2 Recurrence Relations 175

To extend the proof and the theorem to all m 2 IN see the remark A.1.

Induction bases: m = 1

T (1; n) = f(n) = f(
n

1logb1b2
) alogb11 + nk

logb1
1�1X

i=0

a

bk2

!i

Induction hypotheses: For all l < mb

T (l; n) = f(
n

llogb1b2
) alogb1 l + nk

logb1
l�1X

i=0

a

bk2

!i

Induction step: m > 1

T (m;n) = aT (
m

b1
;
n

b2
) + nk

= a (f(
n

b2(
m
b1
)logb1b2

) a
logb1

(m
b1
)
+

�
n

b2

�k
+

logb1 (
m
b1
)�1X

i=0

a

bk2

!i

) + nk

= f(
n

mlogb1
b2
) alogb1m + nk

logb1
m�1X

i=0

a

bk2

!i

2

Theorem A.6 Let T (n) = aT (n
b
) + nk logn , T (1) = c where a; b; c 2 IN; a; b > 1.

then

T (n) =

8><
>:

�(nlogba) a > bk

�(nk log2 n) a = bk

�(nk logn) a < bk

Proof: First note that

f1 2 �(g1); f2 2 �(g2)) f1f2 2 �(g1g2) (A.4)

With theorem A.4 we can rewrite the recurrence relation as

T (n) = nlogba(
mX
i=1

(bi)k log bi

ai
+ c)

= nlogba(log b
mX
i=1

(
bk

a
)ii + c) (A.5)

176 Theorems

De�ne

q :=
bk

a

and note

q < 1 i� a > bk

q = 1 i� a = bk

q > 1 i� a < bk

and

alogbn = nlogba

(bk)logbn = nk

then theorem A.1 yields

mX
i=0

qii =

8><
>:

�(mqm) q > 1
�(m2) q = 1

�(1) q < 1

=

8><
>:

�(logbn
nk

nlogba
) a < bk

�(log2bn) a = bk

�(1) a > bk
(A.6)

Since b and c are constants, we can use equation A.4 to combine equa-
tion A.5 and A.6 to

T (n) =

8><
>:

�(nlogba) a > bk

�(nk log2n) a = bk

�(nk logn) a < bk

as was claimed. 2

A.3 Set Operations

De�nition A.1 Let A be a set. Then its interior int(A), its closure A and its

boundary @A with respect to a domain
 are de�ned as

int(A) = fx 2
j9� > 0 : B�(x) � Ag

A = int(Ac)c

@A = fx 2
j8� > 0 : (B�(x) \ A) 6= ; ^ (B� \ Ac) 6= ;g

where B�(x) is the �-neighborhood of x.

A.3 Set Operations 177

Theorem A.7 Let A and B be arbitrary sets.

Then

@(A\?B) = (@A \ int(B)) [(@B \ int(A)) [(
x 2
j8� > 0 :

(B� \ int(A) \ int(B)) 6= ;^

(B� \ int(A)c \ int(B)c) 6= ;

)

Proof:

@(A\?B)

= @(int(A \ B))

= @(int(A \ B))

= @(int(A) \ int(B))

=

(
x 2
j8� > 0 :

B�(x) \ (int(A) \ int(B)) 6= ;^

B�(x) \ (int(A) \ int(B))c 6= ;

)

=

8><
>:x 2
j8� > 0 :

B�(x) \ (int(A) \ int(B)) 6= ;^

B�(x) \

(int(A)c \ int(B)) [(int(A) \ int(B)c)
[(int(A)c \ int(B)c)

!
6= ;

9>=
>;

=

8>>><
>>>:x 2
j8� > 0 :

B�(x) \ (int(A) \ int(B)) 6= ;^0
B@ B�(x) \ int(A)c \ int(B) 6= ;_

B�(x) \ int(A) \ int(B)c 6= ;_

B�(x) \ int(A)c \ int(B)c 6= ;

1
CA
9>>>=
>>>;

=

fx 2
j8� > 0 : B� \ int(A) \ int(B) 6= ; ^ B� \ int(A)c \ int(B) 6= ;g[

fx 2
j8� > 0 : B� \ int(A) \ int(B) 6= ; ^ B� \ int(A) \ int(B)c 6= ;g[

fx 2
j8� > 0 : B� \ int(A) \ int(B) 6= ; ^ B� \ int(A)c \ int(B)c 6= ;g

=

(fx 2
j8� > 0 : B� \ int(A) 6= ; ^B� \ int(A)c 6= ;g \ int(B))[

(fx 2
j8� > 0 : B� \ int(B) 6= ; ^B� \ int(B)c 6= ;g \ int(A))[

fx 2
j8� > 0 : B� \ int(A) \ int(B) 6= ; ^ B� \ int(A)c \ int(B)c 6= ;g

=
(@A \ int(B)) [(@B \ int(A))[
fx 2
j8� > 0 : B� \ int(A) \ int(B) 6= ; ^ B� \ int(A)c \ int(B)c 6= ;g

2

Theorem A.8 Let P be a polyhedron and h a partitioning plane with outward nor-

mal ~nh and inside half-space Hin. Denote with f1; : : : ; fn the faces of the polyhedron

P and with ~nf1 ; : : : ; ~nfn their outward normals.

178 Theorems

Then (except for a zero set1)

@(P\?Hin) = (@P \Hin) [(h \ int(P)) [

fx 2 fiji = 1; : : : ; n; fi � h; ~nfi = ~nhg

This means that the boundary of the regularized intersection of the polyhedron P

and the half-space Hin is the boundary of P inside of Hin, the part of the plane h

inside of P , and the faces of the polyhedron P , which lie on the partitioning plane h

and have the same orientation as it.

Proof:

With theorem A.7 we only need to show S1 = S2 (except for a zero set)
where

S1 = fx 2
j8� > 0 : B�(x) \ int(P) \Hin 6= ; ^ B�(x) \ int(P)c \Hc
in 6= ;g

S2 = fx 2 fiji = 1; : : : ; n; fi � h; ~nfi = ~nhg

Every element x of S1 lies both on the boundary of P and h, and hence

on some face fi of the polyhedron P . We can partition S1 into

S1 =
[

i=1;:::;n

S1;i

where S1;i is the intersection of S1 with face fi, i.e.,

S1;i =

(
x 2 (fi \ h)j8� > 0 :

B�(x) \ int(P) \Hin 6= ;^

B�(x) \ int(P)c \Hc
in 6= ;

)

If face fi does not lie on h the intersection of fi with h is at most an edge

and hence S1;i is a zero set. If fi lies on h but has di�erent orientation,
the intersection of the interior of P and Hin is empty, and hence S1;i is

the empty set. Finally if fi lies on h and has the same orientation, then
S1;i � S2 and hence S1 � S2 (except for a zero set).

Vive versa partition S2 into

S2 =
[

i=1;:::;n

S2;i

1This a zero set with respect to the two-dimensional boundary @P . Formally de�ne a piecewise
continuous bijective mapping from @P into IR2. A set is a zero set in @P if its bijective mapping
is a zero set in IR2 (see also appendix C).

A.4 Analysis 179

S2;i = fx 2 fijfi � h; ~nfi = ~nhg

If fi does not lie on h or has a di�erent orientation, then S2;i is the

empty set. Otherwise we can �nd for each x in each �-neighborhood of

x a point, which lies inside both P and Hin, and also a point which lies

outside both P and Hin, i.e., S2;i � S1 and hence S2 � S1. Therefore

S2 = S1 which concludes the proof. 2

A.4 Analysis

Theorem A.9 Let G be open in X and f : G! Y be a continuously di�erentiable

map. Let p0; p1 2 G be such that the line segment S between p0 and p1 is contained

in G. Then

f(p1)� f(p0) =
Z 1

0
f 0(p0 + t(p1 � p0))dt (p1 � p0)

and it follows the inequality

kf(p1)� f(p0)k � max
p2S

kf 0(p)k kp1 � p0k (A.7)

Proof: [Heu81, page 340] 2

Theorem A.10 Let G be open in IR3, p : [0; 1]! G be a parameterized line segment

and � : G! IR be a continuous density �eld. Then

j�(p(t1))� �(p(t0))j � max
t2[t0;t1]

kr�(p(t))k kp(t1)� p(t0)k (A.8)

Proof: EquationA.7 from theorem A.9 yields

j�(p(t1))� �(p(t0))j � max
t2[t0;t1]

k@
�(p(t))

@t
k jt1 � t0j

This expression is simpli�ed by using the chain rule

@
�(p(t))

@t
= hr�(p(t); p0(t))i

180 Theorems

and the Cauchy-Schwarzsche inequality

k@
�(p(t))

@t
k � kr�(p(t))k kp0(t)k

to yield equation A.8 2

De�nition A.2 A function f 2 C(IR; IR) is convex in [a; b] if for any choice of x1
and x2, a � x1 < x2 � b, and any � with 0 < � < 1

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2)

f is concave in [a; b] if �f is convex.

Theorem A.11 If f
00
(x) exists and keeps a constant sign in (a,b), then f

0
(x) is

monotone and f(x) or �f(x) is convex according as f
00
(x) > 0 or < 0 in (a; b).

Proof: [Hil65, page 463] 2

Theorem A.12 Let e1; e2 2 C2(IR; IR) be two plane spread functions with e1 and

e2 being positive, monotonous, and concave, and e
0

1; e
0

2 having the same sign. Apply

the plane spread functions e1 and e2 to the planes P lane1 and P lane2, respectively,

and de�ne a density �eld � 2 C2(IR3; IR) as

�(x) = e1(dist(P lane1; x))e2(dist(P lane2; x))

Then each isosurface in the density �eld is convex.

Proof: Show that for an arbitrary constant c 2 IR the set A := fx 2

IR3 j �(x) � cg is convex. With de�nition A.2 and theorem A.11 it is
su�cient to show

8p1; p2 2 IR3: �(p1) = �(p2) = c and t 2 (0; 1) � IR

@2

@2t
�(p1 + t(p2 � p1)) � 0

Take any p1; p2 with �(p1) = �(p2) = c. De�ne d1(x) := dist(P lane1; x),

d2(x) := dist(P lane2; x) and let p := p1 + t(p2 � p1) for any t 2 (0; 1).

A.4 Analysis 181

First note that

d1(p1 + t(p2 � p1)) = d1(p1) + t(d1(p2)� d1(p1))

and

d2(p1 + t(p2 � p1)) = d2(p1) + t(d2(p2)� d2(p1))

and hence

@

@t
e1(d1(p)) = �d1 e

0

1(d1(p))

@

@t
e2(d2(p)) = �d2 e

0

2(d2(p))

where �d1 := d1(p2)� d1(p1) and �d2 := d2(p2)� d2(p1).

We obtain for the derivative of �

@

@t
�(p) = �d1 e

0

1(d1(p)) e2(d2(p)) + �d2 e
0

2(d2(p)) e1(d1(p))

Assume the products �d1 e
0

1(d1(p)) and �d2 e
0

2(d2(p)) are both positive.
Then, since e1 and e2 are positive and monotonous, @

@t
� > 0 and hence

�(p1) < �(p2) in contradiction to �(p1) = �(p2) = c.

With a similar argument �d1 e
0

1(d1(p)) and �d2 e
0

2(d2(p)) are not both
negative and hence have opposite sign.

We obtain

@2

@2t
�(p) = (�d1)

2 e
00

1(d1(p)) e2(d2(p))| {z }
�0

+2�d1 e
0

1(d1(p)) �d2 e
0

2(d2(p))| {z }
�0

+(�d2)
2 e1(d1(p)) e

00

2(d2(p))| {z }
�0

� 0

This proofs the claim. 2

Theorem A.13 A quasi-convolutionally smoothed intersection of two half-spaces

H1 \H2 is convex.

Proof: The quasi-convolutionally smoothed intersection of two half-
spaces H1 and H2 is de�ned as H1 \ H2 = fp 2 IR3 j �(p) � 0:5g,

where � = �H1
�H2

, and �H1
and �H2

are the density �elds obtained

182 Theorems

by convolutionally smoothing the half-spaces H1 and H2 with spherical

�lters of radius r1 and r2, respectively.

In section 5.3 we explained that the curved surface of the quasi-convo-

lutionally smoothed object H1 \H2 is restricted to the region bounded

by the planes of the half-spaces, h1 and h2, and the planes displaced by

the negative rounding radii, h1;�r1 and h2;�r2. (see �gure 5.2).

Recall section 2.2 and note that the density �elds �H1
and �H2

are de�ned

by two plane spread functions e1 and e2, respectively, where

e1(d) =

8><
>:

0 � � 1

1 � � �1

(1� �)2 � (2 + �)=4 otherwise

� = d
r1
, and r1 is the radius of the spherical smoothing �lter. The plane

spread function e2 is de�ned similarly.

It is easy to check that e1 and e2 are positive , monotone decreasing, and

concave on the intervals (�r1; 0) and (�r2; 0), respectively. The claim
follows with theorem A.12 2

A P P E N D I X B

Data Types & Library Functions

B.1 Data Types

This section summarizes all data types presented in this thesis. For each data type
a reference is given to the page where the data type is �rst used. A motivation and

explanation of the data type is usually found on the corresponding page.

:: BSPTree // (page 25)

= BSPNode Plane [Face] BSPTree BSPTree

| BSPLeaf LeafClass

:: CSGObject // (page 16)

= Union CSGObject CSGObject

| Intersection CSGObject CSGObject

| SetDifference CSGObject CSGObject

| Rounded Radius CSGObject

| Primitive PolyhedralPrimitive

:: DBSPTree // (page 81)

= DBSPNode Plane DBSPTree DBSPTree

| DBSPLeaf DensityClass

:: DBSPTree // extended with polygon edges (page 91)

= DBSPNode Plane DBSPTree DBSPTree

| DBSPLeaf PolygonEdges DensityClass

:: DBSPTree // extended with local density field (page 107)

= DBSPNode Plane DBSPTree DBSPTree

| DBSPLeaf PolygonEdges DensityClass DensityField

183

184 Data Types & Library Functions

:: DCSGObject // (page 81)

= DUnion DCSGObject DCSGObject

| DIntersection DCSGObject DCSGObject

| DSetDifference DCSGObject DCSGObject

| DPrimitive Polyhedron DensityClass

:: DCSGObject // extended with density assembly (page 117)

= DUnion DCSGObject DCSGObject

| DIntersection DCSGObject DCSGObject

| DSetDifference DCSGObject DCSGObject

| DPrimitive Polyhedron DensityClass

| DAssembly [Face] [DCSGObject]

:: DensityClass = Zero | Low | Unclassified | High | One // (page 81)

:: DensityField // (page 17)

= Sum DensityField DensityField

| Product DensityField DensityField

| Difference DensityField DensityField

| DensityFieldOfHalfSpace Radius HalfSpace

:: Edge :== (Point,Point) // (page 95)

:: Face :== Polygon // (page 17)

:: HalfSpace :== Plane // (page 16)

:: LeafClass = IN | OUT // (page 25)

:: Plane :== (Vector,REAL) // (page 16)

:: Polygon :== [Point] // (page 17)

:: PolygonEdges = Edges [Edge] | NoEdges // (page 91)

:: PolyhedralPrimitive = Intersection [HalfSpace]

// External (model) representation (page 16)

:: PolyhedralPrimitive = Polyhedron [Face]

// Internal representation (page 17)

:: Radius :== REAL // (page 16)

B.2 Library Functions 185

:: RPolyhedron = RPolyh [Face] [Face] // (page 42)

:: Scene :== CSGObject // (page 16)

B.2 Library Functions

This section provides a list of library functions, which are used in this thesis and

which in our opinion have no equivalent in an imperative language implementation.

It is our hope that this section provides a useful reference for the reader inexperienced

with functional languages. Functions starting with a lower case letter are taken from

standard Clean libraries, whereas functions starting with an upper case letter are

de�ned by us.

// Takes a list and a predicate on the list elements and splits the list in

// front of the first element, which does not fulfill the given predicate.

//

DecomposeWhile :: (a -> Bool) [] -> ([a],[a])

DecomposeWhile predicate list=:[head:tail]

| predicate head = ([head:tail allTrue],tail firstFalse)

= ([],list)

where

(tail allTrue,tail firstFalse) = DecomposeWhile predicate tail

DecomposeWhile predicate [] = ([],[])

// Takes a list of sublists and concatenates the elements of the sublists

// to a single list.

//

flatten :: [[a]] -> [a]

flatten [head:tail] = head ++ flatten tail

flatten [] = []

// Takes as input a binary operator, an element, and a list and yields:

// foldl
 a [b1; b2; :::; bn] = (: : : ((a
 b1)
 b2) : : :
 bn).

//

foldl :: (a -> (b -> a)) a [b] -> a

foldl op a [b:bs] = foldl op (op a b) bs

foldl op a [] = a

// Takes as input a unary function and a list of elements and applies the

// function to each element of the list.

186 Data Types & Library Functions

//

map :: (a -> b) [a] -> [b]

map f [a:x] = [f a : map f x]

map f [] = []

// Takes as input a predicate and a list and splits the list into two sublists

// the first of which contains all elements fulfilling the predicate and

// the second of which contains all elements not fulfilling the predicate.

//

SplitListWith :: (a -> Bool) [a] -> ([a],[a])

SplitListWith predicate list=:[head:tail]

| predicate head = ([head:tail allTrue],tail allFalse)

= (tail allTrue,[head:tail allFalse])

where

(tail allTrue,tail allFalse) = SplitListWith predicate tail

SplitListWith predicate [] = ([], [])

// Transforms a list of tuples into a tuple of lists. The first and the

// second list contain the first and second elements, respectively, of

// the tuples of the original list.

//

unzip :: [(a,b)] -> ([a],[b])

unzip [(a,b):ab tuples] = ([a:as],[b:bs])

where

(as,bs) = unzip ab tuples

unzip [] = []

// Takes as input a function returning a tuple and a list. The function

// is applied to each element of the list resulting in a list of tuples,

// which is transformed into a tuple of two lists containing the first and

// second result, respectively, of each function application.

//

UnZipWith :: (a -> (b,c)) [a] -> ([b],[c])

UnZipWith f = unzip o (map f)

A P P E N D I X C

Glossary

analytic set A set is analytic, if it can be expressed as fpjF (p) > 0g, where F is
an analytic function.

analytic function A function is analytic, if it can be expanded into a convergent
power series at every point in its domain.

aspect ratio The aspect ratio of a triangle (simplex) is the ratio of the radius of a

circumscribed circle (sphere) to the radius of an inscribed circle (sphere).

augmented BSP tree A common means of augmenting the generic BSP tree is

to include other sets within the BSP structure. In particular, leaves can each
include a collection of sets (objects) contained completely within the corre-
sponding cell [SBGS69], and similarly, internal nodes can include sets lying in

the corresponding sub-hyperplane (e.g., [FKB80]).

average squared prediction error Let y1; : : : ; yn be a data set of n points and

ŷ = � + �f(x)

be a curve with intercept � and slope factor �.

Then the average squared prediction error esq is de�ned as

esq =
1

n

nX
i=1

(yi � ŷi)
2

characteristic function The characteristic function of a set A, �A , is one for each

point inside the set and zero for each point outside the set.

�A(x) =

(
1 x 2 A

0 otherwise

187

188 Glossary

closed regular A set X is closed regular, if it is equal to the closure of its interior,

i.e., X = int(X).

homeomorphic Let S; T 2 IRn and � : S ! T be a mapping. If the map � : S ! T

is a bijection, and both � and ��1 are continuous, � is called homeomorphism

and S and T are said to be homeomorphic.

honeycomb A honeycomb is the 3D analog of a tessellation. It is a polyhedral

partition of space in which the face of each polyhedron is adjacent to only one

other polyhedral face.

least squares Let y1; : : : ; yn be a data set of n points and

ŷ = � + �f(x)

be a curve with intercept � and slope factor �.

Under the least squares criterion the best �tting curve is the one with the
smallest average squared prediction error esq.

Lebesgue measure The Lebesgue measure for IRn, �n on Ln, is the measure in-
duced by the Lebesgue integral [KS88]. In this thesis we only deal with `well-
behaved' sets and hence may say that the Lebesgue measure of a set is equal

to the Riemann-Stieltjes integral of its characteristic function.

Lipschitz constant A (positive) real number L is called a Lipschitz constant on
a function F (x) in a region R, if given any two points x1 and x2 in R, the

following condition holds:

kf(x1)� f(x2)k < Lkx1 � x2k

where k:k is a vector norm.

manifold A set M is a n-manifold, if for every point x 2 M there exists an open

neighborhood B(x) such that B(x) \M is homeomorphic to an open subset

of IRn.

r-set A bounded, closed regular, semi-analytic set.

semi-analytic set A set is semi-analytic, if it can be expressed as a �nite Boolean

combination of analytic sets.

tessellation A tessellation is a tiling of a surface, in which polygons intersect each
other edge to edge or vertex to vertex.

zero set A set of Lebesgue measure zero.

A P P E N D I X D

Color Images

The following pages contain color images of the example scenes introduced in sec-
tion 2.5. Figure ?? was produced by a RasterOps CorrectPrint 330 dye-

sublimation printer and the other images were obtained with a Tektronix Phaser
550 color laser printer.

189

190 Color Images

191

Figure D.1. The three steps of Triage Polygonization: �rst the polyhedral subdivision

partitions a density �eld into low cells (a), high cells (b), and unclassi�ed cells (c). The

second step extracts tree polygons (d), which separate low cells and high cells. Finally sub-

space polygons are obtained by applying a subspace polygonization to the unclassi�ed cells

in (c). The �nal polygonization is shown at shaded in (f), as a wire-frame representation

with removed back-faces in (g), and Gouraud shaded in (h).

192 Color Images

Figure D.2. The \Hole Punch" scene polygonized with Triage Polygonization. The result

is shown as a wire-frame representation (a) and as Gouraud shaded polygons (b).

193

Figure D.3. The \Stapler" scene polygonized with Triage Polygonization. The result is

shown as a wire-frame representation (a) and as Gouraud shaded polygons (b).

194 Color Images

Figure D.4. The \27 Blended Cubes" scene polygonized with Triage Polygonization. The

result is shown as a wire-frame representation (a) and as Gouraud shaded polygons (b).

195

Figure D.5. The \CSG Example" scene polygonized with Triage Polygonization. The

result is shown as a wire-frame representation (a) and as Gouraud shaded polygons (b).

196 Color Images

Figure D.6. Triage Polygonization and the Marching Cubes algorithm applied to the

\Variable Radius" scene. Part (a) shows the result of Triage Polygonization as a wire-

frame representation (left) and as Gouraud shaded polygons (right). Part (b) shows the

same representations for the result of the Marching Cubes algorithm.

Bibliography

[AG87] Eugene L. Allgower and Stefan Gnutzmann. An algorithm for piece-

wise linear approximation of implicitly de�ned two-dimensional sur-

faces. SIAM Journal of Numerical Analysis, 24(2):452 { 469, April

1987.

[All90] R. E. Allen, editor. The concise Oxford dictionary of current English.

Clarendon Press, Oxford, 8 edition, 1990.

[Aur91] Franz Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Computing Surveys, 23(3):345 { 405,

September 1991.

[Bak89] H. Harlyn Baker. Building surfaces of evolution: The weaving wall.

International Journal of Computer Vision, 3(1):51 { 71, May 1989.

[BBK78] R. E. Barnhill, J. H. Brown, and I. M. Klucewicz. A new twist in
CAGD. Computer Graphics and Image Processing, 8:78 { 79, 1978.

[Bee86] Etienne Beeker. Smoothing of shapes designed with free-form surfaces.
Computer-Aided Design, 18(4):224 { 231, May 1986.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM

Transactions on Graphics, 1(3):235 { 256, July 1982.

[Blo88] Jules Bloomenthal. Polygonization of implicit surfaces. Computer-

Aided Geometric Design, 5(4):341 { 355, November 1988.

[Bow81] A. Bowyer. Computing dirichlet tesselations. The Computer Journal,

24(2):162 { 166, May 1981.

[BS91] Jules Bloomenthal and Ken Shoemaker. Convolution surfaces. Com-

puter Graphics, 25(4):251 { 256, July 1991.

[BW90] Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit
modeling. Computer Graphics, 24(2):109 { 116, March 1990. Special

Issue on 1990 Symposium on Interactive 3D Graphics.

197

198 Bibliography

[CC78] Edwin Catmull and J. Clark. Recursively generated B-spline surfaces

on arbitrary topological meshes. Computer-Aided Design, 10(6):350 {

355, November 1978.

[Chi87] Hiroaki Chiyokura. An extended rounding operation for modeling solids

with free-form surfaces. IEEE Computer Graphic and Applications,

7(12):27 { 36, December 1987.

[Col90] Steve Colburn. Solid modeling with global blending for machining dies

and patterns. SAE technical paper series, SAE International, 400 Com-

monwealth Drive, Warrendale, PA 15096-0001 U.S.A., April 1990. 41st

Annual Earthmoving Industry Conference.

[CTKH91] Hiroaki Chiyokura, Teiji Takamura, Koichi Konno, and Tsuyoshi

Harada. G1 surface interpolation over irregular meshes with rational

curves. In Gerald Farin, editor, NURBS for Curve and Surface Design,

chapter 2, pages 15 { 34. SIAM Activity Group on Geometric Design,
1991.

[DK91] A. Doi and A. Koide. An e�cient method of triangulating equi-valued

surfaces by using tetrahedral cells. IEICE Trans. Commun. Elec. Inf.

Syst., E-74(1):214 { 224, January 1991.

[Duf92] Tom Du�. Interval arithmetic and recursive subdivision for im-

plicit functions and constructive solid geometry. Computer Graphics,
26(2):131 { 138, July 1992.

[D�uu88] Martin J. D�uurst. Additional reference to "marching cubes". Computer

Graphics, 22(2):72, April 1988. Letter.

[Fj�a86] Per-Olof Fj�allstr�om. Smoothing of polyhedral models. In Proceedings

of the ACM 2nd Symposium on Computational Geometry, Yorktown

Heights, pages 226 { 235, 1986.

[FKB80] H. Fuchs, Z. Kedem, and B.Naylor. On visible surface generation by a

priority tree structure. Computer Graphics, 14(3):124{268, June 1980.

[Heu81] Harro Heuser. Lehrbuch der Analysis, volume 2. B.G. Teubner, 1981.

[HH87] Christoph Ho�mann and John Hopcroft. The potential method for

blending surfaces and corners. In Gerald E. Farin, editor, Geometric

Modelling: Algorithms and New Trends, pages 347 { 365, Philadelphia,

1987. Society for Industrial and Applied Mathematics.

[HH91] Josef Hoschek and Erich Hartmann. Gn�1-functional splines for model-

ing. In Hans Hagen and D. Roller, editors, Geometric Modeling - Meth-

ods and Applications, pages 185 { 211. Springer Verlag, 1991. Based
on lectures presented at an international workshop held in B�oblingen,

Germany in June 1990.

Bibliography 199

[Hil65] Einar Hille. Analysis, volume 2. Blaisdale Publishing Company, second

edition, 1965.

[HJP+92] P. Hudak, S. Peyton Jones, P. Wadler P, B. Boutel, J. Fairbairn,

J. Fasel, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,

and W. Partain J. Peterson. Report on the programming language

Haskall. ACM SigPlan Notices, 27(5):1{164, 1992.

[HW90] Mark Hall and Joe Warren. Adaptive polygonization of implicitly de-

�ned surfaces. IEEE Computer Graphic and Applications, 10(5):33 {

42, November 1990.

[Kal91] A. D. Kalvin. Segmentation and surface-based modeling of objects in

three-dimensional biomedical images. PhD thesis, New York University,

New York, 1991.

[KB89] Devendra Kalra and Alan H. Barr. Guaranteed ray intersections with
implicit surfaces. Computer Graphics, 23(3):297 { 306, July 1989. Pro-

ceedings of SIGGRAPH '89, Boston.

[KDK86] A. Koide, A. Doi, and K. Kajioka. Polyhedral approximation approach
to molecular orbit graphics. J. Molec. Graph., 4:149 { 156, 1986.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 3 - Sort-
ing and Searching. Addison-Wesley Publication Company Inc, 1973.

[Kop91a] Pramod Koparkar. Designing parametric blends: surface model and

geometric correspondence. Visual Computer, 7:39 { 58, 1991.

[Kop91b] Pramod Koparkar. Parametric blending using fanout surfaces. In Proc.

Symp. on Solid Modelling Foundations and CAD/CAM Applications

(Austin, Texas, June 5-7 1991), 1991.

[Kos91] Menno Kosters. An extension of the potential method to higher-

order blendings. In Proc. Symp. on Solid Modelling Foundations and

CAD/CAM Applications (Austin, Texas, June 5-7 1991), 1991.

[KS88] J. L. Kelly and T. P. Srinivasan. Measure and Integral. Graduate Texts

in Mathematics 116. Springer Verlag, 1988.

[LC87] W. Lorenson and H. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163 { 169,

July 1987. Proceedings of SIGGRAPH.

[Lob95] Richard Lobb. Quasi-convolutional smoothing of polyhedra. Technical

report, University of Auckland, 1995.

200 Bibliography

[LVG80] S. Lobregt, P. W. Verbeek, and F. C. A. Groen. Three-dimensional

skeletonization: Principle and algorithm. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, PAMI-2(1):75 { 77, January

1980.

[Man95] Ubi Manber. Introduction to Algorithm - A creative Approach. Addison-

Wesley Publication Company Inc, 1995.

[MS85] Alan E. Middleditch and Kenneth H. Sears. Blend surfaces for set

theoretic volume modelling systems. Computer Graphics, 19(3):161 {

170, July 1985. Proceedings of SIGGRAPH '85, San Francisco.

[Mur91] Shigeru Muraki. Volumetric shape description of range data using

"blobby model". Computer Graphics, 25(4):227 {235, July 1991. Pro-

ceedings of SIGGRAPH '91.

[NAT90] Bruce F. Naylor, John Amanatides, and William Thibault. Merg-
ing BSP trees yields polyhedral set operations. Computer Graphics,

24(4):115 { 124, August 1990.

[Nay81] Bruce F. Naylor. A Priori Based Techniques for Determining Visibility

Priority for 3-D Scenes. PhD thesis, University of Texas, Dallas, Texas,

May 1981.

[PPW87] Carl S. Petersen, Bruce R. Piper, and Andrew J. Worsey. Adaptive con-
touring of a trivariate interpolant. In Gerald E. Farin, editor, Geometric

Modelling: Algorithms and New Trends, pages 385 { 395, Philadelphia,

1987. Society for Industrial and Applied Mathematics.

[PvE93] R. Plasmeijer and M. van Eekelen. Functional Programming and Paral-

lel Graph Rewriting. International Computer Science Series. Addison-

Wesley Publication Company Inc, 1993.

[PvE95] R. Plasmeijer and M. van Eekelen. Concurrent Clean Language Report,

Version 1.0. University of Nijmegen, April 1995.

[PVTF92] William H. Press, William T. Vetterling, Saul A. Teukolsky, and
Brian P. Flannery. Numerical Recipes in C - The Art of Scienti�c

Computing. Cambridge University Press, second edition, 1992.

[Req80] Aristides A. G. Requicha. Representation for rigid solids: Theory,

methods, and systems. ACM Computing Surveys, 12(4):437 { 464,

December 1980.

[RO87] Alyn P. Rockwood and John C. Owen. Blending surfaces in solid mod-
eling. In Gerald E. Farin, editor, Geometric Modelling: Algorithms and

New Trends, pages 367 { 382, Philadelphia, 1987. Society for Industrial

and Applied Mathematics.

Bibliography 201

[RR84] Jaroslaw R. Rossignac and Aristides A. G. Requicha. Constant-radius

blending in solid modeling. Computers in Mechanical Engineering,

3(1):65 { 73, July 1984.

[RV85] Aristides A. G. Requicha and Herbert B. Voelcker. Boolean opera-

tions in solid modelling: Boundary evaluation and merging algorithms.

Proceedings of the IEEE, 73(1):30 { 44, January 1985.

[SBGS69] R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for

applying computer-generated images to visual simulation. Technical

Report AFHRL-TR-69-14, U.S.Air Force Human Resource Laboratory,

1969.

[Sed85] T. Sederberg. Piecewise algebraic surface patches. Computer-Aided

Geometric Design, 2(1):53 { 59, 1985.

[Sny92] John M. Snyder. Interval analysis for computer graphics. Computer

Graphics, 26(2):121 { 130, 1992.

[SSS74] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characteriza-
tion of ten hidden surface algorithms. ACM Computing Surveys, 6(1),
1974.

[TN87] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using

binary space partitioning trees. Computer Graphics, 21(4):153 { 162,
July 1987. SIGGRAPH /32487 Proceedings.

[TR80] R. B. Tilove and Aristides A. G. Requicha. Closure of boolean opera-
tions on geometric entities. Computer-Aided Design, 12(5):219 { 220,

September 1980.

[Tur85] D. A. Turner. Miranda: a non-strict functional language with polymor-
phic types. In J. P. Jouannaud, editor, Proceedings Conference on Func-

tional Programming Languages and Computer Architecture (Nancy,

France) LCNS 201, pages 1 { 16, Berlin, 1985. Springer-Verlag.

[vGW94] Allen van Gelder and Jane Wilhelms. Topological considerations in
isosurface generation. ACM Transactions on Graphics, 13(4):337 { 375,

October 1994.

[vHB87] B. von Herzen and A. Barr. Accurate triangulations of deformed, in-

tersecting surfaces. Computer Graphics, 21(4):103 { 110, July 1987.
Proceedings of SIGGRAPH.

[War89] Joe Warren. Blending algebraic surfaces. ACM Transactions on Graph-

ics, 8(4):263 { 278, October 1989.

[WMW86a] Geo� Wyvill, Craig McPheeters, and Brian Wyvill. Animating soft

objects. Visual Computer, 2(4):235 { 242, August 1986.

202 Bibliography

[WMW86b] Geo� Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for

soft objects. Visual Computer, 2(4):227 { 234, August 1986.

[Woo87] J. R. Woodwark. Blends in geometric modelling. In R. R . Martin,

editor, The Mathematics of Surfaces 2, The Institute of Mathematics

and its Applications Conference Series, pages 255 { 297. Clarendon

Press, Oxford, 1987.

[WWM87] Geo� Wyvill, Brian Wyvill, and Craig McPheeters. Solid texturing of

soft objects. IEEE Computer Graphic and Applications, 7(12):20 { 26,

December 1987.

