
High Quality Volume Rendering

Joshua John Lawrence

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

March 1999

Abstract

While volume rendering is a well researched topic, many existing renderers
sacrifice accuracy for execution speed. The research in this thesis aims for quality
over speed. We introduce a ray-casting method that retains fidelity to the emis-
sion-absorption volume model, using a high accuracy integration approach. The
integration formula handles piecewise linear emission and piecewise constant
absorption, and correctly calculates the attenuation of light within each integration
step, unlike many common methods.

For efficient rendering, a pointerless octree representation of the volume was used,
with each ray performing a leaf by leaf traversal. Rays are able to traverse from
leaf to leaf quickly without climbing the tree or performing a search, as in other
methods.

We examine the quality of the renderer when used with a number of medical data
sets, and discuss the advantages of a high quality rendering for image generation.
We find that it is possible to generate high resolution images from reasonably sized
data sets using the modest resources of current desktop personal computers. High
order methods for integration prove to give greater accuracy for the same calcula-
tion time as standard methods.

Preface and Acknowledgements

Volume rendering is an interesting area of research in computer graphics. It is
challenging because the phenomena being visualised are removed from our daily
experience — we are unable to see through opaque objects. Such an ability is the
stuff of fiction, yet it is being made reality by advances in technology. “Being made”,
because while CT scanners and other such devices have existed for some years,
interpreting and understanding the data they provide is still as much art as science.

I have chosen to study high quality rendering because most research in this area
concentrates on speed at the expense of accuracy. A few recent papers reverse this
trend, being primarily concerned with removing the simplifying approximations
that have become standard elsewhere, and providing clear bounds on any errors
that remain. I hope that the research presented here continues this new trend.

This thesis would not be possible without the help of other people. I would particu-
larly like to thank my supervisor, Dr. Richard Lobb, for a great deal of constructive
criticism that has improved my ideas immeasurably. I would also like to thank Peter
Kulka for many discussions on the topic over the last year. Tania Scott has offered
a lot of help and support in the course of my study, I would like to thank her espe-
cially for advice on the process of thesis writing and a great deal of food. Lastly,
Denise Bateup has improved my knowledge of medical techologies with a number
of discussions on radiology.

This document was typeset in 11pt Palatino using the LATEX 2" document formatting
system.

Contents

1 Introduction 1

1.1 Volume Data Sets . 1

1.2 Volume Rendering . 2

1.2.1 Isosurfaces . 3

1.2.2 Direct volume rendering . 4

1.3 Goals . 5

2 Direct Volume Rendering 7

2.1 Material Classification . 7

2.2 Optical Models . 11

2.2.1 Maximum value rendering . 12

2.2.2 Absorption only rendering . 13

2.2.3 Emission only rendering . 14

2.2.4 Emission and absorption . 14

2.2.5 Low albedo scattering . 15

2.2.6 High albedo scattering . 16

2.2.7 Discussion . 17

2.3 Image Order Methods . 18

2.4 Object Order Methods . 19

2.4.1 V-Buffer . 19

2.4.2 Splatting . 19

viii CONTENTS

2.4.3 HIACS cell projection . 21

2.5 Optimisation Methods . 22

2.5.1 Opacity methods . 22

2.5.2 Frequency domain methods . 23

2.5.3 Octree and pyramid methods 24

2.5.4 Wavelet methods . 31

2.6 Discussion . 32

3 Ray Caster Design 35

3.1 High Level Structure . 35

3.2 Classification . 37

3.3 Octree Encoding . 39

3.3.1 Overview . 39

3.3.2 The pyramid datastructure . 40

3.3.3 Construction and leaf access 41

3.3.4 Summary . 43

3.4 Octree Traversal . 43

3.4.1 A recursive method . 43

3.4.2 Glassner’s method . 44

3.5 Reconstruction . 47

3.5.1 Discussion . 47

3.5.2 Implementation . 48

3.6 Illumination . 52

3.6.1 Discussion on Lambertian shading 53

3.6.2 A revised Lambertian optical model 56

3.6.3 A comparison . 56

3.6.4 Surface strength shading . 57

3.7 High Order Integration . 58

CONTENTS ix

3.7.1 Standard compositing raycasters 58

3.7.2 Solutions to the rendering integral 60

3.7.3 The use of these formulae in the renderer 61

3.8 Time Complexity . 61

3.8.1 The cell by cell renderer . 61

3.8.2 The octree renderer preprocessing step 62

3.9 Summary . 64

Colour Plates

4 Results 65

4.1 General Discussion . 65

4.2 Results . 66

4.2.1 Integration . 66

4.2.2 Gradient calculation . 69

4.2.3 Octree optimisations and rendering time 70

4.3 Summary . 73

5 Conclusions 75

5.1 Discussion . 75

5.2 Future Directions of Research . 76

5.2.1 Increasing speed . 77

5.2.2 Increasing quality . 77

A Proofs 79

A.1 Constant Emission and Constant Extinction 79

A.2 Linear Emission and Constant Extinction 80

A.3 Linear Emission and Linear Extinction 81

B File Types 85

Bibliography 87

List of Figures

2.1 A naive tree implementation . 28

3.1 The rendering pipeline . 36

3.2 Classification . 38

3.3 Leaf traversal . 45

3.4 Linear interpolation . 49

3.5 Surface and volume Lambertian illumination 54

3.6 The Lambertian shaded sphere . 54

3.7 Standard vs revised Lambertian illumination 57

3.8 A simple octree . 63

4.1 Root mean square errors . 68

4.2 Constant step vs integration . 68

4.3 Proportion of variable density cells . 69

4.4 Gradient reconstruction . 70

4.5 Rendering time per volume sidelength for the Visible Woman 71

4.6 Time to render per image size . 72

4.7 Time devoted to preprocessing for 5002 pixel images 73

4.8 Cell by cell rendering vs Octrees . 74

4.9 Savings in octree leaves . 74

Chapter 1

Introduction

A number of powerful scanning techniques which produce three dimensional data
sets, or volumes, have become available in recent years. Volume visualisation is
an important area of research, opening up new ways for scientists to see their
data. It requires creativity as well as technical skill to generate tools able to convey
meaningful information to users, as the task of visualising volume data is more
complex than visualising two dimensional data in an image or even two dimen-
sional surfaces suspended in space. The human visual system is mainly adapted to
seeing surfaces — most of the objects encountered in daily life are opaque and we
recognise their shapes only by their boundaries.

Volume scanning techniques are common in medical diagnosis. They have the
advantage of being non-invasive, meaning that surgery is not required and the risks
to the subject are low. This makes these scanning technologies very attractive to
medical personnel. However, the data generated must be visualised accurately and
effectively for such techniques to be viable — loss of information or inaccuracies in
the final image (image artifacts) can have serious consequences.

Recent research in volume visualisation has increased the flexibility of visualisa-
tion tools, conveying more information to the end user. However, the large size of
data sets has posed problems for volume storage and manipulation. Data sets have
grown in pace with the increases in computer speed and technology, so efficient use
of computing hardware is an ongoing concern.

1.1 Volume Data Sets

Modern sources of volume data include medical scanning techniques such as
computer tomography, magnetic resonance imaging and ultrasound imaging. In
many areas of industry, volume data is created by computer tomography for
non-destructive testing of machine components or finite element simulations for
obtaining stress, temperature or fluid flow data. Typically a scalar field is sampled

2 CHAPTER 1 — Introduction

on a regular rectilinear grid, although vector fields and irregular grids are encoun-
tered, for example in finite element simulations. The scalar quantity measured
depends on the application, but for the sake of generality will be called density in
this thesis and given the symbol �.

The term density covers a diverse range of quantities. In Computer Tomography
(CT), for instance, the scalar field measured corresponds to X-ray absorption. X-rays
are passed through the body and measured by a sensor which moves around the
subject. The raw data from the device thus consists of a series of measurements of
the line integral of X-ray absorption between the X-ray source and the sensor. These
line integrals are transformed into a series of samples of absorption at points within
the subject.

Magnetic Resonance Imaging (MRI) measures the presence of specific types of
molecules by their interaction with radio frequency radiation under a strong
magnetic field. Ultrasonic imaging uses the reflection of high frequency sound to
map out tissues with varying impedances within the body.

Recently, more exotic techniques such as Positron Emission Tomography (PET)
measure the radioactive decay of marker substances injected into the body,
reconstructing samples on a grid in a similar fashion to CT scanning. An appro-
priate choice of marker substance can yield impressive information about metabolic
functions such as brain activity.

In this thesis, we shall largely restrict our discussion to medical data, and concen-
trate on scalar functions sampled on a regular rectilinear grid. This subset of volume
visualisation is a diverse area, including the visualisation of CT, MRI and PET data.
Other types of data can often be satisfactorily represented by this type of volume:
irregularly sampled volumes can often be resampled onto a grid, and scalar func-
tions of vector-valued samples such as the magnitude function can often represent
trends in vector data.

We shall use the term voxel, by analogy with pixel, to denote a density sample in
space, and the term cell to mean the cuboidal region bounded by eight adjacent
voxels.

1.2 Volume Rendering

Volume rendering is the process of translating volume data into an image. This
translation requires the concept of an optical model, a theoretical justification of an
algorithm that models the transmission of light through some medium. Optical
models may be based on the physical processes involved in light transmission, in
which case they are suitable for photorealistic imaging. However, not all optical
models draw their justification from physics; many are used simply for their ability
to convey useful information about volume data to the user.

To convey such information meaningfully, one must meet the user’s
expectations. An argument in favor of physically based models is that these

Section 1.2 — Volume Rendering 3

expectations are based in experience of the real world, and unrealistic models
are therefore misleading. However, one may note somewhat facetiously that if
photorealistic physically based images are superior, photographs are cheaper, more
accurate and more convenient than any volume scanning technique. X-ray images
have had a huge impact in medical diagnosis despite their lack of photorealism,
and their physical basis is far removed from that of human vision.

An optical model gives rise to a set of optical properties for each medium assumed to
be present in the volume. Such properties usually involve colour, light absorption
and reflectivity. The measure of light absorption used in this thesis is called extinc-
tion or attenuation, the terms being used synonymously. The extinction coefficient �
measures the fraction of light absorbed in a unit distance.

Volume rendering falls into two major categories, isosurface rendering and direct
volume rendering. Isosurface rendering is a two step process transforming a
volume into an intermediate representation, usually a set of polygons, which is then
rendered using an ordinary surface renderer. The only optical model supported is
that of a surface hanging in a transparent medium that reflects light according to a
surface illumination model such as those of Phong or Lambert.

Direct volume rendering, as its name implies, relies on no intermediate representa-
tion. It generates images directly from the data, without using surface rendering
techniques. Many varieties of optical model are supported, as is discussed in
section 2.2.

1.2.1 Isosurfaces

The chief advantage of isosurface rendering is that surface renderers are common
and well-understood, and in recent times are often implemented in hardware, so
rendering is extremely fast. Real-time animated displays are possible on modest
workstations.

The assumption behind isosurface rendering is that the interesting features of a
volume can be visualised by displaying one or more isosurfaces from the data. An
isosurface consists of the set of points fx j �(x) = k; x 2 IR3g, where k is a user-
defined density level of interest. This set of points is approximated by geometric
primitives suitable for surface rendering, such as sets of polygons, and an image is
generated. This assumption is not always valid, and the chief criticism of isosur-
face rendering is that all information within the volume that does not lie at the
chosen level is simply discarded. A bad choice, or a noisy data set, yields inade-
quate results, often without giving clues about what choice of level would improve
matters. In most isosurface renderers, only one level can be displayed in an image.

Simple methods of generating the polygonal representation include drawing cells
containing the isosurface as cubes, so the polygonal representation consists of the
union of all cube faces. This method suffers due to the extremely discontinuous
nature of the surface generated. Unsurprisingly, images have a very blocky appear-
ance. In another technique, contours can be constructed for each slice of the volume,

4 CHAPTER 1 — Introduction

a simple image processing problem, and then contours from adjacent slices can be
joined by triangles to produce the required representation. While finding contours
is easy, robust algorithms for joining them together are difficult to find. Most have
problems when the topology of the isosurface changes between slices.

A very popular method for polygonising an isosurface, Marching Cubes, was
advanced by Lorensen and Cline in [LC87]. In their algorithm, every cell containing
the isosurface was analysed and, based on the topology of the isosurface within
the cell, a number of triangles were generated. The method was to record an array
of eight boolean variables denoting whether each vertex of the cell was above or
below the density of the isosurface. This array, stored as a byte, was used to index a
lookup table giving the number and location of a set of triangles able to approximate
the isosurface. The vertices of each triangle were calculated by linearly interpolating
density along the cell edges specified by the lookup table. While one would expect
256 cases were necessary in the lookup table, Lorensen and Cline used rotational
and reflectional symmetries to reduce this number to 15. The set of triangles was
then shaded and rendered using standard techniques.

As the surfaces thus produced are not smooth, due to the nature of linear interpo-
lation, the shading function did not use the normals of the triangles. Instead, the
normalised gradient of the density, r�

jr�j , was used. The density gradient was calcu-
lated using central differences (discussed in section 3.5.2). While this method in
general does produce realistic images, given the limitations of isosurface rendering
in general, it can be shown that the boolean array used is not sufficient informa-
tion to infer the topology of the isosurface within a cell with certainty. Artifacts will
sometimes occur. [vW94]

The last method we will mention generates isosurface images without the interme-
diate polygonal representation, making it a hybrid with direct volume rendering.
Lin and Ching [LC96] have observed that under certain circumstances an isosur-
face can be rendered analytically, so their renderer does not suffer the effects of the
approximation involved in polygonising a surface. They use trilinear interpolation
(discussed in section 3.5) to reconstruct a density field from voxel samples. It can
be shown that the density field is a piecewise cubic polynomial, and so finding the
intersection of a ray with an isosurface reduces to finding the root of a cubic func-
tion. A closed form solution to this problem exists. They use this fact to write an
isosurface extracting ray-tracer, which is accelerated with an octree representation
of the data (octrees are discussed in section 2.5.3).

1.2.2 Direct volume rendering

Rendering images from the volume directly is more appropriate than isosurface
rendering for many purposes. Isosurface rendering, while fast, discards much of
the information present in the volume. Interesting and relevant features can thus
be missed. Isosurface rendering is very dependent on the choice of density level to
examine.

Section 1.3 — Goals 5

Direct volume rendering (DVR) uses the entire data set for its calculations without
intermediate steps such as the computation of a polygonal representation. While a
2D image can never display all the detail of a complex 3D structure, DVR is a more
robust approach to visualisation.

One key feature in this robustness is the ability to avoid binary choices in param-
eters. For instance, instead of choosing a single density value to inspect, we can
choose a range with a smooth drop off. Noise is suppressed, and a less than optimal
choice will still display relevant features, if less effectively.

Two generally accepted categories of DVR are image order methods and object order
methods. In the first, images are generated pixel by pixel, with the complete calcula-
tion required to render a pixel being performed before moving on to the next. The
most popular image order method is ray casting, where rays are cast through the
volume and an optical model evaluated. Ray casting is accurate and flexible, but
requires a great deal of computing resources. In an object order method, cells or
voxels are processed in order, building up an image gradually. The most common
technique is splatting, where each voxel is blurred and composited on the screen.
Splatting is fast and can be implemented at interactive speeds using graphics hard-
ware, but lacks accuracy.

Direct volume rendering is discussed in depth in the next chapter, where both
techniques and various optimisations for them are surveyed.

1.3 Goals

This thesis will explore the high quality volume rendering of medical volume data.
While the chief priority will be how to display relevant information to the user
with as much accuracy as possible, program efficiency will be a secondary goal. A
renderer that implements the ideas explored will be advanced, and its performance
evaluated.

The remainder of this thesis will be as follows. The second chapter gives
background information in the area of direct volume rendering, surveying major
techniques and algorithm optimisations. The third chapter will describe the design
of a ray casting renderer. The fourth chapter will evaluate the performance of the
ray caster, comparing it with a standard ray caster. Lastly, we will gives the conclu-
sions of the thesis, and outline future areas of research.

Throughout the discussion, a number of volumes will be used as examples. We
shall describe them briefly here, a fuller discussion is deferred until the results in
section 4.1. The first data set is a Gaussian sampled sphere of an opaque material at
a resolution of 120 � 120 � 120. The next data set is a 32� 32� 32 sampled version
of a function with the appearance of high frequency ripples. The third volume is a
CT scan of a male pelvis, consisting of 256 � 256 � 111 eight bit samples. The last
was extracted from the Visible Woman archive. It is a 256� 256� 256 volume of the
subject’s head and neck.

Chapter 2

Direct Volume Rendering

The best features of direct volume rendering (DVR) are that it can implement
powerful optical models, and that it is possible to avoid binary decisions for viewing
parameters. Levoy [Lev88, p. 136] states:

The key improvement offered by [direct] volume rendering is that
it creates a mechanism for displaying weak or fuzzy surfaces. This
capability allows us to relax the requirement inherent when using
geometric representations, that a surface be either present or absent at a
given location. This in turn frees us from the necessity of making binary
classification decisions.

We shall first discuss the material classification schemes allowed by DVR. We shall
then explore in some depth the wide range of optical models used in DVR, then
two major areas of DVR: image space and object space rendering methods. The
main distinction between the two approaches is that in object space methods the
algorithm iterates through cells or voxels adding a contribution from each to the
image. In contrast, image space methods such as ray casting iterate through pixels
in image space fully evaluating each pixel before moving on to the next.

The most important disadvantage to volume rendering is execution time. The final
section of this chapter will discuss optimisation techniques described in the liter-
ature. Significant groups of optimisations are frequency domain methods, octree
methods and wavelet methods. All have the feature that slowly-varying regions
of the volume are evaluated swiftly. Another group, opacity methods, reduce the
accuracy of calculation in regions of high optical depth as errors are attenuated by
intervening material.

2.1 Material Classification

The basic task of material classification is to assign optical properties to regions
of the data set. In medical visualisation, for instance, a certain range of densities

8 CHAPTER 2 — Direct Volume Rendering

corresponds to air, and should thus be made transparent, another may correspond
to bone, another to tumours, and so forth. In general, some features or some range
of densities will be “interesting” and will contribute most to the image, while the
rest will be “uninteresting” and will be edited out as far as possible.

Material classification is thus a form of feature recognition, and is the main mecha-
nism for summarising megabytes of data into information intelligible to humans. It
is a complex process, as many data acquisition techniques produce noise and uncer-
tainty, the properties of the scanner may change during scanning causing drift in
density values, and of course many important features are complex in shape and
subtly distinguished from surrounding tissue.

Obviously to do correct classification of materials in a human body would require
sophisticated feature recognition, detailed knowledge of anatomy, and a wealth
of experience with scanning technologies. This is clearly beyond the reach of
the current state of computing, and volume rendering research adopts a simpler
approach that leaves the complex and subtle aspects of the task to the human user.
Novins [Nov93, p. 29] comments: “most scientists are interested in seeing their data
in essentially ‘raw’ form, with a minimum of automatic interpretation.”

Most classification techniques restrict the parameters to ignore shape and context,
concentrating instead on density. These techniques reduce to designing a function
from density to optical properties. The desirable characteristics of this function are
that:

� It is robust with respect to noise.

� It must also be robust with respect to drift and other inaccuracies.

� It must convey the maximum amount of information to the user. Thus if bones
are the subject of study, they must look like bones, and other tissues must not
obscure the bone structure.

� Materials will be identified probabilistically, so yes or no decisions will be
avoided in favour of “fuzzy” percentage assigning decisions.

� Transitions between materials will be continuous.

Novins [Nov93, pp. 24–29] describes three algorithms for generating classification
functions, from simple to complex.

The first of these, thresholding, creates a piecewise constant function where the
set of densities is partitioned into intervals, and each interval is given a single
set of optical properties. We have a set of N materials with density ranges
M = f(�1; �2); (�2; �3); : : : (�N�1; �N)g. To classify a sample of density �s, we find
a pair (�i; �i+1) 2 M such that �i 6 �s < �i+1. The sample is then given optical
properties corresponding to that material.

This has obvious disadvantages, as the resulting function is not continuous and little
provision is made for uncertainty in classification.

Section 2.1 — Material Classification 9

For real data sets, voxels do not represent point samples in space but measure-
ments of weighted sums of regions around a point. The volume represented by a
sample is thus greater than zero. It is possible, indeed common, that a voxel sample
contains more than one material, but this classification scheme must simply choose
the closest material to the measured density, leading to loss of information. Also, if
the measured density for materials drifts or fluctuates over the course of scanning,
it may be impossible to choose a classification scheme that works: layers of tissue
will contain holes and lumps will appear mysteriously inside other tissues.

However, thresholding can have serious defects even if the data set is perfectly
sampled in such a fashion that good classification parameters are possible. Many
renderers, such as the one discussed in this thesis and the one advanced by Novins,
perform classification of density samples rather than of the reconstructed density
field. The usual reason for this is efficiency. If we assume this to be the case, the
following problem is inevitable.

Consider a transition between one material and another. As will be seen, surface
type illumination makes these transitions the most important regions for overall
image appearance. The raw data, if it is well-sampled, will have a smooth tran-
sition taking several cell lengths to complete. This can be reconstructed with high
accuracy without resorting to high-order interpolation methods. After thresholding,
however, all voxels in one half of the transition will be classed as one material, the
other half another. The transition loses its smoothness, occurring entirely within
one cell length. This is effectively impossible to reconstruct accurately, leading to a
very blocky appearance in images where each cell is delineated from adjacent ones.

The second scheme was first introduced by Levoy in [Lev88, p. 138]. It avoids the
necessity to choose one single material type for a particular density, as it allows
materials to be mixed smoothly. He assumes that, given a set of materials ordered
from lowest density to highest, material transitions only occur between adjacent
materials. So a single sample may contain at most two materials which are adjacent
in our ordering.

Formally, we have a set of N materials that have densities �1; �2; : : : �N such that
�i < �j if i < j. Levoy assumes [Lev88, p. 138] no material of density �a touches
any material of density �b such that jb � aj > 1. A piecewise linear mapping is
then constructed that converts densities to optical properties. A sample of density
�s between �a and �b is given optical properties that are a linear interpolation of
material a and material b. Levoy says “This scheme ensures that thin regions of
tissue will still appear in the image, even if only as faint wisps.” He also notes that
when the adjacency criterion is not met, the classification will not be correct. In
practice, this situation is rare with typical material distributions. For instance, CT
scan subjects do not usually have bone meeting air or even skin.1 Novins [Nov93,
p. 26] claims “With data such as medical CT scans, the conditions are approximately
held and impressive visual results have been achieved using this technique despite
the inaccuracies.”

1Drebin et al [DCH88, p. 68] give an exception to this: “within nasal passages mixtures of air and
bone are common.”

10 CHAPTER 2 — Direct Volume Rendering

The third scheme is a generalisation of Levoy’s. It is a probabilistic method that
works by assigning to each density value a set of coefficients that each give the
probability this density represents a particular material. Samples of that density
are rendered using optical properties that are a mix of each material with non-zero
probability. The scheme is reported by Drebin, Carpenter and Hanrahan [DCH88]
three months after Levoy’s paper.

With each material mi is associated a probability distribution Pi(�). This distribu-
tion represents the probability the scanner will output a sample of a given density
for a voxel containing material mi. Of course, such probability distributions are
rarely known in advance and must be estimated.

Drebin et al estimate the proportion of each material i in a sample of density � as:

pi(�) =
Pi(�)Pn
j=1 Pj(�)

Optical properties for each material mi are then mixed according the proportions pi
and the sample is classified.

When the sample is a scalar, as is most often the case in DVR, this scheme can
be implemented by a simple look-up table. The way Drebin et al define their
probability distributions Pi(�) for this case is as follows. Each material has a
range of 100% probability classification with a linear drop-off to 0% on either side.
Densities that are not certainly classified as a particular material are a linear mix of
the two adjacent materials. (See figure 2 on page 68 of [DCH88].) This scheme has
the same defect as Levoy’s scheme: samples that are a mix of non-adjacent materials
will never be classified as such. As [DCH88, p. 68] comments: “In performing the
musculoskeletal classification described above, voxels are never classified as being
a mixture of air and bone since the soft-tissue distribution lies between the air and
bone distributions.”

Indeed, while this maximum-likelihood scheme is in theory a generalisation of
Levoy’s scheme, as it is implemented by Drebin et al it is equivalent to it. Any
classification that can be represented in one scheme can also be represented by the
other. This is reasonable, as specifying each material in the way they have, as a
range of densities with a drop-off on either side, is a good user-interface decision. It
is an intuitive way to specify materials and is indeed used by the renderer described
in this thesis.

These three schemes do not exhaust the topic of material classification. As they all
fall short of the abilities of an experienced person, sometimes manual classification
is required, where trained personnel identify objects in the volume on a slice-by-
slice basis. Zuiderveld et al [ZvOC+96, p. 369] describe an example of the process,
for a computer tomography angiogram of a woman’s heart:

This segmentation is labour-intensive and highly operator-dependent,
which could result in loss of diagnostic information. In this case, the

Section 2.2 — Optical Models 11

segmentation took 35 minutes and the calcifications in the vessel wall
[the subject’s medical problem] were not shown.

However, it is currently the only way to perform a classification that can explore the
subtleties of human anatomy missed by automatic classification schemes.

2.2 Optical Models

The basic task of volume rendering is to simulate light as it passes through the data
set to a synthetic camera. Various models are possible in DVR, varying in compu-
tational complexity by several orders of magnitude. Simple models are sometimes
sufficient for scientific visualisation requirements, where being true to the physical
process of light transmission is not as important as displaying useful information
about the data set. Complex models, on the other hand, often simulate physical
processes with greater accuracy and are best suited to modeling the physics of light
transfer. One application where this is necessary is the simulation of clouds, where
light may be reflected many times between light sources and the camera. An optical
model should be chosen on the basis of the features the user is interested in viewing.

Many papers discuss how the authors have implemented an optical model, usually
using some variant of Lambertian or Phong illuminated material with an extinction
coefficient to model light absorption. This is evaluated by compositing samples onto
pixels, approximating line integrals through the volume. We shall discuss several
papers in brief to show optical models commonly used by researchers, then discuss
a range of options in detail to show the flexibility of DVR.

Levoy in [Lev88] uses an optical model designed to display isosurfaces within
volumes. Materials within the volume are illuminated using the halfway vector
formulation of the standard Phong equation, with a linear depth cueing function.
For the normal vector required by the Phong illumination function, Levoy uses the
normalised density gradient, and does not describe how his program responds to
a gradient of zero. Samples at the selected isosurface value are opaque, and the
opacity is chosen in a manner designed to make visible contours a constant non-zero
thickness. To achieve this, samples near the chosen value have an opacity inversely
proportional to the magnitude of the local gradient.

Drebin, Carpenter and Hanrahan in [DCH88] use a slightly different approach.
Regions with constant proportions of materials have a constant colour, and the
isosurfaces where proportions change are shaded using a standard surface illumi-
nation model. They reference Phong,2 Blinn [Bli82] and Cook3 without mentioning
which they actually use. Whichever illumination function they use, the optical

2Phong Bui-Tuong. Illumination for computer generated images. Communications of the ACM,
18(6):61–67, June 1975.

3Robert L Cook and Kenneth E Torrance. A reflection model for computer graphics. ACM Transac-
tions on Graphics 1(1):7–24, 1982

12 CHAPTER 2 — Direct Volume Rendering

model cannot be represented exactly by line integrals of continuous functions.
The optical model was a hybrid model which is effectively a set of surfaces
corresponding to density isovalues, rendered using a standard surface model,
suspended in layers of translucent, constant coloured mist.

Sobierajski and Kaufman [SK94] use a low-albedo approximation to a rigorous
light transport model from Krüger,4 where light is scattered according to a func-
tion “allowing only ideal diffuse and specular reflection.” They do not give details
about what function is used, but describe the advantages of giving the user a great
deal of control over it to produce specific shading effects.

Upson and Keeler [UK88] use standard Lambertian shading using the density
gradient for the normal, normalising the gradient vector similarly to Levoy. They
claim their goal is to “represent abstract data sets of natural phenomena : : : this
work differs from others whose goals are to simulate the visual aspects of the
phenomena realistically.” [UK88, p. 62]. Their renderer shares with this thesis
the desire to present interesting features of data sets rather than physically-based
modeling of light transfer. Opacity is calculated by a transfer function of density.

A good survey of different illumination options is found in [Nov93, ch. 2], where
several of the models described below are outlined: maximum value rendering, absorp-
tion only rendering, low-albedo scattering and high-albedo scattering. Images of the same
scene, a CT scan of a male pelvis, rendered with the first three models are included
for comparison. Images of a cardiac ultrasound data set contrast low and high
albedo models.

The best rigorous analysis of volume optical models is found in [Max95]. Max
surveys six methods from the reasonably simple through to the complex, deriving
formulae from a particle density model of light transmission. He also gives images
demonstrating the various effects made possible by each method.

We shall survey those algorithms, comparing their various features and computa-
tion costs. However, derivation from first principles will be omitted; the interested
reader is referred to [Max95]. We shall assume for ease of explanation that the image
is constructed by rays being cast through the volume from each pixel of the image.
The same model can be implemented by a number of algorithms, so this assumption
is without loss of generality.

2.2.1 Maximum value rendering

This is the simplest method for assigning a colour to a pixel. As a ray traverses
the volume, the highest density value encountered is recorded. This value is then
mapped to a colour and displayed on the screen.

This method is extremely simple, and can be evaluated in “several seconds” per
image, according to Zuiderveld et al [ZvOC+96, p. 367]. An advantage of this

4W Krüger. The application of transport theory to visualisation of 3D scalar fields. Computers in
Physics 397–406, July 1991.

Section 2.2 — Optical Models 13

shading model for certain applications is that material classification can be omitted.
The application under discussion in that paper was visualising Magnetic Reso-
nance Angiography, a technique where volume data contain large amounts of noise.
Methods requiring classification, such as isosurface methods or indeed this thesis,
would perform poorly and maximum value rendering is said to be the method of
choice [ZvOC+96, p. 367].

Naturally, such a simple method has severe limitations. Of all the cells encountered
by a ray, the colour of the pixel is entirely determined by the density of one. The vast
majority of information in the data set is thus discarded. One particular deficiency
of this method is that it is impossible to tell what is inside a closed volume bounded
by dense tissue.

Examples of diagnostic importance where this may occur include CT scans of the
brain inside the skull, or searching for low-density cysts inside the liver or kidneys.
It is also important when examining CT scans of tumours to determine whether they
are cystic (therefore likely to be benign) or malignant; the former are filled with fluid
and the latter usually solid.

As an aside, the researchers in [ZvOC+96] used an alternative rendering method
at interactive speeds, as is discussed below in section 2.2.4 on emission-absorption
rendering.

One notes that the necessity of interactive rendering speed is increased when most
of the information in the data set is discarded. The users must view the volume from
many angles, because many important features will only be visible from certain
angles. One tumour will hide any other tumours in front of or behind it, for
example. A user would need fewer images if the illumination algorithm puts more
information into each image.

2.2.2 Absorption only rendering

A simple optical model that does not discard data in the fashion described above
simulates the absorption of light in a material. The density field is mapped to an
extinction field � : IR3 ! IR, rays are cast through the field from a bright background
to the eye and pixels coloured according to the accumulated opacity of the ray.

[Max95] derives an equation to integrate the absorption function along a ray. A
similar equation, with a different derivation, was used by Blinn in [Bli82]. Let the
ray be parametrised r(t) = dt+ v, where v is the viewpoint and d the direction. If
I(t) is the intensity of light at distance t, and I0 is the intensity entering the region
being integrated, then

I(t) = I0e
�

R
t

0
�(t)dt

If the transfer function mapping density to absorption is the identity function, the
result of this illumination algorithm is similar to a standard X-ray. Indeed, one can

14 CHAPTER 2 — Direct Volume Rendering

use a CT scan of a patient to simulate an X-ray image from any viewpoint. Novins
notes that the “simulation of X-rays is one important application of this model”.
[Nov93, p. 13]

It is possible to accelerate the calculation of the integral using the Fourier Slice
Projection Theorem and the fast Fourier transform. This technique is more fully
described in section 2.5.2.

Illumination models that convey more visual cues, however, need to include
scattering and emission effects as in the following models.

2.2.3 Emission only rendering

A similar optical model to absorption rendering models only the emission of light.
The medium is modeled as emitting light according to a function "(t) of position,
calculated by a transfer function of the volume density at that position. The example
given by Max [Max95, p. 101] is that of an incandescent gas, where light is emitted
but the gas is transparent, so absorption and scattering effects can be ignored. The
function is slightly simpler than absorption rendering:

I(t) = I0 +

Z t

0
"(t)dt

Malzbender in [Mal93] has demonstrated that this model can be evaluated effi-
ciently by Fourier methods. This was extended with depth cueing and simple
shading in the Fourier domain by [TL93] one month later, as is described in
section 2.5.2.

2.2.4 Emission and absorption

A useful optical model considers both absorption and emission effects in a medium,
generalising on both the previous models. Let the amount of extinction of light at
a point be �(t) as before, and the emission similarly be "(t). For the moment we
shall consider "(t) to be an arbitrary function of location but in section 2.2.5 we shall
refine it to incorporate shading and scattering effects. The extinction coefficient is
again a transfer function of density. [Max95] derives the well-known formula:

I(t0) =

Z t0

0
"(t)e�

R
t

0
�(s)dsdt + I0e

�
R t0
0 �(s)ds

This kind of model is now of great practical use in illuminating volumes, although
the amount of calculation makes interactive renderers difficult. Novins [Nov93,

Section 2.2 — Optical Models 15

p. 10] lists its advantages: “Its main attractions are its physical basis, simplicity
and its generality.” We note that while its physical basis is an improvement on
the models previously described, there are many physical aspects being ignored.
The modeling of solid materials, which occur in many scenes in the literature, by
non-interacting particles floating in space is questionable. Max [Max95] bases these
models on gaseous phenomena: clouds, flames, incandescent gas. However, it has
proved popular because of the realistic appearance of the results, regardless of its
physical basis.

There has been much research in accelerating emission-absorption renderers using
techniques such as wavelet transformations [Wes96], octree encoding and adaptive
ray termination [Lev90] and DCT encoding [YL95], as is described in section 2.5.

The authors of [ZvOC+96] were able to implement this optical model in an inter-
active system, although without shading. 3D texture mapping hardware was used
to map density values directly to RGBA colours and composited on the screen at
interactive rates. They report a very positive response from clinicians who felt the
system to be “a glimpse of their future” [p. 370].

2.2.5 Low albedo scattering

The emission-absorption model can be extended by defining the emission function
"(t) to include scattering effects from a light source. The major distinction between
scattering models is how many reflections are allowed to occur between the light
source and the eye, which in turn depends on the albedo of the particles in the trans-
mission medium. Albedo is defined as the proportion of incident light reflected off
a particle, and is often used in astronomy to characterise heavenly bodies.5

A simple way to model light scattering through a medium is to assume that the
albedo of the medium is low enough that one need only consider one scattering
event per ray. Light can travel from the light source until it reflects off a particle
in the medium to the viewpoint. The possibility of multiple internal reflections is
ignored.

A feature of this model is that regions where density is changing, for instance the
boundary between one tissue and another, can be visualised similarly to a surface.
Shadows cannot be modeled as the light is assumed not to interact with the volume
between the light source and the point being visualised. Novins claims that this is
not necessarily a bad feature for medical visualisation, as will be seen in the next
section.

[Max95] gives a general rule for describing illumination models of this sort. The
emission term in the rendering integral is the sum of a “non-directional internal
glow” E similar to ambient light in surface rendering, and a shading rule S. So, if
X is the point under consideration, ! is the direction to the viewpoint and !0 is the
direction to the light source:

5Blinn, who introduced the term in 1982 [Bli82, p. 23], was modeling the rings of Saturn.

16 CHAPTER 2 — Direct Volume Rendering

The emission function "(X;!) = E(X) + S(X;!)

S(X;!) = r(X;!;!0) i(X;!0) (2.1)

where i(X;!0) is the incoming light and r(X;!;!0) the “bidirectional reflection
distribution function” that specifies in what directions light is reflected by a particle.
Further, rigorous models of light scattered by a density of particles follow the rule:

r(X;!;!0) = a(X) �(X) p(!;!0)

where �(X) is the proportion of light extinguished by the particle, a(X) is the
albedo, or the proportion of �(X) that represents scattering not absorption. Finally,
p(!;!0) is the phase function representing the proportion of light scattered in a
particular direction.

Max then quotes from various sources suitable phase functions for modeling firstly
particles of similar size to the wavelength of light, and then particles greater than
a wavelength of light. The result is a calculation intensive physically-based model
suitable for photo-realistic simulation of gaseous phenomena. The example images
in the paper are of cloud simulations, a particularly demanding application as
shown by the lack of realism in many computer generated cloud scenes. However,
this physically-based model does not necessarily improve the quality of visuali-
sation for medical purposes. The paper provides a simpler model that simulates
diffuse illumination, an adaption of Lambertian illumination:

r(X;!;!0) = max(rf � !0; 0)

This is a more promising illumination function, as it provides shading cues with
only a modest amount of calculation. However, experiments show that the results
are not always what one would expect. This will be explored further in section 3.6,
where the illumination model for our renderer is described.

The reader will notice that the gradient term in the above equation is unnor-
malised. In surface shading, one normalises the normal of a polygon but some
authors in volume rendering literature [Max95][DCH88] introduce the concept of
the “strength” of a surface. Weak surfaces should be shaded less brightly than
strong surfaces, to emphasize actual material changes instead of noise, and to allow
slow material changes to be represented softly. [Lev88] uses the same concept to
modulate opacity, providing constant thickness to visible layers within the volume,
as has been described above.

2.2.6 High albedo scattering

In high albedo media, the probability of multiple internal reflections cannot be
ignored. Light may interact with particles a large number of times between the
light source and the camera.

Section 2.2 — Optical Models 17

One simple way to move from a low-albedo model to a high one is to include self-
shadowing. This is similar to the previous section, except that the i(X;!0) term in
equation (2.1) is not a simple evaluation of the strength of the light-source, but a
ray-trace from point X to the light source, with a full line integral being evaluated.

It would seem that this would require O(n2) operations per ray, but an O(n) algo-
rithm is possible by using a pre-pass to calculate the attenuation of the light-source
at each point in the volume, an operation that takes the same length of time as the
final rendering. [Max95, p. 104]

Is this a useful technique for medical visualisation? [Nov93] implemented self-
shadowing in this manner, and found that important information was actually
obscured by this added realism. He says [p. 18]:

In all our experiments, we found that shadows did not improve compre-
hension of the scene, and frequently degraded comprehension. Two
specific problems were:

1. Shadows obscured regions of the data set. The effects of texture
and shading in attenuated areas were minimized, thereby making
perception of surface orientation difficult.

2. Unfamiliarity with the object meant that shadows appeared in
unexpected places. Viewers often incorrectly interpreted shadowed
areas as “dirty voxels”.

He states that, apart from computational complexity, the “reason for the lack of
interest in global illumination by the visualization community is the lack of clear
evidence that more realistic lighting effects lead to improved image comprehension”
[Nov93, p. 17]. Thus it would seem the added calculation involved would be wasted
for our purposes.

[Max95] describes in detail methods for modeling multiple internal reflections,
some of which are related to surface radiosity algorithms, while others use Monte
Carlo techniques. Algorithms of order O(n6) and O(n7) are described, where n is
the sidelength of the volume. While the added realism is useful for his purpose of
rendering realistic clouds, he says these methods “are expensive in computer time
and are overkill for most scientific visualisation applications.” [Max95, p. 105]

2.2.7 Discussion

The preceding discussion covers a range of optical models with a large variation in
realism, and a computational complexity varying by several orders of magnitude.
Within this range there appears to be a balance: some realism is required to convey
useful information by visual cues, but added realism wastes computer time or, even
more seriously, degrades the useful information content.

18 CHAPTER 2 — Direct Volume Rendering

The first methods discussed, maximum value, absorption only and emission only,
can be implemented in near real-time on modern desktop computers. However,
they do not convey sufficient information to be appropriate for a high quality
visualisation system. Emission-absorption rendering as in [ZvOC+96] is a vast
improvement, but the lack of shading hinders comprehension of the image.

The high albedo methods are too complex and do not increase information content.
Multiple scattering effects and shadows therefore offer little to this thesis. Even
physically-based modeling of particle densities is too much calculation for too little
return.

Low-albedo emission-absorption rendering seems to be the most promising option
for medical visualisation. It can provide realistic shading cues, and can simulate
simpler models such as isosurface methods accurately if the user desires.

2.3 Image Order Methods

Image order methods perform calculations for each pixel successively, finding the
final colour of one before moving to the next. A very popular image order method
is ray casting. In ray casting, a single ray is cast for every pixel and a line integral
along it evaluates the optical model.

As can be imagined, a complicated line integral for every pixel in an image is a large
computation cost, and the bulk of research in this area has focused on speeding the
process. This is more fully discussed in section 2.5.

An early example of ray casting is [Lev88], where Levoy describes a ray caster
designed to display isosurfaces in volume data without the errors associated with
fitting geometric primitives to the isosurface.

Another early example is provided by Sabella [Sab88], who demonstrates the flexi-
bility of ray casting by mapping a number of features within the data to each pixel’s
colour in a single image. He combined attenuation along the ray, the maximum
value encountered by the ray and depth cueing all into one colour using a mapping
to the HSV colour space. The value component represents a measure of attenua-
tion, similar to the normal rendering integral, the hue component represents the
maximum density encountered by the ray, and the saturation component gives
depth cueing. The result is that “hot spots” within the data stand out with a red
hue, and distant features having low saturation appear to be seen through a fog.
[Sab88, p. 54]

Later research includes [Lev90], which as will be seen in section 2.5.3 accelerates ray
casting with an octree, and Sobierajski and Kaufman [SK94] who combine surface
and volume data to create a hybrid ray tracer.

Section 2.4 — Object Order Methods 19

2.4 Object Order Methods

Object order methods traverse the volume instead of the image, building up pictures
voxel by voxel. We shall discuss V-Buffer rendering, splatting, and HIACS cell
projection as examples of this type of algorithm. A survey of the first two of these
methods is given by Kulka [Kul98], to which the next two subsections are indebted.

2.4.1 V-Buffer

The V-Buffer algorithm by Upson and Keeler [UK88] was introduced in 1988. In this
method, every cell in the volume was examined in a front to back order, which is
trivial to evaluate as cells lie on a regular grid. Each cell was shaded and trilinear
interpolation coefficients were evaluated for the colour parameters. Rays were
then cast through pixels, and the segments intersecting the cell were integrated to
yield RGBA values which were composited onto a buffer. When all cells had been
processed, the buffer contains the final image.

This process performs the line integral of each ray through the volume with great
accuracy, and is indeed functionally equivalent to ray casting, with the improve-
ment that the image is built up in a progressively refined manner “visually akin to
what one might experience watching a fog-shrouded hillside as the fog recedes and
ever more detail of the landscape is revealed.” [UK88, p. 61] However, the authors
note that “the ray caster is generally more efficient for conventional machine archi-
tectures and opaque data volumes” [p. 61] as it can implement early termination for
opaque rays, but the V-Buffer method cannot. However, “the cell-by-cell method
can reach the same efficiency when the object is quite transparent.” [p. 61]

2.4.2 Splatting

Splatting, introduced by Westover the following year in [Wes89], is a fast technique
that can render at interactive speeds. Unfortunately, at least in its original form it
lacked accuracy.

In this method, each voxel is examined in either a front-to-back or back-to-front
manner, and a blurred version is composited on the screen. The metaphor giving the
method its name is that of snow balls being thrown against a wall, where each snow-
ball is a sample convolved with a reconstruction filter. [Wes89] describes an ortho-
graphic projection renderer, although the method was later extended to include
perspective by Westover and Swan et al. [Wes90][SMM+97]

The motivation for the method can be described by considering ray casting a single
sample in space. In ray casting, the discrete data are reconstructed to produce a
density field by convolution with a (usually trilinear) filter, and then rays are inte-
grated to find pixel intensities. In our single sample example, then, the point is
filtered to yield a fuzzy ball in space, which is then converted to a fuzzy circle in the

20 CHAPTER 2 — Direct Volume Rendering

image by evaluating a grid of parallel line integrals. Westover notes [Wes89, p. 12]
that the intensity of the sample is a constant that can be factored out of the integrals.
In other words the final image is always the same, merely scaled in brightness by
the value of the sample.

If we use a radially symmetric reconstruction filter, for instance a radial Gaussian,
that final image will also be the same for any orthographic view at any angle.
Thus the footprint (set of coefficients for generating the image) is constant. As it
is constant, it can be precalculated once and stored in a table. This makes the use
of high order reconstruction filters possible, in contrast to ray tracing where even
trilinear interpolation often dominates rendering time.

Realistic scenes have more than one visible sample. To render more interesting
volumes, each voxel is “splatted” onto the screen in order, gradually building up
a complete image. If the extents of the filters never overlap, and the attenuation
of the splat by itself and illumination by a light source are ignored, this method is
reasonably accurate.

However, in practice the extents of interpolation filters always overlap because prac-
tical Gaussian filters are several cell lengths wide. Thus all voxel splats will overlap
their neighbours. The method assumes that one splat can be composited over the
top of another regardless of whether their filtered samples overlapped in space, so
the entire brightness of the further voxel will be attenuated by the entire opacity of
the closer. In an accurate method, the overlapping region of the further voxel lies in
front of part of the nearer one, and so will not be as attenuated.

This inaccuracy in splatting motivates the use of Gaussian filters for generating
footprints, as the smoothing effect of the filter makes artifacts less noticeable. The
usual effect of splatting without sufficient smoothing is that surfaces tend to vary
in brightness between splats. As [SMM+97, p. 198] notes, in animations of volumes
this problem is most pronounced when the order of traversal changes. As a volume
rotates, for instance, a sudden jump occurs when it makes an angle of �

4 radians
with the eye.

The second major inaccuracy in splatting relates to shading and classification.
In an ideal implementation, reconstruction occurs first, then classification and
finally shading. For ray casting, this order is often juggled for efficiency reasons,
but in splatting it is inherent in the method that reconstruction occurs last, as
[SMM+97, p. 198] comments.

However, as splats can be composited by texture mapping hardware in modern
workstations, splatting is by far the fastest DVR method, and fast animations can be
generated in real time. Splatting has been extended to include perspective projec-
tions by [Wes90] and [SMM+97], but at some cost to either speed or accuracy: the
footprint of a splat needs to be recalculated for every voxel to give an accurate inte-
gral of the reconstruction filter. [Wes90] approximates the answer by fitting elliptical
splats to voxels [p. 375], and [SMM+97] varies the size of splats depending on the
depth of the voxel to ensure a uniform sampling rate.

Section 2.4 — Object Order Methods 21

Laur and Hanrahan [LH91] also use variable sized splats. They accelerate the algo-
rithm by means of an octree structure and splat leaves instead of voxels. This will
be more fully discussed in section 2.5.3.

2.4.3 HIACS cell projection

The last object space method we shall survey, advanced by Williams, Max and Stein
[WMS98], is distinguished by the exceptional effort expended on image quality: the
name HIACS is an abbreviation for HIgh ACcuracy. It is broadly similar to V-Buffer
rendering, in that each cell is examined in a back-to-front order, and rays are cast
through it for each pixel it projects onto.

However, cells do not need to be on a regular grid: tetrahedral, brick, prism or
pyramid shapes are supported provided an acyclic visibility ordered graph can be
found. Either orthographic or perspective projections can be used, and Phong illu-
minated isosurfaces can be included. For cells so small they fall between pixels,
sub-pixel splatting is used to correct for sampling error. Integration techniques are
used where known, otherwise high accuracy numerical methods are employed. The
cell mesh can be nonconvex or even disconnected.

The renderer uses the emission-absorption optical model, and piecewise linear clas-
sification similar to Levoy’s method described on page 9 of this thesis. The basic
algorithm is follows.

� Firstly, cells are sorted to give a back-to-front order.

� For each cell, rays are cast through it corresponding to each pixel it projects
onto.

� The cell is cut into slabs, within which material properties vary linearly. The
boundaries of each slab have a density between adjacent linear intervals in the
classification scheme.

� Accurate integration is applied to each ray segment within each slab.

� The resulting values are composited to generate the image.

Compromises in accuracy were not introduced to speed rendering, as their defined
goal was “to design a volume rendering system to create benchmark images for
use as a standard of comparison” [WMS98, p. 37], so that other systems using
simplifying approximations may be compared reliably. The renderer is designed
to display finite element simulations.

22 CHAPTER 2 — Direct Volume Rendering

2.5 Optimisation Methods

The large computation time required by most rendering methods, and the continu-
ally increasing sizes of data sets, have led many researchers to focus on optimisation
methods to produce images in a reasonable time. The usual goal is to approximate
regions which contribute little to the final image, such as dim regions or regions
lying behind opaque material. Homogeneous regions can be approximated by a
constant average value. Such regions are sampled less often, by increasing the step
size of a ray caster, or by increasing the splat size of a splatter.

We shall discuss a range of methods. Firstly, we shall describe methods that
decrease calculation behind opaque regions, then frequency domain methods,
octree and pyramid methods, and finally wavelet methods.

2.5.1 Opacity methods

These optimisations are generally relevant to ray casters, where a front-to-back
traversal yields optical depth information during ray integration. Samples at a large
optical depth have most of their intensity absorbed by the intervening material, and
accurate calculations add little to the quality of the image.

The simplest method, used by Levoy [Lev90], is to terminate the calculation when
the accumulated opacity of the ray exceeds a threshold. The value used by Levoy
was 0.95, which does not affect the image noticeably. The same method was used by
Upson and Keeler [UK88] for their ray tracer, except that the authors terminate the
ray calculation when the opacity reaches unity. Levoy claims the speed up achieved
by this method is between 1.3 and 2.2 [p. 254], while [UK88] does not give quanta-
tive results.

This method introduces a systematic bias into the image, since terminated rays
will never be quite as bright as they should be. This is noted by Danskin
and Hanrahan [DH92], who introduce two alternatives, which they call Russian
Roulette and �-acceleration. Russian Roulette involves probabilistically terminating
rays depending on their optical depth, and proportionally increasing the energy
of all other rays so that the bias to dim images is eliminated. This yields a speed
increase of 10% without visible artifacts; apparently lowering the threshold intro-
duces noise faster than it increases speed [DH92, p. 96].

�-acceleration involves gradually increasing the step size taken by the ray tracer,
depending on the opacity of the ray. Danskin and Hanrahan implement this as
follows. Their renderer already evaluates an error metric as is discussed on p. 26 of
this thesis, which is tested against a threshold to determine the level of approxima-
tion used. As the contribution of the error in a sample to the final image depends
directly on how much the sample is hidden by opaque material, they multiply their
error metric by the ray’s accumulated opacity, a very simple change to make to the
code. The increase in speed is about 10% [DH92, p. 96]. The authors note “Clearly,

Section 2.5 — Optimisation Methods 23

given a homogeneity-acceleration implementation, �-acceleration is worth the extra
eight keystrokes it takes to implement.” [DH92, p. 96] As an aside, they actually
use nine keystrokes not including whitespace.

2.5.2 Frequency domain methods

The motivation behind frequency analysis of volume data for optimising rendering
is the Fourier Projection Slice Theorem. As Totsuka and Levoy in [TL93, p. 271]
explain, this theorem applied to a 3D volume states:

The following two are a Fourier pair:

� The 2D image obtained by taking line integrals of the volume along
rays perpendicular to the image plane.

� The 2D spectrum obtained by extracting a slice from the Fourier
transform of the volume along a plane which includes the origin
and parallel to the image plane.

In other words, to create an orthographic image using an optical model requiring
only a line integral of a single quantity, we can obtain the Fourier transform of the
volume, extract a slice from it, and find the inverse transform (in 2D) of the slice to
get the image.

Malzbender in [Mal93] use this fact to write an emission-only volume renderer,
and claims an improvement in the order of complexity over standard methods.
He claims that both ray casting and splatting are “in some sense : : : O(N3) for an
N � N � N data array, since each sample point should be visited” [Mal93, p. 233]
and that other optimisations do not improve the order of complexity [p. 234]. While
this is something of a generalisation, ignoring factors such as image size, it is the
case that his renderer has order O(N2 logN).

A complication in Fourier rendering is that reconstructing the slice must be done
with a great deal of accuracy, and even though this is an O(N2) operation it domi-
nates rendering time. Malzbender uses sophisticated reconstruction filters with
extent 5� 5� 5 and 3� 3� 3 to get an adequately sampled image spectrum.

Malzbender’s technique evaluates the equation

Intensity =

Z 1

�1
�(t)dt (2.2)

where t parametrises a ray perpendicular to the image plane. This is sufficient for
either the emission only or absorption only models described above, but does not
include shading or occlusion effects. The result is similar to a standard X-ray image.

24 CHAPTER 2 — Direct Volume Rendering

[Mal93] claims an increase in speed of up to two orders of magnitude for practical
data sets [pp. 244–247].

Totsuka and Levoy [TL93] extend Malzbender’s method to include depth cueing
and simple diffuse shading, both in the Fourier domain. They use two properties of
Fourier transforms [TL93, p. 272]:

� Multiplication by a linear ramp in the spatial domain is equivalent to differen-
tiation in the Fourier domain. Thus linear depth cueing can be implemented
by differentiating the spectrum analysis.

� Differentiation in the spatial domain is equivalent to multiplication by a
linear ramp in the Fourier domain. This allows simple diffuse shading to be
implemented by multiplying the spectrum.

We note that the shading they use is only an approximation to Lambertian shading.
[TL93] improves reconstruction speed by adaptively using a 1 � 1 � 1 filter when
frequency components are nearly zero [pp. 275–276]. The renderer runs about an
order of magnitude faster than a spatial domain renderer for data sets of practical
size. However, while these renderers are very fast, they can only evaluate limited
optical models. Equation 2.2 is used to evaluate an emission-only model, and one
can see that with minor alterations it could evaluate an absorption-only model, but
combining the two models is impossible. All manipulations of the volume, such as
the shading and depth cueing above, must be conducted in Fourier space, making
the usual illumination functions difficult to implement.

The last frequency based method we shall examine is discussed by Yeo and Liu
[YL95]. It uses the Discrete Cosine Transform (the compression technique used in
JPEG image compression) to compress the volume in memory. The main goal of the
technique is to fit larger data sets into RAM, but they report an increase in speed
over standard ray tracing even aside from eliminating page faults and thrashing.
The compression method segments the volume into overlapping 323 blocks, of
which only one needs to be decompressed for rendering at a time. The data set
can be compressed by a factor of 20 to 30 before artifacts occur.

The rendering speed was measured twice, once on a machine with sufficient
memory (256Mb) for standard ray tracing, and once on a machine that could not
hold the entire compressed data set at once (64Mb). The first measurement shows
a speed up of about 30%, the second over 300%. The improvement in speed even
when memory is not an issue was attributed to quicker disk access, better cache
utilisation and fast traversal of homogeneous regions (where most DCT coefficients
are zero).

2.5.3 Octree and pyramid methods

The next major type of DVR acceleration we shall discuss makes use of octrees to
exploit spatial coherency in the data set. In splatting, nodes of the octree can be

Section 2.5 — Optimisation Methods 25

splatted instead of individual cells, so that regions that do not contribute much to
the appearance of the image will be processed faster. In ray casting, the traversal of
the octree can be altered to stay in coarser levels of the tree in unimportant regions.

We shall first discuss the uses octrees have been put to in DVR literature, citing
representative papers for examples. We shall then discuss octree representations
used in computer graphics, and examine their memory requirements and perfor-
mance. These are particularly significant factors in a ray casting volume renderer, as
unlike surface ray tracers the number of nodes in the octree can easily reach several
million and memory requirements can become prohibitive.

We shall devote greater space to this discussion to provide background for the
implementation of the renderer this thesis describes. A discussion of traversal
methods for casting rays through octrees is deferred until the design of this renderer
is discussed in section 3.4.

In this discussion, we shall carefully distinguish a number of terms. The term
voxel refers to a single density sample in space, and a cell is the cuboidal region
surrounded by eight adjacent voxels. A node is an element of the octree, containing
a cuboidal set of cells, and a leaf is a node which is not subdivided into child nodes.
This may be because all the cells it contains have identical densities, or because it
contains a single cell with variable density. The top level of the tree is the root node
containing the whole volume, the leaves are at the bottom of the tree.

Octree acceleration methods.

An early example of the use of octrees in volume rendering is given by Levoy
[Lev90]. He used an octree to store a binary value representing the presence of
opaque material. A one denotes the presence of nonzero cells that contribute to the
image, a zero indicates only transparent cells. The binary values were stored in a
volume pyramid, as is described below in section 2.5.3.

The renderer traversed the tree by searching down it until either a zero was found,
in which case that subtree could be ignored, or the base level was reached, in which
case samples were taken and composited onto the ray. The renderer then continued
the traversal until it had exhausted the volume, or until the ray became effectively
opaque.

Levoy’s octree traversal was found to be a significant cost, and so was optimised so
that it never rose to within two levels of the root node, as in interesting data sets
zeros are rare that high up the tree. His traversal also never went lower than two
away from the bottom of the tree, as in that situation a simple cell-by-cell traversal
was faster. The overhead for climbing and descending the tree searching for zeroes
was thus minimised.

Levoy reports that the use of octrees in this manner increased the speed of rendering
by between 200% and 500% [Lev90, p. 254]. His three data sets included two medical
CT scans and an electron density map of a ribonuclease molecule.

26 CHAPTER 2 — Direct Volume Rendering

Laur and Hanrahan in [LH91] have a very different approach to the use of octrees.
They implemented an optimised splatting renderer that again uses a volume
pyramid, but instead of storing a binary value they store a measurement of the
error associated with splatting that node. To render an image, the tree is traversed
and when a node contains a smaller error than is deemed acceptable to the user,
that node is splatted and its children are ignored. The error metric is a root mean
square function comparing the average density of the node with the densities of its
constituent cells.

This optimisation relies on the ability to efficiently splat nodes of different sizes.
They make use of polygon rendering hardware by using splat footprints made out
of several translucent polygons instead of the more common texture maps. They
say “Recent [as of 1991] workstations have added the ability to interpolate � along
with color, and to provide hardware assist for compositing” [LH91, p. 286]. Splat-
ting footprints can be scaled very simply (apart from an opacity correction) and
the complexity of scan converting different sized polygons passed on to graphics
hardware. This approach is less common now as current workstations also provide
texture mapping assistance, so footprints can be texture mapped onto a single
polygon and still have the speed advantages of hardware.

With this hardware assisted adaptive error method, the quality of the image is made
a function of the desired rendering time. A good preview of complex data sets can
be achieved in five seconds [LH91, p. 288], although the authors do not mention
the specific hardware used, apart from the fact that it was from Silicon Graphics.
[p. 288]

In 1992, Danskin and Hanrahan [DH92], expanding on Levoy’s work, used pyramid
datastructures to implement a number of optimisations. They derived a formula for
importance sampling: minimising error by sampling at a rate depending on the
contribution to the final image. They found that the error in a sample depends on
the presence of bright material, the accumulated opacity of the ray thus far, and the
homogeneity of the volume surrounding it.

To accelerate ray casting within a certain allowable error, Danskin and Hanrahan’s
ray caster traversed nodes of the pyramid structure at a height depending on the
intensity, accumulated opacity and homogeneity of the node’s constituent cells.
Pyramids were constructed containing three parameters of the density distribution
of the constituent cells: average, maximum and range. The average density was
used for rendering, the maximum value used to measure intensity and the range
value used to measure homogeneity. Also, as was discussed earlier, as the opacity
� accumulated on a ray increased, so did the traversal level in the pyramid.

The results indicate that the most significant factor for time efficiency was homo-
geneity, allowing a 5% error in a homogeneity-accelerated image resulted in a 300%
increase in speed. Presence acceleration ran only 200% faster with the same level
of error, while the � (opacity) acceleration (implemented within the homogeneity-
accelerated renderer) as discussed above improved speed by another 10% [DH92,
p. 96].

Section 2.5 — Optimisation Methods 27

A survey of octree datastructures.

As will be shown, the overheads involved in storing an octree in memory can be far
greater than the size of the original data set. This is because, unlike most surface
renderers, volume octrees of practical size have millions of nodes, each storing
perhaps only one density sample, which we assume to be a byte in size. We shall
also assume a 32-bit machine, so a pointer is four bytes long.

Also, the speed of traversal supported by the datastructure is discussed, i.e. whether
searching or tree climbing is required.

Our discussion will cover four diverse implementations that have been used for
volume or surface ray tracing, adapted to the requirements of the renderer. These
are:

� A naive pointer-based implementation,

� The hashtable based structure used by Glassner [Gla84] as a space subdivision
scheme for surface ray-tracing,

� The sorted linear notation reported in Foley et al [FvDFH90, pp. 554–555],

� A pyramid of volumes similar to [Lev90], [DH92] and [LH91].

As the purpose of the octree in the original paper is often different from what
is required here, the evaluation of the datastructure may differ from the original
author’s intent.

All the implementations here have a memory cost proportional to the number of
leaves in the octree (denoted by n). Some also have a significant constant memory
overhead. For reference, the 256� 256� 111 pelvis CT scan mentioned in the intro-
duction (page 5 has 1 297 313 leaves after classification.6 The 2563 head data set
extracted from the Visible Woman archive also mentioned contains 4 814 886 leaves
after classification into only two materials, air and flesh. The worst case for a 2563

volume is 2553 or 16 581 375 leaves. We shall evaluate the implementations in terms
of the Visible Woman dataset and the worst case 2563 volume.

Naive pointer implementation

This is the simplest, most intuitive and most versatile implementation for the octree
data structure but all the authors surveyed have avoided it, perhaps often due to the
large memory costs associated with pointer storage. Its structure is as follows: an
internal node is an array of eight pointers to nodes, and a leaf node is a byte density
value.

6The tissue was classified into four tissue types: air, skin/fat, muscle and bone.

28 CHAPTER 2 — Direct Volume Rendering

Root Node

Leaves denotes a byte.

denotes a pointer.

FIGURE 2.1: A naive tree implementation

See figure 2.1 for a simplified binary tree diagram of this structure. The memory
cost of this implementation is the sum of that of the leaves themselves, the pointers
to the leaves in the parent nodes, the pointers to the parent nodes, the pointers to
the grandparent nodes, and so on up to the root node.

Let us first consider only the pointers in what we will assume for simplicity to be a
balanced tree. The number of pointers can be closely approximated by a geometric
series as for each level up the tree there are 1

8 as many pointers as the one below. We
shall assume for simplicity that this series is infinite, but in practice it stops at the
root node of the tree. This approximation gives an error of 1

7 of a pointer. Since n,
the number of leaves in a tree, is only rarely lower than several hundred thousand
in practical situations, this error is minute. We have:

Number of pointers = n+
n

8
+

n

82
+

n

83
� � �

=
n

1� 1
8

=
8

7
n

This is, by the same logic, the number of nodes in the octree. The total memory cost
in bytes is the sum of the original data (one byte per leaf) and the pointers (assumed
to be four bytes per pointer). Thus:

Total cost = n+
4� 8

7
n

=
39

7
n

Section 2.5 — Optimisation Methods 29

We have a cost of just over 5.5 bytes per leaf. Considering the volumes described
on the previous page, this would require over 25.5Mb for the Visible Woman data
set, and over 88Mb for a worst case 16Mb data set (one without coherency). This is
clearly prohibitive.

The time to extract a node from this implementation is not too high, for every level
between the root and the leaf one must follow a single pointer, and find the index
of the child to examine using some simple integer arithmetic. To traverse the tree,
though, a walk up to an ancestor node and down to the next is required. As will be
seen in section 3.4.2, it is possible to traverse from one leaf to the next in constant
time.

Glassner’s hash-table implementation

As Whang et al [WSC+95] notes, Glassner in [Gla84] was the first to use octrees
to accelerate surface ray tracing. The octree adaptively subdivided space until the
number of surfaces in each leaf is below a specified limit and as each ray passes
through each leaf only that many surfaces need be tested for ray intersection. Thus
the number of leaves in his octree is small compared to volume data sets, but the
amount to be stored at each leaf is large — a list of surfaces instead of a single byte.

Glassner’s method is to give each node a systematic name that encodes both size
and position information. The name is then used as a key for storing the node in
a hashtable, giving a versatile trade-off between access speed and memory usage.
When more than one node is hashed to the same location, they are stored in a linked
list. The name is constructed as a string of base 10 digits, with each digit repre-
senting the index of the child node and the whole string giving the complete path
through the tree.

Glassner used the digits 1–8 to index the child nodes, and the digit 0 as a place-
holder, making the digit 9 redundant. This increases the readability of the name
at some slight cost to storage space. The name can be stored as an integer, and
manipulated with simple integer arithmetic.

A 32-bit integer is sufficient for naming up to a 5123 volume with two bits spare. We
need to know whether the node is subdivided or not; this could be stored in one of
the surplus bits. With the name we must store a pointer to the next node in the list,
and of course the value of the node if it is a leaf. We have:

struct node {
int name; // Including subdivision flag
node* next;
byte density;

};

This amounts to fully nine bytes per node. For each leaf, we must also count the
cost of the parent nodes and by the same logic as before find there are 8

7 as many
nodes as leaves. This leads to a cost per leaf of over ten bytes.

30 CHAPTER 2 — Direct Volume Rendering

This substantially worse than the naive implementation even before we include the
size of the hashtable. We note that a linked list is not the most efficient way to store
a list of values, and we can optimise the number of next pointers somewhat. Even
if we assume this could be optimised to be negligible we do not gain anything over
the naive implementation. If we ignore the cost of the hashtable, the total cost is
26Mb for the Visible Woman data set and over 90Mb for the worst case.

Access time is reasonable, as we must perform a hashtable look-up followed by
searching a linked list, and assuming the hashtable size is small compared to the
rest of the datastructure7 this means examining several nodes on average. To find a
given leaf we may follow half a dozen pointers.

Foley and van Dam’s linear octree notation

The representation described in Foley et al [FvDFH90, p. 554] names nodes in a
similar fashion to Glassner’s method, except that the placeholder character is at the
end of the digit string, not the beginning. They use an actual string of 4-bit char-
acters instead of an integer representation, but there is no reason why Glassner’s
integer representation cannot be used.

Again, only the leaf nodes are stored, but they are stored in a sorted array instead of
a hash table. Leaves can be accessed by any fast searching algorithm. If we wish to
find the value of a particular cell, we calculate its name and search the array for the
name. If it exists, that cell happens to be a leaf and we are done. If not, we extract
the smallest leaf greater than the name we searched for (if the placeholder character
is defined as greater than any other digit). This will be the leaf containing that voxel,
no matter which level of the octree contains the leaf.

The memory cost for this is unfortunately still prohibitive, although an improve-
ment over the naive scheme. For each leaf, we need to store one integer for the
name and one byte for the value. No internal nodes need be stored. The cost is 5
bytes per leaf, or nearly 23Mb for the Visible Woman data set and 79Mb worst case.

The access time depends on the quality of the searching algorithm and the distribu-
tion of leaves in the array. A simple binary search will find any given node in log2 n
time, or 24 iterations for the Visible Woman data set. However, faster searches have
been devised that make assumptions about the distribution of data. An interpo-
lation search on an evenly distributed data set should be faster for the first few
iterations8. A hybrid search algorithm would be appropriate.

A volume pyramid

Pyramids of volumes, where the data set is represented as a set of volumes with each
volume one eighth the size of the one before, have been used in volume rendering by

7As we must, the memory resources are already prohibitive.
8An interpolation search works best when the data distribution is flat, searching in log(log n) time,

but in the worst case it searches in linear time. See [Man89, pp. 125–127]

Section 2.5 — Optimisation Methods 31

Levoy [Lev90], Danskin & Hanrahan [DH92] and Laur & Hanrahan [LH91]. They
are similar to the MIP maps used by Williams (quoted in [FvDFH90, p. 826]) for
texture mapping, except for the extra dimension. In their renderers the complete
octree was stored, every node was subdivided and all leaves were one voxel in size.
The information at higher levels of the tree was a lossy abstraction of the informa-
tion lower down.

In Levoy’s case, the value stored was a boolean indicating whether the node
contained only transparent material which could be traversed in one step. If the
node was not completely transparent rendering would continue one level lower
down the tree.

Danskin and Hanrahan’s renderer stored the maximum, range and average values
of the children at each node. The level a ray traversed the volume could be adapted
to the user-defined acceptable error level. Regions that were nearly constant or
nearly transparent could be traversed at high levels of the tree. We note that they
chose the structure because “This is a compact representation for a pointerless octree
allowing efficient neighbor, parent and child calculations” [DH92, p. 93], a powerful
argument in favour of its use in volume rendering.

Laur and Hanrahan use a volume pyramid where each node stores the average
of the child nodes. Their renderer used this pyramid for a splatting method that
render images to a user-specified time limit, which can be as low as required to
allow interactive animation.

A volume pyramid for the purposes of this thesis must store a single classified byte
in each node, and effectively no pointers as an array representation can be used.
As was discussed before, there are 8

7 as many nodes as leaves. The simplifying
approximation made on page 28, that the tree is balanced, is very well satisfied
as the total tree is stored. The storage required for a 2563 volume is thus 18Mb,
regardless of the classification scheme or the coherence of the volume.

As shall be seen in section 3.4.2, with some extensions to this data set it is possible
to traverse from one leaf to the next in constant time.

This is the cheapest way surveyed here to store the Visible Woman data set octree,
and it has no further cost for volumes with no spatial coherency. It seems no coin-
cidence that it has been used in the volume rendering applications surveyed, and it
forms the basis of the octree representation in this thesis, described in section 3.3.

2.5.4 Wavelet methods

Wavelet analysis is a sophisticated mathematical technique that is a current topic of
research in computer graphics in a number of areas, for instance image compression
and feature analysis. Its use in optimising volume rendering is similar in principle
to octree methods, but is more sophisticated and generates a sparser representation
of the data set, so images can be generated with fewer splats in object space methods
or a larger step size in image space methods.

32 CHAPTER 2 — Direct Volume Rendering

Wavelet representations of data involve a multiresolution pyramid where each level
stores information with half the resolution of the level above. In reasonable data
sets, the finest levels are very sparse. A strength of the wavelet transform is its
compact spatial and frequency support. The simple averaging commonly used in
the volume pyramids described in the previous section may be viewed as a box
filtering operation9 very localised in space, but infinite in the frequency domain. In
contrast, operations on Fourier transforms as in the section before have good local-
isation in the frequency domain but are infinite in extent in space. As Westermann
notes [Wes96, p. 20], “This results in poor compression ratios and does not allow
analyzing the signals [sic] characteristics locally.”

Wavelet analysis offers a compromise: a transform that is reasonably localised in
both space and frequency. Westermann writes [p. 36] concerning B-Spline wavelets
that the spatial support of this type of wavelet is proportional to its order, and its
Fourier transform tends to a perfect band-pass filter as order increases — “Thus,
arbitrary localizations in space or frequency can be achieved.” Characteristics of the
signal can be examined on a local, rather than global, basis.

While wavelet analysis provides a useful basis for feature extraction and other
ways of gaining information about volumes, and excellent compression ratios, in
terms of how many wavelet coefficients need to be stored to reconstruct the volume
accurately, performance is poor. Westermann admits [Wes96, p. 130] “Only for very
sparse representations which allow one to take advantage of the proposed acceler-
ation techniques, [do] the overall rendering times come close to the ones that can
be achieved with standard visualization techniques.” Rendering speed depends
greatly on the spatial support of the wavelet used, as reconstructing density from a
wavelet representation is a complex process.

2.6 Discussion

In this survey of the field of DVR, we have discovered a number of important points.

Firstly, material classification, the process of mapping optical properties to density
samples, must occur in a smooth fashion. Binary decisions must be replaced with
schemes where materials can blend gradually into one another, to eliminate noise
and reduce the effects of errors in classification. Samples often represent more than
one material and should be able to be classified as such.

Useful optical models need not be physically based to yield good visualisations of
data, but a certain degree of realism is necessary to meet the user’s expectation
about how things should look. If surfaces are to be visualised, they should look
like surfaces, and if bones are to be visualised they should look white, diffuse and
opaque. An optical model that provides this flexibility without requiring exces-
sive computation is the emission-absorption model, with low albedo materials that
require only one light scattering event to be modeled.

9i.e. a Haar wavelet.

Section 2.6 — Discussion 33

Splatting and ray casting were compared, the first is fast while the second is accu-
rate and flexible. While other high quality object space methods exist, ray casting
is faster and certainly easier to implement due to the intuitive relation between
casting rays and evaluating line integrals. As these rendering methods use large
amounts of computing resources, parallisability of algorithms is often discussed.
Ray casting can be parallelised on a per ray basis, but a large portion of the data set
must be stored at each computing node. Object space methods, on the other hand,
are parallelisable on a per cell or per voxel basis, so the memory required at each
node is small. However, each node must have fast access to the image buffer for
each compositing operation.

Octrees were found to be a good way to optimise rendering, as they support a
number of accelerations. Fourier rendering is extremely fast, but limited in the
optical models it can evaluate and the shading functions it can use. Wavelets offer
marvelous theoretical properties for a number of purposes but require complex
calculations that mean rendering is faster only in a few cases.

Given this summary, we can refine the goals of this thesis described in section 1.3. A
valuable contribution to the current state of DVR will have the following features.
It would:

� use a piecewise linear classification method,

� implement a low albedo emission-absorption optical model with a Phong or
Lambertian type illumination function.

� use a ray casting algorithm,

� use an octree representation of the volume.

� aim at high quality, since fast approximate rendering is already a well-explored
topic.

Chapter 3

Ray Caster Design

A ray caster has been written to explore the points raised in the previous chapter.
The renderer is designed with a primary goal of accuracy instead of rendering
speed, although efficiency is addressed when accuracy is not affected.

We shall describe the renderer in the following fashion. Firstly, we shall discuss
the rendering pipeline as used by the algorithm, from raw data to finished image.
Secondly, we shall discuss each step in the pipeline in turn, explaining how the
renderer performs the particular function and evaluating quality and efficiency
issues. Then the time complexity of the renderer will be discussed. Lastly, we shall
summarise with a discussion on how the method fulfills the goals enumerated at the
end of the previous chapter, and how it therefore adds to the field of direct volume
rendering.

3.1 High Level Structure

The basic tasks involved in producing an image are displayed in figure 3.1. They
may be divided into two steps: preprocessing and rendering. The preprocessing
step prepares the data for rendering, and consists of classification and octree gener-
ation.

The rendering step takes the classified octree and casts rays through it for each pixel.
Each ray must traverse the octree, reconstruct a density field from discrete samples,
resample the field along the ray and illuminate the resampled data. This gives us
the parameters for the integration code which evaluates the rendering integral to
give a colour and a transparency, which are composited onto the ray’s state. When
the octree traversal is complete, the final colour is stored for display.

It may be argued that a more rigorous approach to rendering would reconstruct
data before classifying it, but this renderer does not do this. Classification occurs in
a preprocessing step, but reconstruction is delayed until rendering. In well sampled
data, there is no appreciable difference in quality involved in changing the order of

36 CHAPTER 3 — Ray Caster Design

Raw Data

Display

Preprocessing
step:

Rendering:

classification

octree encoding

octree traversal

reconstruction

illumination

integration

compositing

Preprocessing
step:

FIGURE 3.1: The rendering pipeline

these steps, but there is a large difference in efficiency as shall be described in the
next section.

The parameters for each image, the volume, light source and eye data, collectively
called a scene in this thesis, are stored in using an easily readable format the details
of which are in Appendix B. Three files specify a scene:

� foo.volume

The volume data set. This is stored as a 3D array of byte samples prefixed by
a header containing the dimensions of the array.

� foo.material

The material file. This plain text file stores the classification parameters which
define the transfer functions from raw density to ambient colour, diffuse
colour and opacity.

� foo.scn

The scene file. This file, also plain text, stores pointers to a file of each of the
previous types, and the transformations to be applied to the volume and the
camera. This file also contains the direction to the light source.

Thus the components of a scene can be reused conveniently, and the scenes can be
generated by popular text manipulation languages if desired.

Section 3.2 — Classification 37

3.2 Classification

The classification scheme used in the renderer is equivalent to Levoy’s method and
also to Drebin, Carpenter and Hanrahan’s method, both of which are described in
section 2.1. The user can create a set of materials with density ranges and optical
properties, which in turn define a set of piecewise linear transfer functions from
density to optical properties. The user interface thus resembles that of Drebin et al
more than Levoy’s.

The optical properties that are relevant to an emission-absorption renderer are
simply the union of the parameters used by the illumination function and the atten-
uation parameters. The use of these properties is more fully discussed in section 3.6.

The transfer functions are constant for densities certain to be of one particular
material, and linearly crossfaded for uncertain densities, as in figure 3.2. A raw
density that is not classifiable with certainty is assigned a set of probabilities that
it represents tissue of a particular material. The optical properties used to render
samples of that density are a mixture of the properties of each material represented
by it, so if a sample has a 10% probability of being bone and 90% probability of
being muscle, it has an appearance that is 10% like bone and 90% like muscle.
Probabilities can thus be interpreted as the proportion of a material present at a
point. This interpretation is used below for ease of explanation.

The classification algorithm uses two steps to assign optical properties to a raw
sample, both driven by table lookup. The first remaps the samples in the volume to
classified values during preprocessing, which is the classification step proper. This
value is later used as an index to the optical properties lookup table at render time,
which gives all the information necessary for illumination. Thus we have two func-
tions f1 : IN ! IN; f1(�raw) = �class and f2 : IN ! P; f2(�class) = p, where P is the
set of optical properties and p 2 P .

The first lookup table f1 is formed in the following manner. Assume there are M

materials to be classified, and that there is a desired level of classification detail
D. This step takes the raw densities and maps them in such a fashion that there
are M regularly spaced entries corresponding to the M materials, separated by
D � 1 intermediate steps corresponding to mixtures of materials, giving a total of
(M � 1)D + 1 entries. D is chosen so that (M � 1)D + 1 < 256, allowing the value
to be stored in a single byte.

Each material description is read in from the material file. Included in the descrip-
tion is a range [�min; �max] of raw densities within which samples are classified as
being entirely of that material. All samples with raw densities within the range for
material number m are given the classified value mD.

Samples with densities outside any material’s density range are given a value
which linearly interpolates the two adjacent materials. So a sample half way
between the ranges for materials m and m + 1 will have the classified value
mD+(m+1)D

2 = (m+ 1
2)D, denoting the 50–50 mixture of two materials assumed to

be present in a sample. This is illustrated in figure 3.2.

38 CHAPTER 3 — Ray Caster Design

0 255
0

100

p
ro

ba
bi

lit
y

(%
)

air skin/
 fat muscle bone

0 255

r cl
as

si
fi

ed

rawr

rawr

0

255

FIGURE 3.2: Classification

Section 3.3 — Octree Encoding 39

The advantages of this scheme are that, firstly, the entire set of optical properties can
be represented by a single byte, which is a considerable saving in space. Secondly,
the octree can be built using this classified density instead of raw density. Regions
known to be entirely of one tissue type can be stored in a single leaf even if the raw
density ranges over the entire range associated with that tissue type.

The savings in the number of leaves is considerable: octrees were built out of the
two data sets referred to when discussing octree datastructures on page 2.5.3, using
both the raw density and the classified density. The Visible Woman data set takes
6 486 276 leaves to store when raw values are used, but only 4 814 886 (74% of the
former value) when classified into air and flesh. The pelvis data set takes 5 750 678
leaves for raw density, but 1 297 313 (22%) when classified into air, skin/fat, muscle
and bone, and only 185 601 (3.2%) when classified into air and bone.

The second lookup table f2 is generated in a similar manner. Each classified density
represents a mixture of some proportion of at most two materials. The optical
properties of those two materials are mixed in the same proportion and stored
in the table. The result is a table containing a linearly changing set of optical
properties with entries for each material and each mixture of materials contained
in the volume.

3.3 Octree Encoding

3.3.1 Overview

The octree stores the volume data set after material classification. It is used to accel-
erate rendering in the usual manner — it enables the renderer to traverse empty
space and homogeneous areas rapidly. The octree stores density values in a lossless
fashion, with each leaf node storing the density of the identical cells in that node.

As the renderer is designed for 8-bit scalar data sets on a 32-bit machine, the value
to be stored at a leaf is one byte large, while pointers, if they were used, would
be four bytes large. This leads to the observation that storage of internal nodes
in a pointer-based scheme will be costly compared to the storage of leaf nodes, as
pointers are large compared with density values. This is not the case for many octree
implementations, e.g. [Gla84].

Thus a volume pyramid scheme is used, as the lack of pointers substantially reduces
memory cost. For the purposes of this renderer, there is no benefit in storing the
complete octree, but the wasted space is far smaller than the housekeeping infor-
mation of the schemes surveyed in section 2.5.3 on octree datastructures.

We shall discuss the datastructure itself, and then the main methods required to
implement it: construction and leaf access.

40 CHAPTER 3 — Ray Caster Design

3.3.2 The pyramid datastructure

The pyramid is based on cells within the volume, so leaves correspond to sets of
cells rather than sets of voxels. We shall first show how the datastructure efficiently
finds leaves, and secondly how the datastructure deals will variable density cells
where a single byte sample does not adequately represent the value of the cell.

Finding a leaf

Unlike the three volume pyramid implementations described in section 2.5.3 where
the highest level that satisfies the error metric is traversed, this renderer performs
a leaf-by-leaf traversal and thus needs to know which level of the pyramid stores
the leaf for a particular cell. Details of this traversal are in section 3.4. One method
for storing the leaf information would be simply to store a boolean leaf for each
element of the pyramid that denotes whether the element is a leaf or not. To access
the data for a given voxel, we examine each level of the pyramid until we find the
element referring to that voxel which has leaf set.

This scheme increases the cost of every element of the pyramid by one bit, in other
words multiplying it by 9

8 . Recall that there are 8
7 times as many nodes as cells, and

we can see that the cost is:

Total cost =
9

8
bytes per element

=
9

8

8

7
bytes per cell

=
9

7
bytes per cell

However, we can improve on this and remove the need to search through the levels
of the pyramid to find the leaf node. For each cell c in the volume, we will store
the index of the level of the corresponding leaf, l(c). This at first appears to be an
expensive thing to store, but the cost can be reduced by the following observation:

If eight cells fc1; c2; � � � c8g have coordinates whose binary representations are iden-
tical except for the least significant bit, these eight cells have the same value l(ci).

Proof: If all eight cells have the same density, they will be part of the same leaf node
and so l(ci) will be the level of the same leaf and must be identical. If the cells have
different density, they will each be separate leaves and thus l(ci) = 0 8 i.

The l(c) information can be stored in an identical fashion to the second level of the
pyramid, as one byte for every eight cells. We avoid the need to find an efficient
way to add a bit to each element of the pyramid. The memory cost is thus:

Section 3.3 — Octree Encoding 41

Cost =
8

7
+

1

8
bytes per cell

=
71

56
bytes per cell

Variable density cells

There are then two circumstances under which we can have a cell-sized leaf. A cell
may be a leaf because, while the reconstructed density varies over its volume, it
cannot be subdivided further. Cells may also be leaves because they have constant
density.

The octree representation must differentiate between these two types of cell sized
leaves as the type with varying density is reconstructed and integrated with care,
while the second needs no reconstruction and simple integration as it is constant.

The original data set, a set of voxels, is stored in the base level of the
pyramid. However, this level also stores the set of cells, both those with
constant and those with varying density. To extract information about a partic-
ular varying density cell Cx;y;z, we retrieve the densities of eight adjacent voxels:
fVx+i;y+j;z+k j i; j; k 2 f0; 1gg. To extract information about a constant cell Cx;y;z, we
need only the voxel Vx;y;z.

When examining a cell-sized leaf, the datastructure must be able to inform us effi-
ciently what type of cell it is. One method would be to examine all the vertices of the
cell and test whether they are all constant or not. This would effectively be doing
the work of octree construction over again. It is faster to store this information when
the octree is constructed, as a packed array of boolean variables. The extra amount
of memory allocated is only one eighth the size of the original data set.

The total cost for the octree is the previous 71
56 bytes per cell plus an additional 1

8
bytes, totaling 78

56 of a byte per cell. The access time is very short, as no searching,
iteration or recursion is required. Given a particular cell, the index of any level of
the pyramid or the leaf level information can be found with integer shift operations.

3.3.3 Construction and leaf access

The construction of the octree, given a volume theVolume , must first collect cell
homogeneity information and secondly find leaf information. The tree is built
upwards, from leaf to root. Internal nodes are tested for whether they satisfy the
requirements of leaves, and if that is the case the tree is pruned. Pseudocode for the
constructor is as follows:

42 CHAPTER 3 — Ray Caster Design

Allocate memory;
Copy the contents of theVolume into pyramid[0];

\\ Homogeneity:
for (every cell c of level 0)

if (all vertices of c have equal density)
set homogeneity information for c;

else
clear homogeneity information for c;

\\ Leaves:
for (int level = 1; level < height; level++)
{

for (all cells (i,j,k) on this level)
{

bool collapse = true;
if some of the children are not leaves,

collapse = false;
if the children have differing density,

collapse = false;
if (level == 1)

if a child has varying density,
collapse = false;

if (collapse)
{

Set this cell to the density of its children;
Mark it as being a leaf;

} else {
Set the cell to its children’s average density;

}
}

}

The other important method of the octree object is leaf access. The traversal method
described in the next section queries the octree with a cell index, wanting the corre-
sponding leaf information (density, sidelength, position and homogeneity). To get
this data for a given cell (x,y,z) that occurs in that leaf is simple:

quadruple get(int x, y, z)
{

int level = leaf.get(x/2, y/2, z/2);
vector (i,j,k) = (x >> level, y >> level, z >> level);
vector corner = (i << level, j << level, k << level);
int density = pyramid[0].getDensity(x, y, z);
bool homog = getHomogeneity(x, y, z);
return (density, 2ˆlevel, homog, corner);

}

The various get methods referred to in the code are simple array lookups
and integer operations in constant time. For clarity, the pseudocode has

Section 3.4 — Octree Traversal 43

been given a slightly different structure to the actual code given in the files
\code*\COctree.cpp on the attached CD-ROM for ease of explanation.

3.3.4 Summary

The octree datastructure has two fields apart from the volume pyramid itself. Firstly,
leaf information is stored for every eight cells, using a one byte index into the
pyramid. Secondly, cell-sized leaves with variable density are distinguished by a
boolean map of every cell. Both of these extra fields take up only an eighth the size
of the original volume.

The leaf access method required by the traverser takes only constant time, finding
the relevant leaf by means of the leaf index field. All information necessary for
the renderer can be found easily using integer shift operations, without climbing or
descending the tree at any point.

3.4 Octree Traversal

During rendering, each ray must traverse the octree, partitioning the rendering inte-
gral into small intervals that can be evaluated without significant error. Samples are
taken as the ray enters and leaves each leaf, and at intermediate points within leaves
of variable density.

An adaptive traversal of the octree such as that of Danskin and Hanrahan [DH92]
would be a positive feature for the renderer, but is currently unimplemented. In
their system, the user could select an acceptable error limit, and rays would traverse
the octree at various levels according to the error metric. As our renderer is intended
primarily for high-quality imaging, the term “acceptable error” is to be treated care-
fully. It may be, perhaps counterintuitively, that speeding rendering with a very low
error would make practical other techniques for increasing the quality of rendering,
and thus be a positive step. This is discussed as possible future work in the conclu-
sion of this thesis.

We shall first survey several traversal algorithms that have been reported in
research, before discussing the final choice used in this thesis.

3.4.1 A recursive method

A numerically robust algorithm discussed in [FvDFH90, p. 552] traverses the octree
from leaf to leaf. This is a promising algorithm as it corresponds well to the require-
ments of a ray caster where rays traverse the volume in a leaf-by-leaf manner. Foley
and van Dam’s method ascends the octree from the current leaf until it finds a parent
of both the current and next leaves. It then descends through the tree in a mirror

44 CHAPTER 3 — Ray Caster Design

image to the ascent, until finds the correct leaf. It is possible to compute the reflected
path by means of table lookup, and to avoid floating point arithmetic. However, the
algorithm requires fast ascent and descent of the tree, which proved to be a problem
for [Lev90] where similar tree climbing was required.

3.4.2 Glassner’s method

This traversal algorithm is well adapted to the octree representation used by the
renderer. It is not recursive, but instead can make use of the fact that octree leaf
access is done in constant time by a couple of array lookups as was shown on
page 42. It was advanced by Glassner [Gla84], who uses it to accelerate surface
ray tracing, and adapted here for use in our renderer.

The basic form of the algorithm is that we find a point guaranteed to be in the next
leaf by advancing along the ray a certain distance. We then use the point to query
the octree object, which finds the leaf containing that point. Glassner’s original
algorithm used the point’s position to generate a key to a hashtable of leaves, as
was described in detail in section 2.5.3. We shall describe the algorithm in more
detail in a fashion consistent with volume rendering.

currentPoint = where the ray enters the volume; Note (1)
currentCell = the cell containing currentPoint; Note (2)
while (currentCell is inside the volume)
{

leafInfo = octree.get(currentCell); Note (3)
Use leafInfo to integrate the ray over the leaf;
Update ray colour and opacity;
Set currentPoint to a point within the next leaf; Note (4)
Update currentCell to match the new currentPoint;

}

Notes:

1. We intersect the ray we are tracing with the surface of the volume. The ray
needs to be tested only against the three faces (in the worst case) visible from
the camera, and the position of those faces are precalculated during initialisa-
tion.

2. This is an easy operation in a sensible coordinate system: the coordinates of
the cell are the coordinates of the point rounded down to the nearest integer.

3. The COctree class has a method get() that returns the necessary data
concerning the leaf containing a given voxel, as described in the previous
section.

4. This is the core of the algorithm. To find a point in the next cell, we simply
find the time the ray exits the current leaf, and add an infinitesimal amount.

Section 3.4 — Octree Traversal 45

2level

n×2
level

(n+1)×2
level

Ray

current leaflast leaf

leaf entry point

current point

FIGURE 3.3: Leaf traversal

This is illustrated in figure 3.3. The leaf is an axis aligned cube whose faces
are obtained by the current cell position and the size of the leaf, 2level. In
Glassner’s original method, the ray is intersected with all six faces of the cube.
Glassner notes that it is possible, but not worth the effort, to optimise this
down to four. Here, we intersect the ray with only three faces as follows.

The left face of the leaf is the plane x = a where a is currentPoint.x
rounded down to the nearest multiple of 2level. The right face is x = a+ 2level.
We can find the other four faces similarly.

To reduce the number of necessary plane intersections from six to three, we
note that if the x component of the ray’s motion is positive, it is impossible
for the ray to exit the leaf by the left face and we need only test for the right
face, and vice versa if the x component is negative. Similarly we can cull two
more tests based on the y and z components of the rays. The cost of halving
the number of tests in this manner is thus three floating point comparisons per
ray.

The algorithm then finds the times the ray passes through the three relevant
faces, and takes the minimum of those, tmin, to be when the ray exits the leaf.

Numerical Stability

This algorithm, with its dependence on floating point calculations at certain points,
is vulnerable to numerical stability problems which depend on how we find a point

46 CHAPTER 3 — Ray Caster Design

guaranteed to lie within the next leaf.

The point p on the ray at time tmin should lie on the plane dividing the current leaf
from the next. It is the nature of floating point hardware that p will often lie some
small but non-zero distance from the plane. There will be occasions when p is some
distance inside the current leaf, and so the renderer will fail to traverse to the next
leaf. In this case, the program will never terminate as the ray will loop infinitely
within the current leaf.

The solution to this problem used by Glassner is complex and robust. To guarantee
finding a point within the next leaf but not overshooting it, he keeps track of the
minimum sidelength of a leaf — in our case the length of a cell. The point p is
translated away from the leaf face by half this minimum length, preventing the
possibility of overshooting the leaf.

Glassner also handles the cases where the point p is on an edge or a vertex of the
new leaf, in which case p is translated diagonally. This makes his solution reliable
for every possible case.

We have found that a simpler solution that still works reliably in practice, which
is simply to advance the point p along the ray by a small amount ". " is set large
enough to ensure that the probability of currentPoint still being in the current
leaf is negligible.

However, if " is set at too high a value, there is a chance that the code erroneously
skips leaves. The distance a ray travels through the next leaf can be infinitesimally
small if the ray passes through near a corner, and if it is smaller than " the traverser
will skip that leaf entirely.

The solution used in this renderer is to have the traverser use a small value for ",
and record the last face passed through. Under normal circumstances the value
" = 0:001 cell lengths is used, and the probability of skipping leaves is small. Even
if a leaf were skipped, the contribution from it would be infinitesimal as its inter-
section with the ray must be less than 0:001 cell lengths long. The traverser keeps
track of the last leaf face the ray passed through, and so can detect if it has got stuck
within the same leaf. The last face is represented with integer values, instead of
simply the last tmin, so this detection is not prone to floating point uncertainty.

If the traverser detects that it has got stuck, it continues in a constant step fashion
until it gets to the next leaf, using a stepsize of 10". While this measure represents
a theoretical failure case of the algorithm, in practise the constant step code is often
not used when rendering an image, even test images specifically designed to exploit
the flaw. This solution is sufficiently reliable as well as being fast and easily imple-
mented.

Section 3.5 — Reconstruction 47

3.5 Reconstruction

3.5.1 Discussion

The task of reconstruction is to define a continuous field corresponding to the
discrete samples provided by scanning devices. This is a well studied area in signal
processing and a large body of relevant literature exists. Most discussions on the
topic start with a one-dimensional case, from which extension to three dimensional
space is trivial.

Assume we have a function f(x) which we sample at a constant rate d. We wish to
generate from the samples an approximation bf(x) as close to the original as possible.
Sampling theory states that it is possible to recover the function exactly, in other
words to satisfy f(x) = bf(x), if the following two conditions are met: Firstly, the
function f(x) must be band limited so that none of the energy of the function occurs
with frequencies higher than some frequency !. Secondly, the sampling frequency
1
d

must satisfy the equation 1
d
> 2!, i.e. the function must be sampled at at least

double its highest frequency component. The quantity 2! is known as the Nyquist
frequency.

These conditions are not met for many practical applications, as any abrupt jump
in f(x) produces non-zero frequency components right up to infinity. However, we
must assume that data sets are well sampled, i.e. sampling is smooth enough that
high frequency components do not occur, or at least do not occur often. This is
not too unreasonable since, as was discussed in section 2.1 on classification, most
scanning technologies sample a weighted area around a point rather than the point
itself, thereby smoothing out high frequency variations.

If these conditions are met, the function can be recovered exactly by convolving each
sample with a sinc function, the inverse Fourier transform of a box function. These
two functions are defined as follows:

sinc(x) =

8<:1 if x = 0
sin(�x)

x
otherwise.

Box(x) =

8<:1 if jxj < k

0 otherwise

and the convolution operation is defined

f(x) � h(x) =
Z 1

�1
f(�)h(x� �)d�

48 CHAPTER 3 — Ray Caster Design

where h(x) is the reconstruction filter, and f(x) is the sampled function,

f(x) =

8<:�(x) if x is an integer,

0 otherwise.

In practise, however, the sinc filter is not used because it extends infinitely over IR
and would require an infinite amount of calculation. However, this pattern forms
the basis of reconstruction. Instead of convolving our samples with such a complex
filter, we can use simpler ones. The convolution is in practise not as difficult to eval-
uate as it appears since one of the functions is a discrete set of samples, reducing the
convolution to a weighted sum. Also, practical filters extend only a short distance
before becoming zero, so there are only a few terms in the sum.

Many filters have been designed for reconstruction, and most are adaptable to our
three dimensional problem. The characteristics of a filter are firstly its extent, i.e. the
radius of the interval within which it is non-zero, which is the basic measure of the
calculation required for reconstruction. Secondly, filters are characterised by how
closely they match the sinc function. Marschner and Lobb [ML94] offer a number
of metrics for filters that describe how a filter’s Fourier transform departs from the
ideal box shape of the sinc function’s transform.

Filters that resemble the sinc function closely generally have large extents, and
prove to be too slow for volume reconstruction. The best filter commonly encoun-
tered in volume rendering research is the trilinear filter htrilin(x; y; z), defined as:

hlin(s) =

8>><>>:
s+ 1 if s 2 [�1; 0)
1� s if s 2 [0; 1]

0 otherwise

htrilin(x; y; z) = hlin(x)hlin(y)hlin(z)

This filter has the disadvantage that it does not give a smooth result, as shown in
figure 3.4. However, this effect is not extreme when used for well sampled volumes,
and in practice the filter is adequate to its task.

3.5.2 Implementation

We shall describe the implementation of trilinear interpolation in greater detail.
For simplicity, we will assume that the cell under discussion is at (0; 0; 0). Let
r(t) =mt+ c be the ray, and let �x;y;z be the density of voxel (x; y; z).

Let the reconstructed density be b�(t).
Let s(t) = (1; 1; 1)� r(t), and let the x, y and z components of a vector a be denoted
ax; ay; az respectively. Then the reconstructed density is the weighted sum of the
densities at the eight vertices of the cell:

Section 3.5 — Reconstruction 49

x

f(x)

FIGURE 3.4: Linear interpolation

b�(t) = �0;0;0 sxsysz +

�0;0;1 sxsyrz +

�0;1;0 sxrysz +

�0;1;1 sxryrz +

�1;0;0 rxsysz +

�1;0;1 rxsyrz +

�1;1;0 rxrysz +

�1;1;1 rxryrz

The function of density along the ray path is thus a cubic function of the ray param-
eter t. As shall be seen, evaluating the rendering integral with cubic parameters is
not possible, so this function is calculated only at the start and end of each integra-
tion step, and the result linearly interpolated over that portion of the ray.

For points between r(tin), the start of an integration step, and r(tout), the end, we
linearly interpolate:

b�(t) = b�(tin) + t� tin

tout � tin

�b�(tout)� b�(tin)� for t 2 (tin; tout)

Linearly interpolating the density over the ray parameter is about as accurate as
true trilinear interpolation. Its only defect is that the density at a point will differ
depending on which ray is being used to reconstruct it. This could lead to changes
in the resulting image as the camera is moved relative to the volume. In practice,
though, these changes do not result in visible artifacts as the stepsize of the method
is sufficiently small.

50 CHAPTER 3 — Ray Caster Design

Gradient Calculation

Most illumination functions require the gradient of the density function, r�, to
compute the angle between a surface normal and a point light source. Novins in
[Nov93, p. 33] describes a debate as to whether one should take the gradient of
the raw data field or of the classified data field. [Lev88] uses the raw data, while
[DCH88] uses classified data. Novins himself uses the raw data, claiming that either
choice is possible as the debate has not been settled.

In this thesis, we also use the raw data for the following reason. After classification,
some of the smooth variation between tissue types is lost. The classification step
takes a smoothly varying function and transforms it into a union of distinct regions
with reasonably sharp boundaries. At the most important points for normal-based
shading, namely material transitions, accurate and smooth reconstruction of r�

is most difficult. This is exacerbated by the fact that gradient filters are high-pass
filters and tend to exaggerate noise. Möller et al [MMMY96], for instance, find that
for equivalent methods errors in gradient reconstruction were larger than errors in
interpolation.

The result of using classified data is that gradient vectors are not very accurately
reconstructed, and images have very poor quality surfaces. The artifacts introduced
by bad gradient reconstruction clearly delineate voxels giving a rough appearance
to surfaces within the data, consistent with [MY96, p. 368] where reconstruction
errors are shown to increase with distance from the nearest sample. Thus, the raw
data set with its smoother material transitions is preferred.

There are a number of approaches to gradient reconstruction, the general approach
(for instance [MMMY96][MY96]) being to take a density reconstruction filter and
differentiate it. We employ three variations on this theme for use in the renderer, the
derivative of the trilinear interpolant, central differences evaluated at cell vertices
and trilinearly interpolated over the interior of the cell, and central differences
tricubically interpolated.

The trilinear gradient.

As the trilinearly reconstructed field is a cubic function, its gradient is easily calcu-
lated. As was shown above,

Section 3.5 — Reconstruction 51

b�(t) = �0;0;0 sxsysz +

�0;0;1 sxsyrz +

�0;1;0 sxrysz +

�0;1;1 sxryrz +

�1;0;0 rxsysz +

�1;0;1 rxsyrz +

�1;1;0 rxrysz +

�1;1;1 rxryrz

) @b�(t)
@x

= (�0;0;0 � �1;0;0)sysz + (�0;0;1 � �1;0;1)syrz +

(�0;1;0 � �1;1;0)rysz + (�0;1;1 � �1;1;1)ryrz;

@b�(t)
@y

= (�0;0;0 � �0;1;0)sxsz + (�0;0;1 � �0;1;1)sxrz +

(�1;0;0 � �1;1;0)rxsz + (�1;0;1 � �1;1;1)rxrz;

@b�(t)
@z

= (�0;0;0 � �0;0;1)sxsy + (�0;1;0 � �0;1;1)sxry +

(�1;0;0 � �1;0;1)rxsy + (�1;1;0 � �1;1;1)rxry:

This method has the elegant feature that density reconstruction and density gradient
reconstruction are consistent with each other. Also, the only samples required by the
function are those already available from the density reconstruction. Unfortunately,
this reconstruction is discontinuous over cell boundaries. A common approach that
gives a continuous result is central differences.

Trilinearly interpolated central differences.

The central difference gradient is calculated at the vertices of the cell by:

D(x; y; z) =
1

2

264�x+1;y;z � �x�1;y;z

�x;y+1;z � �x;y�1;z

�x;y;z+1 � �x;y;z�1

375
which, as the sampled density f(x) is zero except at grid points, can be understood
as the convolution of the sampled density with any filter hCD(x; y; z) satisfying

hCD(x; y; z) =
1

2
if (x; y; z) 2 f(1; 0; 0); (0; 1; 0); (0; 0; 1)g;

hCD(x; y; z) = �1

2
if (x; y; z) 2 f(�1; 0; 0); (0;�1; 0); (0; 0;�1)g

52 CHAPTER 3 — Ray Caster Design

It is easy to show that such a filter is the derivative of the Catmull-Rom cubic filter,
which Möller et al [MMMY96] described as the most accurate cubic derivative filter.
If we evaluate the Catmull-Rom derivative filter at cell vertices, we find the result is
the central differences filter from the above equation.

Having thus calculated the gradient at each vertex, we trilinearly interpolate this
value over the interior of the cell to get a gradient field. This gives a contin-
uous result that is a good deal smoother than the true trilinear gradient. If central
difference gradients were precalculated, the result would not require much more
computation than the earlier method. However this is not done as the memory
required to store a vector for each voxel is prohibitive. This method is therefore
slower as each gradient reconstruction requires 24 memory accesses instead of 8.

Tricubically interpolated central differences.

A third gradient reconstruction method was also explored. This is similar to the
second except that it uses tricubic B-spline interpolation of the central differences
gradients to give an even smoother result. The reconstruction filter hBS3 is formed
from a one-dimensional B-spline thus:

hBS(s) =

8>>>>>><>>>>>>:

1
6s

3 + s2 + 2s+ 4
3 for � 2 6 s < �1

�1
2s

3 � s2 + 2
3 for � 1 6 s < 0

1
2s

3 � s2 + 2
3 for 0 6 s < 1

�1
6s

3 + s2 � 2s+ 4
3 for 1 6 s 6 2

0 otherwise.

hBS3(x; y; z) = hBS(x)hBS(y)hBS(z)

A lookup table for the filter is constructed, but as before the central difference
gradients are not precalculated and 160 memory references are required. The perfor-
mance of this filter is extremely slow.

3.6 Illumination

In section 2.2.7, the low-albedo emission-absorption optical model was advanced as
being suitable for quality volume rendering. It was described fully in sections 2.2.4
and 2.2.5. The emission-absorption model is flexible and presents useful informa-
tion to the user. The low-albedo assumption is superior to high-albedo methods in
speed and image comprehensibility. The rendering integral used to evaluate this
optical model is repeated here. Let the viewing ray be r(t) = dt+ v, where v is the
viewpoint and d the direction. If I(t0) is the intensity of light at distance t0, and Ib
is the intensity entering the region being integrated, then:

Section 3.6 — Illumination 53

I(t0) =

Z t0

0
"(t)e�

R
t

0 �(s)dsdt + Ibe
�
R t0
0 �(s)ds (3.1)

The two parameters "(t) and �(t) are the emission and extinction coefficients,
respectively. �(t) is defined according to the density of the material at point t, and
"(t) is calculated by an illumination function, taking its parameters from material
density and the position of the light source.

3.6.1 Discussion on Lambertian shading

Lambertian illumination is a fast and easily implemented illumination func-
tion, giving realistic shading effects for the most part. As is usual, we define
"(t) = kambient + kdi�useN � L, where the constants are material properties, N = r�

jr�j

and L the direction to the light source. (The topic of normalising the gradient is
discussed in section 3.6.4.) When this was implemented a curious effect was noticed
— the isosurfaces being displayed were found to be too bright when viewed at large
angles.

An example of this is given in Colour Plate II.a, where we have the sphere of opaque
material referred to on page 5 being illuminated by a light source behind the view-
point at infinity. The sphere appears flattened as its brightness does not vary much
over its face. This goes against the natural expectation of a user, that a surface should
vary in brightness depending on its angle. This is an important defect as shading is
an important cue for surface orientation.

The scan line from the centre of the image in Colour Plate II.a was extracted and
compared with a surface rendering of a Lambertian illuminated sphere. The result is
displayed in figure 3.5, which clearly shows the defect. The center of the visible disk
is correct, but the rim is brighter than a Lambertian shaded sphere should be. The
reader will note that the volume rendering curve is slightly wider than the surface
rendering curve, even though both spheres have the same radius. This is due to
the sampling of the sphere in the volume dataset. The transition from transparent
material to opaque material occurs over six cell lengths, and the radius of the sphere
is measured from the centre of this transition. Thus the sphere has some bright
material outside this range, making its curve slightly wider.

The explanation for this flat, disk-like appearance of the sphere relies on the fact
that a surface illumination function has been adapted for use in a volume context,
where the “surface” is actually a band six cell lengths thick. While the light emission
"(t) is correctly evaluated to give a Lambertian appearance, the intensity I(t0) does
not preserve this appearance. Consider the two rays in figure 3.6. As they meet the
sphere at different angles, they each spend a different amount of time in the material
transition region where Lambertian shading occurs. While each ray encounters the
same materials in the same order, the transition takes twice as long for one as for the
other.

54 CHAPTER 3 — Ray Caster Design

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

Pixel

In
te

ns
it

y

Lambert surface

Lambert volume

FIGURE 3.5: Surface and volume Lambertian illumination

a

2a

Dense
Material

Density
Ramp

Eye

FIGURE 3.6: The Lambertian shaded sphere

Section 3.6 — Illumination 55

We shall show that the rendering integral does not preserve intensity when material
transitions are stretched in this manner. Consider two rays r1(t) and r2(t) that each
travel from a transparent region to an opaque one, one over a distance a and the
other over a distance 2a. Let t = 0 be the time each ray enters the material transition.
We shall make the simplifying approximation that within the material transition the
density will rise linearly with t. Thus, the extinction coefficient is a linear function of
t. As the density gradient is constant, and the light source is at infinity, the emission
coefficient is also a linear function of t.

Let the emission coefficient within the opaque material be k" and the extinction
coefficient be k� . Over the transition, the emission function encountered by r1(t)
is easily found to be "1(t) =

k"
a
t as it rises from 0 at time t = 0 to k" at time t = a.

Similarly, the emission function for the second ray r2(t) is "2(t) = k"
2a t. The extinction

functions are treated similarly and found to be �1(t) = k�
a
t and �2(t) =

k�
2a t. For the

first ray we have:

I1(a) =

Z a

0
"1(t) e

�
R
t

0
�1(s)ds dt

=

Z a

0

k"

a
t e�

R
t

0
k�

a
tds dt

=

Z a

0

k"

a
t e�

k�

2a
t2 dt

And for the second ray,

I2(2a) =

Z 2a

0
"2(t) e

�
R
t

0
�2(s)ds dt

=

Z 2a

0

k"

2a
t e�

R
t

0
k�

2a
tds dt

=

Z 2a

0

k"

2a
t e�

k�

4a
t2 dt

Letting u = t
2 , we change the variable of integration:

) I2(2a) =

Z a

0

k"

2a
2u e�

k�

4a
(2u)2 2du

=

Z a

0
2
k"

a
u e�

k�

a
u2 du

=

Z a

0
2

�
k"

a
u

� �
e�

k�

2a
u2
�2

du

Comparing I1(a) with I2(2a), we see that the light emitted is doubled, but the trans-
parency is squared. When the transparency is high, such as in this case where the

56 CHAPTER 3 — Ray Caster Design

ray is just entering an opaque region, this means the second ray will be brighter
than the first. The gain in emitted light outweighs the loss of transparency.

Thus we see that when we render an object where material transitions occur over
a long distance, Lambertian illumination suffers. In scenes with abrupt transitions,
this effect is less pronounced.

We shall then depart from Lambertian shading in the fashion described by Max
[Max95]. To derive his optical model, Max modeled a density of spherical
particles, each able to absorb light or reflect it in a Lambertian manner. As this is
quite unrelated to the idea of Lambertian illumination as used in surface rendering,
it is unsurprising that the results look different. We shall follow his method but
introduce a surface oriented element to restore the expected appearance of isosur-
faces.

3.6.2 A revised Lambertian optical model

Max [Max95] derived a differential equation for emission-absorption rendering
based on an optical of a density of particles suspended in space. So:

dI

dt
= "(t)� �(t)I(t)

where "(t) is equivalent to Max’s source term and �(t) is the extiction coefficient.

We shall set "(t) = a(t)+d(t)(n � l)(n � v), where n is the normalised gradient, l is the
unit vector to the light source, v is the unit vector to the viewpoint, a(t) is the amount
of ambient light and d(t) is the amount of diffuse shading. We have introduced the
n � v term, which is unusual for Lambertian shading, to overcome the flat shading
effect discussed in the previous section. The length a ray traverses through a mate-
rial transition is approximately inversely proportional to n � v, ignoring curvature in
the material transition, so this additional term approximately corrects the resulting
error.

We can apply Max’s solution [Max95, p. 101] to the differential equation to get equa-
tion (3.1).

3.6.3 A comparison

The revised optical model was compared with the standard Lambertian optical
model. Two scenes were rendered using each model, the first being the sphere
referred to above and the second being the CT scan of a hip bone from page 1.3. The
first has gradual material transitions such as the revised model was designed for, the
second had abrupt transitions. The results are displayed in Colour Plates II.a–II.d.

Section 3.6 — Illumination 57

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300 350 400 450

Pixel

In
te

ns
it

y

Lambert surface

Lambert volume

Revised Lambert

500

FIGURE 3.7: Standard vs revised Lambertian illumination

We can see that the sphere is improved in appearance — it does not look flat
when the revised method was used. While the hip bone scene appears somewhat
different, neither model has a clear advantage over the other.

Figure 3.7 shows the middle scan line from the revised image of the sphere super-
imposed on figure 3.5. We see that the revised model actually overcorrects in terms
of meeting the expectation of a Lambertian surface in a volume renderer. The error
of each method is approximately equal, but in opposite directions. We have used
the revised model for most images in this thesis as it seems more sensible to exag-
gerate shading effects than omit them. Further work in this area is indicated to
develop an optical model that makes a compromise between both methods. Such a
model would give shading as realistic as surface Lambertian shading, and could be
extended to include specular effects.

3.6.4 Surface strength shading

Several authors have used the “strength” of a surface to weight the illumination
function, as was discussed on page 16. The usual measure of strength is the
magnitude of the density gradient. The advantage of this is that abrupt transitions
between materials will stand out clearly, while gradual changes are deemphasized.
Apart from conveying more information to the user about the type of surface being
viewed, this should also reduce noise.

However, as section 3.5.2 pointed out, gradient reconstruction is more diffi-
cult than density reconstruction. Examples of weighted shading are shown in
Colour Plates III.a–III.d, where the sphere and hip bone scenes are rendered with
and without it. The weighted shading images are clearly inferior, as the magnitude
of the gradient reflects deficiencies in reconstruction more than the strength of the
surface. The filter used is trilinearly interpolated central differences, described on

58 CHAPTER 3 — Ray Caster Design

page 51. The reader will note that this filter does produce a smooth interpolant,
and that the sphere is well sampled with a wide Gaussian filter, and thus easy to
reconstruct. We can only conclude that weighting shading in this manner greatly
exaggerates reconstruction problems.

Possible solutions to this include using a more sophisticated surface detection algo-
rithm, or using very high quality gradient reconstruction filters. A third possibility
that does not involve a substantial computation cost is, instead of using a raw jr�j,
manipulate it using a sigmoid function f(jr�j). Some degree of weighting would
still be present, but the large fluctuations in the magnitude that produces artifacts
in the images would be eliminated.

However, an exploration of these is beyond the scope of this thesis and surface
strength weighting is not used.

3.7 High Order Integration

3.7.1 Standard compositing raycasters

To use the emission-absorption optical model, we must evaluate the integral:

Intensity along a ray =

Z tmax

0
"(t)e�

R
t

0
�(s)dsdt + Ibe

�
R
tmax

0
�(s)ds

where t = tmax is the point where the ray exits the volume, the camera is positioned
at the point t = 0 and Ib is the intensity of the background light entering the volume.
For this thesis, we shall assume this is zero, i.e. that the object rests in front of a black
background.

Most ray casters use the following method to evaluate the line integral. They take a
number of RGBA samples and composite them using the Porter-Duff over operator,
given in [Nov93, p. 44] as:

A over B = (Ac +AtBc; AtBt)

where the RGBA samples A and B are treated as pairs of colour
�
Ac; Bc 2 IR3

�
and

transparency (At; Bt 2 IR). We shall discuss this method assuming the emission-
absorption optical model used by this thesis. As the rendering integral deals with
scalar emission and extinction parameters, colour values are usually found by
repeating the calculation three times at different frequencies. Most researchers leave
extinction constant over different frequencies, hence the use of RGBA samples.

Section 3.7 — High Order Integration 59

We shall introduce for convenience the notation:

I(a; b) =

Z b

a

"(t) e�
R
b

a
�(s)dsdt + Ib e

�
R
b

a
�(s)ds

making I(a; b) the ray intensity at the point t = a. The use of the background term
is no longer trivial, as Ib is usually nonzero when b < tmax.

The intensity Ai 2 IR and transparency At 2 IR of a sample at a given frequency
are calculated using the following approximations.1 A sample (Ai; At) at t = t0
represents I(t0; t0 +�t). The emission coefficient " and extinction coefficient � are
assumed to be constant over the integration interval. Then:

I(t0; t0 +�t) =

Z t0+�t

t0

" e
�

R
t

t0
�ds

dt + Ib e
�

R t0+�t

t0
�dt

We have At = e
�

R t0+�t

t0
�dt

) = e���t

and Ai =

Z t0+�t

t0

" e
�

R
t

t0
�ds

dt

�
Z t0+�t

t0

" e���t

) = " �t e���t

We see there are two approximations made by such ray casters. Firstly, as was seen
above, the " and � coefficients of the material are assumed to be constant, whereas
in fact they vary with density. The second approximation is made when using
At = e���t as the inner integral for calculating Ai. This has the effect of placing
all the opacity of the sample “in front” of the emission, thus underestimating Ai.
One of the purposes of this thesis is to tackle both of these approximations.

We note that the use of the over operator itself does not involve any numerical
approximations; it is relatively simple to show the rendering integral can be parti-
tioned into intervals and solved piecewise in this fashion. The approximations occur
when taking samples of intensity and transparency. In the remainder of this chapter,
we shall firstly give a formula for correctly calculating samples assuming piecewise
constant " and � , and then we shall extend this formula to include piecewise linear
�(t) and then piecewise linear "(t). We shall then discuss the use of these formulae
in the renderer.

1Exceptions include Williams, Max and Stein [WMS98], Novins [Nov93] and Upson & Keeler
[UK88], all of whom use more sophisticated methods.

60 CHAPTER 3 — Ray Caster Design

3.7.2 Solutions to the rendering integral

For simplicity, we will assume that the interval to be integrated is [0; x]. A problem
using the interval [a; b] can easily be reduced to a problem of this form.

Case 1.

We shall first consider the case when " and � are assumed to be constant. We
shall eliminate the second error alluded to above concerning the absorption of light
within a sample. Let c� be the absorption coefficient, and c" be the emission coeffi-
cient. We have:

Z x

0
c"e

�
R
t

0
c�dsdt + Ibe

�
R
x

0
c�ds =

c"

c�
+

�
Ib � c"

c�

�
e�xc� (3.2)

The proof of this statement is in Appendix A.1.

Case 2.

For the next case, we shall generalise the emission function from piecewise constant
to piecewise linear. Let "(t) = m"t+ c". Then:

Z x

0
(m"t+ c")e

�
R
t

0 c�dsdt + Ibe
�
R
x

0 c�ds =

c"

c�
+
m"

c2�
+ e�c�x

�
Ib � c"

c�
� m"

c2�
(c�x+ 1)

�
(3.3)

The proof is in Appendix A.2.

Case 3.

Finally, we shall let the extinction be piecewise linear, so �(t) =m� t+ c� . So:

Z x

0
(m"t+ c") e

�
R
t

0
m� s+c�ds dt + Ibe

�
R
x

0
m� s+c�ds =r

�

2m3
�

(c"m� � c�m")E +
m"

m�

+ e�x(c�+
1
2
xm�)

�
Ib � m"

m�

�
(3.4)

Section 3.8 — Time Complexity 61

where

E = e
c
2
�

2m�

erf

�
c�p
2m�

�
� erf

�
c� + xm�p

2m�

�!

The proof is in Appendix A.3.

3.7.3 The use of these formulae in the renderer

In case 1, equation (3.2) took constant parameters. This equation can be used for
processing cells with constant density in the renderer as such cells have constant
material properties and zero gradient, so the parameters do not vary.

For cells with varying density, emission and extinction are not constant. Due to
the non-linear nature of the illumination function and of trilinear interpolation, the
emission and extinction functions are complicated. Extinction is a cubic function
and emission is a polynomial of degree seven if we assume the first method of
gradient calculation in section 3.5.2, and even higher if the other methods are used.
As no solution to the rendering integral is known for such complicated parameters,
some approximation must be used.

While a good approximation would be to assume both emission and absorption are
piecewise linear and use equation (3.4), this has not been implemented due to the
complexity of the formula. The possibility is raised as future work in section 5.2. A
promising technique is to use equation (3.3), and subdivide the integral further to
reduce the error caused by this approximation. Only a small number of subdivisions
turn out to be necessary to give good results. The number three was used in our
renderer, but the advantages of an adaptive scheme are explored in section 5.2.

3.8 Time Complexity

We shall now derive the time complexity of the renderer, comparing the octree opti-
misation with a basic cell by cell traversing renderer. There are two significant steps
to generating an image: preprocessing and rendering. We shall assume the dataset
is cubical and the image square, for simplicity. Let n be the sidelength of the volume
in voxels, and m be the sidelength of the image in pixels.

3.8.1 The cell by cell renderer

The preprocessing step for the cell-by-cell renderer, without the octree, simply calcu-
lates whether a cell has variable or constant density. This information is used to
decide what integration code to use when tracing rays. The relevant pseudocode is
the code fragment labeled Homogeneity on page 41.

62 CHAPTER 3 — Ray Caster Design

As the body of the main loop runs in constant time, and as there are (n�1)3 cells, the
preprocessing step is obviously O(n3). The rendering step is equally easy to calcu-
late. m2 rays are cast into the volume. For each of these, the number of integrations,
reconstructions and so forth is directly related to how many cells each ray traverses.
This is proportional to the sidelength of the volume, n, as each ray passes linearly
through it.

The time complexity of the cell-by-cell renderer is thus the complexity of the
preprocessing step plus the number of rays times the complexity for each one, or
O(n3 + nm2).

3.8.2 The octree renderer preprocessing step

With the octree optimisation, the preprocessing step includes a great deal more
calculation. Firstly, the homogeneity calculation described above is performed.
Secondly the program iterates through each level of the volume pyramid, setting
the octree node information. The pseudocode is on page 41.

It is clear that the number of times the inner loop is executed is equal to the number
of cells in the volume pyramid, which is a geometric sum related to the number of
cells in the original volume. Let l be the number of levels in the pyramid.

Number of cells = n3 +
n3

8
+

n3

82
+ � � �+ n3

8l�1

=
n3
�
1� 8l�1

�
1� 1

8

=
8

7
n3
�
1� 8l�1

�
Let the time taken to execute the inner loop be c. As the heights of pyramids in
practical situations is above 7 or 8, the quantity in brackets is closely bounded by 1:

Total time � 8

7
cn3

The octree node calculation is thus O(n3). As the homogeneity and octree node
calculations are both O(n3), the preprocessing step as a whole is O(n3).

The octree rendering step

The time complexity of the rendering step is more difficult to calculate. As before,
the number of rays cast is m2, but the number of steps involved in integrating a
single ray is not well defined. If the dataset has constant density, the octree will be
traversed in one step, making the complexity of the rendering step O(m2); if the
dataset is totally incoherent, the octree will be traversed in O(n) steps, making the
complexity O(nm2).

Section 3.8 — Time Complexity 63

Ray

Low density High density

Variable density

FIGURE 3.8: A simple octree

We must therefore make an assumption about the coherency of the dataset. Medical
datasets, after classification, consist of regions of constant density corresponding
to various tissue types, separated by layers of varying density. We shall choose a
simple dataset of this form, derive the time complexity of the octree traversal, and
take this as an approximation to the general case the renderer is intended to handle.
Consider an axis-aligned ray passing through a volume consisting of two cuboidal
regions of different density. For simplicity, we shall assume simple point sampling
and trilinear reconstruction so the region of varying density lies between two voxels,
as in figure 3.8.

We shall prove by induction that for this volume the time complexity of octree
traversal is O(logn), wherever in the volume the material transition occurs.
Consider a volume of thickness n1 = 21 voxels. Obviously, the ray traverses this
volume in 1 step as it is one cell thick.

Assume that a volume of thickness nk = 2k voxels is traversed in k steps. If we
add a layer of voxels 2k thick to one or other side of the volume, with the density
of the material on that side of the volume, we now have a volume of thickness
nk+1 = 2k+1 that satisfies the coherency assumption. As the new layer of cells is of
constant density, has a thickness that is a power of two and is adjacent to the edge
it will be collapsed into one octree leaf. Thus it will be traversed by the ray in one
step. The number of steps in the total octree traversal is thus k + 1, and the proof is
complete. The volume of size 2i is traversed in i steps, thus the traversal is O(log n).
The complexity of the rendering step is thus O(m2 log n).

If, however, the coherency assumption is not met, as was stated above a ray will
take O(n) steps to traverse the volume, so the complexity of the rendering step is
O(nm2).

As the preprocessing step is O(n3), and the rendering step O(m2 logn), the octree
renderer has complexity O(n3+m2 logn) when the octree is operating on a coherent
volume and O(n3 + nm2) when it is not.

64 CHAPTER 3 — Ray Caster Design

3.9 Summary

This thesis has advanced a renderer design that has the following features.

� It uses a piecewise linear, probabilistic classification method that resists noise
and drift, but supports an intuitive way to specify material properties,

� It uses the low-albedo emission-absorption optical model, with a revised
Lambertian shading function that performs well when material transitions are
gradual,

� It is an octree accelerated ray caster. The octree is stored with only a modest
increase in memory, and traversed using a fast method based on Glassner
[Gla84],

� It uses a higher order approximation for evaluating the rendering integral than
is found in most other research. This reduces dramatically the number of steps
required to accurately perform integration.

Therefore, the renderer meets the requirements listed on page 33 to explore high-
quality direct volume rendering.

Chapter 4

Results

4.1 General Discussion

To explore high quality rendering using desktop computers, the renderer was
implemented for Microsoft’s Windows NT 4.0 operating system. Test images were
generated using a Pentium 200MMX machine with 64Mb of RAM, demonstrating
the practicality of volume ray casting on what is by current standards a modest
computing resource. A more powerful 400MHz Pentium II machine with 128Mb
RAM was used to generate several images for which 64Mb was not sufficient.

We shall firstly describe the data sets used to generate results. Next, the effect of
various choices in constructing the renderer will be discussed, noting how they
affect quality and execution time. Lastly we shall conclude by outlining future direc-
tions of research and summarising the knowledge gained by this research.

Test data sets include a CT scan of a male pelvis, with the original resolution 256 �
256�56 voxels, resampled to 256�256�111 to yield a unit aspect ratio. This data set
is able to be reliably classified into fat, muscle and bone tissue types, but suffers from
irregularities around the subject’s stomach, as the subject was breathing during the
scan. Adjacent slices are thus slightly out of alignment depending on the point in
the subject’s breathing cycle at which the slice was measured.

A data set has also been extracted from the Visible Woman archive [PBB98], with
resolution 256 � 256 � 256 voxels. The Visible Woman data set was extracted from
the photographic images in the archive. The archive consists of 5189 slices, each a
full colour photograph scanned at a resolution of 1664�1216, giving a huge volume
about 30Gb in size. The volume has a constant aspect ratio, each cell being a cube
1
3mm on a side. To extract a data set useful for the purposes of this renderer, images
from a subset of the archive were mapped to a grey scale using a function designed
to distinguish body tissue (yellow and red) from the surrounding area (blue and
black). The grey scale images were then cropped and concatenated to create a large
7683 volume containing the Visible Woman’s head and neck. This was then down-
sampled to the required size of 2563 using a Gaussian filter. The result is a well-

66 CHAPTER 4 — Results

sampled data set containing a large amount of facial detail. The face contains some
scarring due to the process of data collection, where each slice was manipulated
during photography.

The above two data sets represent the practical application of the renderer using
human-derived data with complex structure. Of theoretical value, however, are
two artificial data sets demonstrating that the renderer produces verifiably correct
results. The first is a 120 � 120 � 120 volume representing a sphere of high density
sampled with a Gaussian filter of coarse radius. This data set was designed to
demonstrate that the shading model produces the appearance of realistic surfaces
when operating on a slow (six cell lengths) transition between materials. This
requirement is important if the render is to meet the expectations of users, as the
human visual system is designed to visualise surfaces and can extract more infor-
mation from them than from blurry fog or mist.

The fourth data set is adapted from [ML94] and explores the accuracy of the recon-
struction in the renderer. This 32 � 32 � 32 data set was designed to contain large
density fluctuations near the Nyquist limit, thus producing the worst case data that
can in theory be accurately reconstructed. The function used to generate this data
set is:

�(x; y; z) =

�
1� sin �z

2

�
+ �

�
1 + �r

p
x2 + y2

�
2(1 + �)

where

�r(r) = cos
�
2�fM cos

�r

2

�
:

The function was sampled in the interval x; y; z 2 [�1; 1], using parameters fM = 6
and � = 0:25. The authors claim that approximately 99.8% of the energy of the
signal lies below 10 cycles per unit length, which is the Nyquist frequency as
samples are 0.05 apart. The function is therefore able to be reconstructed with great
accuracy using perfect filters, making it a perfect test for filters of lesser quality.

4.2 Results

4.2.1 Integration

One important question raised by this thesis is whether the effort of calculating
the volume rendering integral with a higher order of accuracy results in a gain in
image quality. Most volume ray tracers examined use a simpler method where the
transparency and the emission are used to calculate the “effective colour” which is
then composited directly onto the ray’s brightness, as was discussed in section 3.7.1.
While both methods tend to the correct answer in the limit, in practice renderers
cannot use an infinitesimal step size and we must ask which method yields the least
error for practical amounts of computation.

Section 4.2 — Results 67

The renderer using the higher order integration formula evaluated a cell-by-cell
traversal of the volume, partitioning each ray into segments that are wholly
contained by a single cell. It did not use the octree optimisation, which will be
discussed below. A distinction was made between cells of constant density and cells
of variable density, and appropriate integration code employed for each. Constant
cells were integrated in a single step using a simple formula, while variable cells
were integrated in three steps using the formula able to handle linear emission func-
tions described in section 3.7.2. The subdivision into three steps was found to be
sufficient to overcome the constant attenuation approximation that is still required
by the formula in most cases. The pelvis scene discussed below is an exception
to this, and a more elegant solution to this problem is presented as future work in
section 5.2.2. Volumes with large homogeneous regions were thus rendered faster
than equal-sized heterogeneous volumes.

Five scenes were rendered using both techniques. The images are displayed in
Colour Plates IV and V. The first two scenes use the pelvis test data set. The first,
called the hip bone scene in the figures, uses a classification scheme that distin-
guishes bone from other tissue, resulting in a volume with large homogeneous
regions. The second scene, the pelvis, uses a classification scheme that distinguishes
a number of tissue types: skin/fat, muscle and bone. The third scene, called head,
is of the Visible Woman’s head. The fourth, sphere, is of the Gaussian smoothed
sphere and the last, ripples, is of the function taken from [ML94].

The classification parameters used are contained in the attached CD in the directory
\materials . The format for these files is an easily readable text file described in
Appendix B.

To measure image quality, a set of comparison images were generated using the
constant step renderer with a step size of 0.1. At this step size, integration errors
are negligible and the images can be regarded as a standard to measure the two
techniques against. The root mean square error was taken between each test image
and the reference image. It was measured as follows:

RMS error =

vuut X
all pixels i

X
�2fr;g;bg

�
A�(i)�B�(i)

�2

where the colour of pixel i in image I is
�
Ir(i); Ig(i); Ib(i)

�
, A is the reference image,

and B is the test image. This was then normalised against triple the number of
pixels, to give an average error per channel per pixel. The results are given in
figure 4.1 as fractions of a gray level. To verify that errors were indeed negligible in
the reference images, the pelvis scene was rendered by the constant step renderer at
a stepsize of 0.05 and compared with the pelvis reference image. The result was an
error of 0.0013, many times less than the difference between the reference image and
the high order integration renderer. This value indeed substantially smaller than the
lowest error reported in the graph.

68 CHAPTER 4 — Results

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Hip Bone Pelvis Head Sphere Ripples

Scene

Er
ro

r p
er

 p
ix

el Constant Step Error

Cell-by-cell Error

FIGURE 4.1: Root mean square errors

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Hip Bone Pelvis Head Sphere Ripples

Scene

T
im

e
(s

ec
)

Time (Constant Step)

Time (Cell-by-Cell)

FIGURE 4.2: Constant step vs integration

Section 4.2 — Results 69

0.00

0.05

0.10

0.15

0.20

0.25

Hip Bone Pelvis Head Sphere Ripples

Scene

Pr
op

or
ti

on Proportion of
Variable Density
Cells

FIGURE 4.3: Proportion of variable density cells

The results show that the cell-by-cell renderer with high order integration in general
outperforms the constant step compositing renderer in both speed and accuracy.
The step size used to generate test images for the second renderer was 0.4 of a cell
width. A higher value may speed it up to the level of the high order renderer,
with a loss in quality, or vice versa, a lower value will give it the same quality but
degrade performance. The single exception to this trend is the second scene, the
pelvis with muscle and skin/fat classification. Here, the image quality of the high
order renderer is reduced due to the sharpness of the classification parameters. As
material properties are changing quickly in some regions of the volume, the approx-
imation due to constant attenuation referred to above becomes inadequate.

We can see from figure 4.2 that with the hip bone scene the high order renderer
outperformed the constant step renderer by a large margin. The other data sets
contain a higher proportion of variable density cells as indicated in figure 4.3, so for
those scenes the performance of the two renderers were equivalent.

4.2.2 Gradient calculation

As [MMMY96, p. 12] notes, gradient reconstruction is more important than density
reconstruction for image quality. Three different schemes for calculating the
gradient of the density field have been examined in this thesis, in section 3.5.2. The
first is to simply differentiate the reconstruction of the density field directly. As
trilinear interpolation is used, the result is a simple quadratic function that is quick
to evaluate. However, it is not continuous at cell boundaries and degrades image
quality. The second method is to calculate a central differences gradient at each
vertex, and trilinearly interpolate those values to obtain a gradient at any point
in the volume. This method gives a result that is continuous at cell boundaries,
but requires more calculation as vertex gradients are not stored and re-used due to
memory considerations. The last method tested also uses central differences, but

70 CHAPTER 4 — Results

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Pelvis Head Head
(400MHz)

Ripples Sphere

Scene

T
im

e
(s

ec
)

Time (True Trilinear)

Time (Trilinear
Central Differences)

Time (Tricubic
Central Differences)

FIGURE 4.4: Gradient reconstruction

uses B-spline tricubic interpolation instead of trilinear. This method has a higher
order of accuracy, and should have produced smoother shading on surfaces.

From figure 4.4, we see that the difference in execution time is large. A high propor-
tion of the execution time is spent calculating gradients, especially for the more
accurate methods. The generated images are on Colour Plates VI and VII, and it
is evident that the true trilinear gradient is insufficiently smooth for high quality
image generation. However, the other two, despite the large difference in speed,
produce roughly equivalent images. While the pelvis and to a smaller extent the
Visible Woman show some minor improvement, the additional calculation time
could be better spent elsewhere.

We can conclude that trilinearly interpolated central differences offers good accu-
racy for properly sampled data, and that the tricubic method offers too little return
for the additional rendering time.

4.2.3 Octree optimisations and rendering time

It is evident from the execution times of the test images that the renderer is not
fast. There are a number of reasons why the code lacks efficiency. Firstly, the
code has not been optimised and could be significantly accelerated by standard
methods. Secondly, some of the Microsoft Visual C++ compiler options adversely
affect program correctness and have been switched off. While they produce faster
code, they introduce voxellated artifacts into the image. This has reduced speed by
approximately 30–40%.

In section 3.8 we predicted that the octree optimisation will increase efficiency for
sufficiently large volumes. To evaluate the effectiveness of the use of octrees, a
number of images were rendered at a variety of image and volume resolutions,

Section 4.2 — Results 71

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

Volume Sidelength

T
im

e
(s

ec
)

Octree

Cell by Cell

FIGURE 4.5: Rendering time per volume sidelength for the Visible Woman

using high order integration and trilinearly interpolated central differences gradient
calculation. The shading model was revised Lambertian without surface strength
weighting, as described in section 3.6.

Figure 4.5 shows the impact of volume size on rendering time for the Visible Woman
data set, which was resampled at a range of resolutions. The reader will note
from figure 4.8 that the octree optimisation does not work particularly well for this
volume. Therefore, as was discussed in section 3.8 we expect a time complexity of
O(n3 + nm2) for both the octree and cell-by-cell renderers, where n is volume side-
length and m is image sidelength. This is due to the high number of leaves in the
octree, as the classification scheme is quite smooth. In fact, figure 4.5 shows that
both renderers faired equally well for these data sets.

As theO(n3) preprocessing figure is small compared to the overall render time, both
graphs are expected to follow a linear curve. Overall this is correct, but for each
renderer there is a significant departure from a linear graph: The smallest volumes
render faster than expected.

This phenomenon is explained by the memory hierarchy of the machine. The small
volumes are of such a size that they fit entirely within the second level cache, and
thus render quickly. As the volume size increases, however, the cache and then the
main memory are filled. Rendering the larger volumes gives a very good linear fit,
but the 2563 volume caused the 64Mb machine these tests were conducted on to
thrash, causing the CPU usage to drop below 30% for long periods of time. This
test has been omitted from the graph, but the octree renderer fared slightly worse as
octrees require more memory.

Figure 4.6 shows the times taken to render the hip bone scene (see Colour Plate VIII)
with image resolutions from 102 to 10002 . The expected curve given by complexity
analysis is a quadratic function of sidelength, but the graph is given as a function

72 CHAPTER 4 — Results

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

Number of pixels in thousands

T
im

e
in

 s
ec

s

Octree

Cell by cell

FIGURE 4.6: Time to render per image size

of the number of pixels. Curves of the expected form will thus have a linear shape,
and we see curves are indeed straight lines. We also see that, as expected, the octree
renderer has a longer preprocess time than the cell-by-cell renderer, but quickly
overtakes it at an image sidelength of about 150, so that the octree renderer is faster
for all practical image sizes.

We can see in figure 4.7 the proportion of total render time spent in the precalcu-
lation step: distinguishing constant from variable density cells in the cell-by-cell
renderer or building the octree in the octree renderer. The Visible Woman when
rendered on the 64Mb machine is the only scene that does not follow the trend that
a higher proportion of time is spent in preprocessing for the octree; this is because
the rendering time for that image was lengthened by the number of page faults
during rendering. This is further demonstrated by figure 4.8, where it was the only
scene to take longer when the octree was used. The same scene rendered on the
400MHz machine with 128Mb memory gives more meaningful data.

The hip bone scene shows the largest proportion of time spent building the octree.
Figure 4.8 gives the reason for this: The octree optimisation is most effective for that
data set. The overall rendering time was dramatically reduced, even though the
preprocess time increased. The Sphere scene, however, shows that rendering was
far more significant than preprocessing for either algorithm. The sphere data set has
a large number of variable density cells in the thick material transition layer, which
uses up the majority of the rendering time for either renderer.

We can see in figure 4.9 a measure of the effectiveness of the octree optimisation: the
proportion of leaves in each data set compared with the worst case for a data set of
similar size. The reason for the success of the optimisation with the hip bone scene is
that it exploits the highly coherent nature of the data. Most of the volume, in fact, is
empty space, as hip bones are thin, plate-like structures only several voxels thick at
this resolution. In contrast, the artificial volumes and the Visible Woman have large

Section 4.3 — Summary 73

0

0.05

0.1

0.15

0.2

0.25

Hip Bone Pelvis Head Head
(400MHz)

Sphere

Scene

Pr
op

or
ti

on

Cell by Cell - proportion of
time spent preprocessing

Octree - proportion of time
spent preprocessing

FIGURE 4.7: Time devoted to preprocessing for 5002 pixel images

variable regions that decrease savings. The ripples data set is of course designed
to have this feature; the other two have been sampled with a Gaussian filter with a
heavy smoothing effect.

4.3 Summary

The use of high order integration methods has proved to be a success for this
renderer. The high order integration method was tested against a normal constant
step compositing renderer. It is possible to choose a step size for the latter method
that allows double the error (averaged over all five scenes) but still does not perform
as fast as the high order method.

Different methods of reconstructing density were surveyed. The best method is
trilinearly interpolated central differences, which is not prohibitively expensive but
does give good results.

The use of octrees does speed up rendering in all cases where the octree datastruc-
ture can fit in RAM. The size of the speed gain is modest for some data sets, as high
as a factor of two for highly coherent data. This is achieved without any loss in
image quality. The amount of acceleration depends on the number of leaves in the
octree as compared to the number of cells. For the two real data sets used, the pelvis
CT scan has only 2.6% as many leaves as cells when classified into air and bone,
18.1% when classified into air, skin/fat, muscle and bone. The Visible Woman data
set has 29.0% as many leaves as cells, due to the smoother sampling of the data. This
value is approaching the break-even point where both renderers are equally fast.

The time complexity of rendering both with and without octrees was verified,
results agree with expectations except where the speed of different levels of the
memory hierarchy of the machine must be taken into account.

74 CHAPTER 4 — Results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Hip Bone Hip Head Head
(400MHz)

Sphere

Scene

T
im

e
(s

ec
)

Cell by Cell Total Time

Octree Total Time

FIGURE 4.8: Cell by cell rendering vs Octrees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Hip Bone Hip Head Sphere

Scene

Pr
op

or
ti

on Proportion of
Octree Leaves

FIGURE 4.9: Savings in octree leaves

Chapter 5

Conclusions

5.1 Discussion

Research in volume rendering most often concentrates on acceleration techniques
to render quickly with acceptable error. This thesis has concentrated instead on
the quality of images, trying to maximise the useful information about the data set
provided by each image. We have examined high quality rendering with the goal
of producing an efficient renderer that will run on modest computer systems.

This thesis has explored the use of exact evaluation of the rendering integral as a
higher quality alternative to compositing effective colour. This has been achieved
by approximating the absorption and emission functions along the ray with piece-
wise constant and piecewise linear functions, respectively. Each ray is partitioned
into segments in such a fashion that the error of this approximation is small. This has
demonstrated advantages over the standard techniques that take the exact absorp-
tion and emission functions and perform numerical calculations to approximate the
true integral: images are rendered faster and with lower error. Far fewer steps need
to be taken by the renderer, even though each step requires more complex calcula-
tions.

A sensible method of partitioning rays into integrable intervals is with an octree,
as the length of an interval depends on the homogeneity of the region. Excess
calculation in regions of constant density is thus avoided. A pyramid volume
representation of the octree was chosen over pointer representations for memory
efficiency reasons. While the full tree is stored to the level of single cells, when
only the leaves are used, the lack of pointers or similar housekeeping information
more than outweigh the waste. This is due to the fact that unlike octrees as used
elsewhere, only one byte-sized density value need be stored at each leaf, whereas a
pointer is four bytes long. The octree representation used takes about 1.4 bytes per
voxel to store, as compared to 5.6 bytes per leaf for a simple pointer representation.

Another advantage of the octree representation chosen is that data for a given cell
can be extracted in constant time, unlike the more common recursive structures

76 CHAPTER 5 — Conclusions

that require a tree search. This fact is taken advantage of by the octree traversal
method chosen, adapted from Glassner in [Gla84], which traces rays by finding a
point guaranteed to be in the next leaf, and querying the octree for leaf data based
on the point’s position.

The thesis also explored shading models. Lambertian shading was shown to have
some defects when applied to volumes with smooth material transitions, so a refine-
ment was developed to give isosurfaces within such volumes an improved appear-
ance. Surface strength shading was also explored, where the gradient magnitude
is used to measure the strength of shading. While this is useful to highlight sharp
transitions between tissue types, it exaggerates problems with interpolation and is
useful only for smoothly sampled data sets.

Three different ways of calculating gradients were compared: the gradient of the
trilinear interpolated field, and central differences calculated at voxels with trilinear
and with tricubic interpolation. Trilinearly interpolated central differences is the
favoured method. Using the true trilinear gradient is fast and is elegantly consistent
with the interpolated density field, but the result is not continuous at cell bound-
aries. This results in a blocky appearance to surfaces. Tricubic B-spline interpolation
of the central differences gradient should in theory give very smooth surfaces, but
the result is rarely distinguishable from the trilinear central differences method and
slows rendering by a factor of two or three.

In conclusion, the result is that the images produced by the renderer are smooth and
show fine detail, at least for well sampled data sets. The renderer runs within the
memory constraints of a 64Mb system quite well. Only for the largest data set was
more RAM desirable. At the time of writing, 128Mb machines are easily within a
modest budget and can easily handle volumes 16Mb in size. The secondary goal
of speed has not been met, the renderer can take of the order of an hour for many
scenes of reasonable complexity.

This initial survey should provide a platform for further research in high quality
volume rendering, and shown that quality need not be compromised to be practical
as an ordinary desktop application.

5.2 Future Directions of Research

This thesis has explored high quality volume rendering, and describes a renderer
that uses high quality techniques on ordinary desktop computers. One attribute the
renderer lacks, however, is execution speed. There are a number of avenues that can
be explored to address this, including other octree optimisations and a cache data-
structure to store reusable results of calculation. Other areas for further work consist
of ways to increase the quality of the rendering, including efficient high-quality
interpolation and integration code that handles a more general set of emission and
absorption transfer functions.

Section 5.2 — Future Directions of Research 77

5.2.1 Increasing speed

Section 2.5.3 described how octree representations of data are useful for more than
fast traversal of homogeneous regions. They can be used to find approximate
ray traversals satisfying error metrics that optimise dim and near-homogeneous
regions. This is consistent with the goal of high quality rendering, even though
eliminating approximation is the primary motivating force. Techniques exist that
can increase the quality of images further, as will be described below, but require
greater computation time. Optimising rendering for regions of the volume which
are not seen would make tricubic interpolation, for example, a practical technique.

As [DH92] describes, an error metric weighted for bright, quickly varying regions of
the volume can save a large amount of calculation without significant loss of quality.
Speed increases of several hundred percent have been reported, but a high quality
renderer would need to have strict error tolerances so savings would not be likely to
reach this. However, significant gains are still possible before errors reach a single
grey value.

The volume pyramid representation of the octree that has been used for this
renderer also makes it possible to adaptively traverse the volume at any level of
detail. [DH92] uses this fact to eliminate excess calculation when ray opacity is
high.

The current implementation of the renderer makes little use of ray coherency.
Consecutive rays pass through similar regions of the data set, but recalculate quan-
tities such as density gradient from scratch. A datastructure can be devised to save
recent calculations for future use, similar to caching systems in modern hardware.
Such a datastructure is easily adapted from a queue, and has the advantage that the
size can be adjusted depending on the available memory, so that excess memory on
large systems can be used to accelerate ray tracing, without precluding the use of
small systems.

In high resolution images, many rays pass through each voxel, and like many
renderers reconstruction consumes a large proportion of computing time. The speed
advantages of use of such a datastructure are likely to be significant.

One last question to do with execution speed remains to be asked. The number
of steps required to evaluate the rendering integral accurately is far smaller using
high order methods. In this renderer each step is evaluated without optimised code
or hardware acceleration, and the reduction in the number of steps outweighs the
greater cost of each step. Are the high order methods explored here as able to take
advantage of optimisation and hardware acceleration as present techniques?

5.2.2 Increasing quality

This thesis has explored the use of different filters for calculating the density
gradient, but has only used standard trilinear interpolation for density itself. While

78 CHAPTER 5 — Conclusions

very high quality reconstruction such as windowed sinc and Gaussian filters are
unrealistic for use with reasonably sized volumes, tricubic filters yield smooth
density fields with a smaller increase in computation time. Such filters would
be useful for creating high quality images from badly sampled data, where sharp
density fluctuations degrade image quality. However, tricubic filters have an extent
of three cell widths instead of one, reading 64 samples not 8. Such an extension
would therefore have a large impact on rendering time.

The current integration code handles piecewise linear emission functions and piece-
wise constant absorption. Ray paths must be partitioned finely to avoid errors due
to the restriction on the attenuation function, which is overcome in the present
renderer by dividing cells with varying density into three segments. One useful
extension to the renderer would be an adaptive mechanism to use as many segments
as necessary, which may in general also increase speed as the value three was chosen
to handle extreme cases.

However, it is possible to find exact formulae for the rendering integral when this
is linear. An area for further investigation is whether image quality is gained more
efficiently by using more sophisticated integration formulae or by using finer parti-
tions. One would expect, since the exponentiations and error function evaluations
can be implemented as table lookups, that this would be the most effective, as well
as being the most elegant.

It is possible for the rendering integral to be solved when emission is a piece-
wise quadratic function, but the solution is complex in the extreme and unlikely
to provide a useful area of research.

Appendix A

Proofs

The proofs of the three results in section 3.7.2 are now presented.

A.1 Constant Emission and Constant Extinction

Z x

0
c"e

�
R
t

0 c�dsdt + Ibe
�
R
x

0 c�ds =
c"

c�
+

�
Ib � c"

c�

�
e�xc�

Proof. Firstly,

e�
R
t

0
c�ds = e�tc�

Therefore,

Z x

0
c"e

�
R
t

0 c�dsdt + Ibe
�
R
x

0 c�ds =

Z x

0
c"e

�tc�dt + Ibe
�xc�

= � c"

c�
e�tc�

���x
0
+ Ibe

�xc�

=
c"

c�
e0 � c"

c�
e�xc� + Ibe

�xc�

=
c"

c�
+

�
Ib � c"

c�

�
e�xc�

80 APPENDIX A — Proofs

A.2 Linear Emission and Constant Extinction

Z x

0
(m"t+ c")e

�
R
t

0
c�dsdt + Ibe

�
R
x

0
c�ds

=
c"

c�
+

m"

c2�
+ e�c�x

�
Ib � c"

c�
� m"

c2�
(c�x+ 1)

�

Proof. We shall use the result, available from any table of integrals, thatZ
uecudu = ecu

�
u

c
� 1

c2

�
We have:Z x

0
(m"t+ c")e

�
R
t

0
c�dsdt + Ibe

�
R
x

0
c�ds

=

Z x

0
(m"t+ c")e

�tc�dt + Ibe
�xc�

= m"

Z x

0
te�tc�dt +

Z x

0
c"e

�tc� dt + Ibe
�xc�

= k1 + k2

where

k1 = m"

Z x

0
te�tc�dt

k2 =

Z x

0
c"e

�tc�dt + Ibe
�xc�

From section A.1, we see:

k2 =
c"

c�
+

�
Ib � c"

c�

�
e�xc�

Using the result mentioned above,

k1 = m"e
�tc�

�
t

�c� �
1

c2�

�����x
0

= m"e
�xc�

�
x

�c� �
1

c2�

�
+

m"

c2�

= �e�xc� m"

c2�
(c�x+ 1) +

m"

c2�

Section A.3 — Linear Emission and Linear Extinction 81

Therefore,

k1 + k2 = �e�xc� m"

c2�
(c�x+ 1) +

m"

c2�
+

c"

c�
+

�
Ib � c"

c�

�
e�xc�

=
c"

c�
+

m"

c2�
+ e�c�x

�
Ib � c"

c�
� m"

c2�
(c�x+ 1)

�

A.3 Linear Emission and Linear Extinction

Z x

0
(m"t+ c") e

�
R
t

0
m� s+c�ds dt + Ibe

�
R
x

0
m� s+c�ds =r

�

2m3
�

(c"m� � c�m")E +
m"

m�

+ e�x(c�+
1
2
xm�)

�
Ib � m"

m�

�
where

E = e
c
2
�

2m�

erf

�
c�p
2m�

�
� erf

�
c� + xm�p

2m�

�!

Proof. We shall make two observations. Firstly,

erf(u) =
2p
�

Z u

0
e�x

2
du

) d

du
erf(u) =

2p
�
e�u

2

and secondly,

e�
R
x

0 m� s+c�ds = e�x(c�+
1
2
xm�)

Thus,Z x

0
(m"t+ c") e

�
R
t

0 m� s+c�ds dt + Ibe
�
R
x

0 m� s+c�ds =Z x

0
(m"t+ c") e

�t(c�+ 1
2
tm�) dt + Ibe

�x(c�+ 1
2
xm�)

The proof proceeds as follows. Firstly, we shall show by differentiation that:Z
(m"t+ c") e

�t(c�+ 1
2
tm�) dt =r

�

2m3
�

e
c
2
�

2m� erf

�
c� + tm�p

2m�

�
(c"m� � c�m") � m"

m�

e�t(c�+
1
2
tm�)

82 APPENDIX A — Proofs

Then, we shall derive an expression forZ x

0
(m"t+ c") e

�t(c�+ 1
2
tm�) dt + Ibe

�x(c�+ 1
2
xm�)

giving the desired result.

Thus,

d

dt

�r
�

2m3
�

e
c
2
�

2m� erf

�
c� + tm�p

2m�

�
(c"m� � c�m") � m"

m�

e�t(c�+
1
2
tm�)

�

=

r
�

2m3
�

e
c
2
�

2m� (c"m� � c�m")
d

dt
erf

�
c� + tm�p

2m�

�
� m"

m�

d

dt
e�t(c�+

1
2
tm�)

(A.1)

Now,

d

dt
erf

�
c� + tm�p

2m�

�
=

2p
�
e
�(c�+tm�)

2

2m�

r
m�

2

and

d

dt
e�t(c�+

1
2
tm�) = �(c� +m� t)e

�t(c�+ 1
2
tm�)

So equation (A.1) is:

=

r
�

2m3
�

e
c
2
�

2m� (c"m� � c�m")
2p
�
e
�(c�+tm�)

2

2m�

r
m�

2
+

m"

m�

(c� +m� t)e
�t(c�+ 1

2
tm�)

=
1

m�

(c"m� � c�m") e
c
2
��(c�+tm�)

2

2m� +
m"

m�

(c� +m� t)e
�t(c�+ 1

2
tm�)

=
1

m�

(c"m� � c�m") e
�t(c�+ 1

2
tm�) +

m"

m�

(c� +m� t)e
�t(c�+ 1

2
tm�)

=

�
1

m�

(c"m� � c�m") +
m"

m�

(c� +m� t)

�
e�t(c�+

1
2
tm�)

= (c" +m"t) e
�t(c�+ 1

2
tm�)

Section A.3 — Linear Emission and Linear Extinction 83

as desired. Now, we shall show the final result:Z x

0
(m"t+ c") e

�t(c�+ 1
2
tm�) dt + Ibe

�
R
x

0
m� s+c�ds

=

r
�

2m3
�

e
c
2
�

2m� erf

�
c� + tm�p

2m�

�
(c"m� � c�m") � m"

m�

e�t(c�+
1
2
tm�)

�����
x

0

+ Ibe
�x(c�+ 1

2
xm�)

=

r
�

2m3
�

e
c
2
�

2m� (c"m� � c�m") erf

�
c� + xm�p

2m�

�
� m"

m�

e�x(c�+
1
2
xm�) �

r
�

2m3
�

e
c
2
�

2m� (c"m� � c�m") erf

�
c�p
2m�

�
+

m"

m�

+ Ibe
�x(c�+ 1

2
xm�)

=

r
�

2m3
�

e
c
2
�

2m� (c"m� � c�m")

erf

�
c�p
2m�

�
� erf

�
c� + xm�p

2m�

�!
+

m"

m�

+ e�x(c�+
1
2
xm�)

�
Ib � m"

m�

�
which trivially reduces to the result.

Appendix B

File Types

The scene description used by the renderer is a formatted text file. The user is thus
able to generate scene descriptions without being limited to the animation facilities
provided by the application, using whatever text processing language she or he is
familiar with.

The following is a description of the scene file. Tokens are delimited by tab or
newline characters, so spaces can be used to enhance readability. We shall list each
field with the type of data expected. Vectors are a list of three doubles, and matrices
are lists of sixteen doubles, using homogeneous coordinates. Boolean variables are
one of f0; 1g.

Tachos Scene Description v1.0

Volume: file path
Material file: file path
Image size: int x int
Antialiasing: boolean
Interpolation: int
Optimisation: int

Frame

Lightsource position: vector
Lightsource brightness: double
Camera transform: matrix
Volume transform: matrix

End

The antialiasing, interpolation and optimisation fields are intended for future
expansion, and are currently usused.

The material description is as follows. The specular and shininess fields are also for
future expansion. The density range field gives the boundaries of the interval within

86 APPENDIX B — File Types

which a sample is classified with certainty. The ranges must satisfy the properties
that the lower bound of the first material is 0, the higher bound of the last material
is 255, and that all intervals are disjoint. As many materials as desired may be
specified, within these constraints.

Tachos Material Description v1.0

name1

Absorption RGB: double double double
Diffuse RGB: double double double
Diffuse brightness: double
Specular RGB: double double double
Shininess: int
Density range: int int

name2

.

.

.

nameN

.

.

.

End

Bibliography

[AK87] James Arvo and David B. Kirk. Fast ray tracing by ray classification.
Computer Graphics (SIGGRAPH ’87 Proceedings), 21:55–64, July 1987.

[Arv90] James Arvo. Ray tracing with meta-hierarchies. In SIGGRAPH ’90
Advanced Topics in Ray Tracing course notes, August 1990.

[BJNN97] Martin L. Brady, Kenneth Jung, HT Nguyen, and Thinh Nguyen. Two-
phase perspective ray casting for interactive volume navigation. In
Roni Yagel and Hans Hagen, editors, IEEE Visualization ’97, pages 183–
190, November 1997.

[Bli82] J. F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. Computer Graphics (SIGGRAPH ’82 Proceedings), 16(3):21–29,
July 1982.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume
rendering. Computer Graphics, 22(4):65–74, August 1988.

[Dee95] Michael Deering. Geometry compression. In Robert Cook, editor,
SIGGRAPH 95 Conference Proceedings, pages 13–20. ACM SIGGRAPH,
Addison-Wesley, August 1995.

[DH92] John Danskin and Pat Hanrahan. Fast algorithms for volume ray
tracing. 1992 Workshop on Volume Visualization, pages 91–98, 1992.

[DT81] L. J. Doctor and J. G. Torborg. Display techniques for octree-encoded
objects. IEEE Computer Graphics and Applications, 1:29–38, July 1981.

[FI85] Akira Fujimoto and Kansei Iwata. Accelerated ray tracing. In Tosiyasu
Kunii, editor, Computer Graphics: Visual Technology and Art (Proceedings
of Computer Graphics Tokyo ’85), pages 41–65. Springer Verlag, 1985.

[FS97] Jason L. Freund and Kenneth Sloan. Accelerated volume rendering
using homogenous region encoding. In Roni Yagel and Hans Hagen,
editors, IEEE Visualization ’97, pages 191–196, November 1997.

[FSHR96] Shiaofen Fang, Rajagopalan Srinivasan, Su Huang, and Ragu
Raghavan. Deformable volume rendering by 3D texture mapping and
octree encoding. In IEEE Visualization ’96. IEEE, October 1996.

88 BIBLIOGRAPHY

[FTI86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS: Acceler-
ated ray-tracing system. IEEE Computer Graphics and Applications, pages
16–26, April 1986.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. The Systems
Programming Series. Addison-Wesley Publishing Company, second
edition, 1990.

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE
Computer Graphics and Applications, 4(10):15–22, October 1984.

[GLDH97] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two methods for
wavelet-based volume rendering. Computers and Graphics, 21(2):237–
252, 1997.

[HHE96] P. Hastreiter, W. Hopfer, and T. Ertl. Semi-automatic registration of
3d-multi-modality brain images based on an information theoretic
approach. In B. Arnolds, H. Müller, D. Saupe, and T. Tolxdorff, editors,
4. Workshop: Digitale Bildverarbeitung in der Medizin, pages 132–137. Dt.
Ges. f. med. Inf., Biom. u. Epidem. (GMDS) e.V., 1996.

[Hil90] F. S. Hill, Jr. Computer Graphics. Macmillan Publishing Company, 1990.

[HK96] Taosong He and Arie Kaufman. Fast stereo volume rendering. In IEEE
Visualization ’96, pages 49–56, October 1996.

[Kul98] Peter Kulka. A survey of projection methods for direct volume
rendering. In Proceedings of the Image and Vision Computing ’98 Confer-
ence, November 1998.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. Computer Graphics,
21(4):163–169, July 1987.

[LC96] Chyi-Cheng Lin and Yu-Tai Ching. An efficient volume-rendering
algorithm with an analytic approach. The Visual Computer, 12(10):515–
526, 1996.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(3):29–37, May 1988.

[Lev90] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245–261, July 1990.

[LGE97] Christoph Lürig, Roberto Grosso, and Thomas Ertl. Implicite adaptive
volume ray-casting. In Proceedings Graphicon 97, pages 114–120, 1997.

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A pregres-
sive refinement algorithm for volume rendering. Computer Graphics,
25(4):285–288, July 1991.

BIBLIOGRAPHY 89

[LY96] A. Law and R. Yagel. An optimal ray traversal scheme for visual-
izing colossal medical volumes. Technical report, Ohio State Univer-
sity, 1996.

[Mal93] Tom Malzbender. Fourier volume rendering. ACM Transactions on
Graphics, 12(3):233–250, July 1993.

[Man89] Udi Manber. Introduction to Algorithms: A Ceative Approach. Addison-
Wesley Publishing Company, 1989.

[Max95] Nelson Max. Optical models for direct volume rendering. IEEE Tran-
scations on Visualization and Computer Graphics, 1(2):99–108, June 1995.

[ML94] Stephen R. Marschner and Richard J. Lobb. An evaluation of recon-
struction filters for volume rendering. In Visualization ’94, pages
100–107. IEEE Conputer Society Technical Committee on Computer
Graphics, IEEE Computer Society Press, October 1994.

[MMMY96] Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Clas-
sification and local error estimation of interpolation and derivative
filters for volume rendering. In 1996 Volume Visualization Symposium,
pages 71–78. IEEE, October 1996.

[MMMY97] Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. A
comparison of normal estimation schemes. In IEEE Visualization ’97.
IEEE, November 1997.

[MS90] C. Montani and R. Scopigno. Rendering volumetric data using the
STICKS representation scheme. In Computer Graphics (San Diego Work-
shop on Volume Visualization), volume 24, pages 87–93, November 1990.

[MY96] R. Machiraju and R. Yagel. Reconstruction error characterization and
control: A sampling theory approach. IEEE Transactions on Visualization
and Computer Graphics, 2(4):364–378, December 1996.

[Nov93] Kevin Lawrence Novins. Towards Accurate and Efficient Volume
Rendering. PhD thesis, Cornell University, 1993.

[PBB98] Heinz-Otto Peitgen, Wilhelm Berghorn, and Matthias Biel.
The complete visible human. Springer-Verlag CD-Rom,
1998. See http://www.nlm.nih.gov/research/visible/
visible_human.html .

[Sab88] Paolo Sabella. A rendering algorithm for visualizing 3D scalar fields.
Computer Graphics, 22(4):51–58, August 1988.

[Sam89] Hanan Samet. Implementing ray tracing with octrees and neighbor
finding. Computers and Graphics, 13(4):445–60, 1989.

[San85] J. Sandor. Octree data structures and perspective imagery. Computers
and Graphics, 9(4):393–405, 1985.

90 BIBLIOGRAPHY

[SK94] Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In
Arie E. Kaufman and Wolfgang Krueger, editors, 1994 Symposium on
Volume Visualization, pages 11–18. ACM SIGGRAPH, October 1994.

[SMM+97] J. Edgar Swan, II, Klaus Mueller, Torsten Möller, Naeem Sharif, Roger
Crawfis, and Roni Yagel. An anti-aliasing technique for splatting. In
Roni Yagel and Hans Hagen, editors, IEEE Visualization ’97, pages 197–
204. IEEE, November 1997.

[TL93] Takashi Totsuka and Marc Levoy. Frequency domain volume
rendering. Computer Graphics (SIGGRAPH ’93 Proceedings), 27:271–278,
August 1993.

[UK88] Craig Upson and Michael Keeler. V-buffer: Visible volume rendering.
Computer Graphics, 22(4):59–65, August 1988.

[vW94] Allen van Gelder and Jane Wilhelms. Topological considerations in
isosurface generation. ACM Transactions on Graphics, 13(4):337–375,
October 1994.

[Wes89] Lee Westover. Interactive volume rendering. In Proceedings of the Chapel
Hill Workshop on Volume Rendering, pages 9–16. ACM, 1989.

[Wes90] Lee Westover. Footprint evaluation for volume rendering. Computer
Graphics (SIGGRAPH ’90 Proceedings), 24:367–376, August 1990.

[Wes96] Rüdiger Westermann. A Multiresolution Framework for Volume
Rendering. PhD thesis, Universität Dortmund, 1996.

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenburg. Improved
computational methods for ray tracing. ACM Transactions on Graphics,
3(1):52–69, January 1984.

[WJ95] D. M. Weinstein and C. R. Johnson. Hierarchical data structures
for interactive volume visualization. Technical Report UUCS-95-012,
University of Utah, 1995.

[WMS98] Peter L Williams, Nelson L Max, and Clifford M Stein. A high accuracy
volume renderer for unstructured data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(1):37–54, January 1998.

[WSC+95] Kyu-Young Whang, Ju-Wong Song, Ju-Woong Chang, Ji-Yun Kim,
Wan-Sup Cho, Chong-Mok Park, and Il-Yeol Song. Octree-R: An adap-
tive octree for efficient ray tracing. IEEE Transactions on Visualization
and Computer Graphics, 1(4):343–349, December 1995.

[Wün97] Burkhard Wünsche. A survey and analysis of common polygoniza-
tion methods & optimization techniques. Technical report, Auckland
University, August 1997.

[Yag96] R. Yagel. Towards real time volume rendering. In Proceedings of
GRAPHICON’96, pages 230–241, July 1996.

BIBLIOGRAPHY 91

[YKFT84] K. Yamaguchi, T. L. Kunii, K. Fujimara, and H. Toriya. Octree-related
data structures and algorithms. IEEE Computer Graphics and Applica-
tions, 3:53–59, January 1984.

[YL95] Boon-Lock Yeo and Bede Liu. Volume rendering of DCT-based
compressed 3D scalar data. IEEE Transactions on Visualization and
Computer Graphics, 1(1):29–43, March 1995.

[ZvOC+96] Karel J. Zuiderveld, Peter M. A. van Ooijen, John W C Chin-A-Woeng,
Pieter C. Buijs, Marco Olree, and Frits H. Post. Clinical evaluation of
interactive volume visualization. In IEEE Visualization ’96, pages 367–
371. IEEE, October 1996.

