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Abstract

We present a systematic comparison between Liouville, computable, Borel normal
and Martin-Löf random numbers. The nine non-empty combinations, all small in mea-
sure or category, are illustrated with concrete examples. The sets of Liouville numbers
and Martin-Löf random numbers are disjoint, thus showing that the irrationality ex-
ponent is not a measure of randomness. Finally, we construct the first computable set
of correlations appearing in every Martin-Löf random number, but not in all numbers.

1 Introduction

Let ↵ be a real number. The irrationality exponent of ↵, µ(↵), is the supremum of all reals

µ such that
���↵� p

q

��� < 1
qµ has infinitely many solutions p/q 2 Q. A number with infinite

irrationality exponent is called a Liouville number. In detail, ↵ is a Liouville number if it

is irrational and for every positive integer n, there exist integers pn and qn with qn > 1

such that

����↵� pn
qn

���� <
1

qnn
.

In 1844 Liouville found the first transcendental number by constructing the “classical” Li-

ouville number
P1

i=1 b
�i!. Numbers which are not Liouville share the following computable

pattern (1).

Fact 1.1. If x = x1x2 · · · is the b-ary expansion of an irrational and not Liouville number

↵, then there exists an integer k > 1 such that the sequence x satisfies the following



computable set of correlations: for every m � 1:

xm+1xm+2 · · ·xm+k · · ·xmk 6= 0m(k�1). (1)

Proof. The number ↵ is irrational and not Liouville, hence there exists an integer k > 1

such that for all integers p and q with q > 1 we have
����↵� p

q

���� �
1

qk
. (2)

Assume that there exists an integer m � 1 such that (1) is false and take p = x1b
m�1 +

x2b
m�2 + · · ·+ xm and q = bm. Because ↵ is irrational we have:

����↵� p

q

���� = |↵� 0.x1 · · ·xmk| =
1X

i=km+1

xi
bi

<
1X

i=km+1

1

bi
 1

(bm)k
,

which contradicts (2).

In [5] J. Borwein observed that, due to the fact that Liouville numbers have infinite

irrationality exponent, random numbers should be Liouville numbers. This intuition seems

to be corroborated with the fact that non Liouville numbers satisfy the computable pattern

(1), which suggests that they might not be random; for example, ⇡, which is not random

(because it is computable) is not Liouville [23] and its irrationality exponent does not

exceed 7.6304. However, the above intuitions conflict with two well-known facts: on the

one hand, random numbers have (Lebesgue) measure one and Liouville numbers have

measure zero, and on the other hand, the set of random numbers is of first Baire category

and the set of Liouville numbers is co-meagre [29, 8]. So, there are random numbers which

are non Liouville and Liouville numbers which are not random. Clearly, this phenomenon

needs to be further investigated.

2 Computable and normal numbers

We now introduce four classes of numbers to be compared with the class of Liouville

numbers L: the computable numbers C, the (Borel) normal numbers N and the Martin-

Löf random numbers M.

The set Ab = {0, 1, . . . , b � 1}, where b a positive integer, is called the b–base; the

elements of Ab are called b–digits. The b-ary expansion of the real ↵ is the infinite sequence

x1x2 · · · with xi 2 {0, 1, . . . , b� 1}, b > 1, such that ↵ =
P

i�1 xi · b�i. If ↵ is rational then

we choose the infinite sequence ending up in zeroes.

2



A real ↵ is computable if its b-ary expansion is computable, that is, there is a computable

function f such that f(n) = xn, for all n � 1. A (Borel) normal number in base b is a real

number whose infinite b-ary expansion is uniformly distributed, i.e. each b–digit has the

same natural density 1/b, every string of two b–digits has the same natural density b�2,

and, in general, every string of k digits has the same natural density b�k. If the base is

clear we will simply say that the number is normal. Normality was introduced by Borel

[4] as a model of randomness. Champernowne’s number [15] is normal in base 10, but

computable, so clearly not random. A (Borel) absolutely normal number is a real which is

normal in every base. There exist computable absolutely normal numbers (cf. [2, 3, 17]),

so even absolute normality is only a necessary condition for randomness.

3 Algorithmic random numbers

How to define mathematically randomness? As in case of normality we discuss randomness

of real numbers in terms of their b-ary expansions. Intuition suggests that a “random

sequence” should be typical, that is, it should belong to any “reasonable” majority. A

natural way to model typicalness can be obtained by isolating the set of all sequences having

“all verifiable” properties true from the point of view of classical probability theory, i.e. all

properties which are satisfied with “probability one” with respect to Lebesgue probability

measure (induced by the unbiased discrete probability). Formally, the unbiased discrete

probability on Ab defined by the function h({�}) = b�1, for every � 2 Ab induces the

product Lebesgue measure � on the set of all Borel subsets of the set of all sequences. In

what follows measure will refer to �.

If x = x1x2 . . . xn is a string of length n, then the cylinder induced by x, [x], which is

the set of all sequences starting with x, has the probability �([x]) = b�n. This number can

be interpreted as “the probability that a sequence y = y1y2 . . . yn . . . has the first element

y1 = x1, the second element y2 = x2, . . . , the nth element yn = xn”. Independence means

that the probability of an event of the form “yi = xi” does not depend upon the probability

of the event “yj = xj , j 6= i”. Every open set, i.e. a union of cylinders, is measurable. A set

of sequences S is a null set in case for every real " > 0 there exists an open set containing

S with measure less than ". For instance, every enumerable set of sequences, in particular,

the set of computable sequences, is a null set. For more details see [8].

A property P of sequences is true almost everywhere if the set of sequences not having

the property P is a null set. The main example of such a property is the famous Law

of Large Numbers discovered by Borel (also known to Jakob Bernoulli around 1700): For

every binary sequence x, limn!1 Sn(x)/n exists almost everywhere in the sense of measure

and has the value 1/2; Sn(x) = x1 + x2 + · · ·+ xn.
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It is clear that a sequence satisfying a property false almost everywhere is very “partic-

ular”. Accordingly, it is tempting to say that a sequence x is “random” if it satisfies every

property true almost everywhere. Unfortunately this definition is vacuous because we can

define, for every sequence x the property P
x

by

A sequence y satisfies P
x

if for every n � 1 there exists an m � n such that

xm 6= ym.

Every P
x

is true almost everywhere and x does not have property P
x

. Accordingly, no

sequence can verify all properties true almost everywhere. Note that the above argument is

well corroborated with results in Ramsey theory which show patterns in every sequence [31].

This rather disappointing result which shows that mathematically there is no “true

randomness” can be mitigated by considering not all properties true almost everywhere,

but only a countable set of such properties. The “larger” the chosen class of properties

is, the “more random” will be the sequences satisfying those properties. Which properties

should be considered? The statistical practice and the philosophical intuition suggest to

consider classes of “computable properties”. By “constructivising” the notion of null set

in the most “liberal” computable way, Martin-Löf [25] obtained arguably the most natural

(and famous) definition of algorithmic randomness. A constructive open set is an open

set that is the union of the sequence of cylinders determined by a computably enumerable

sequence of strings. A computably enumerable sequence (Oi)i�1 of constructive open sets

such that �(Oi)  b�i/(b�1), for every i > 0, determines a unique G� set S of constructive

measure zero, namely the intersection of all sets Oi; such a set S is called a constructive

null set. In contrast with the case of “classical” null sets, Martin-Löf proved that the union

of all constructive null sets is a (maximal) constructive null set. A constructive null set is

a “smaller” null set, so a set of constructive measure one is “larger” than a measure one

set.

A sequence is Martin-Löf random if it is not contained in any constructive null set,

that is, if it is not contained in the maximal constructive null set. As a consequence,

constructively, with probability one, every sequence is Martin-Löf random. Randomness is

a relative property and, consequently, there are many other classes of algorithmic random

numbers, some smaller, other larger than Martin-Löf random numbers, cf. [8, 19]. Later in

this paper we will briefly consider the larger class of finite-state incompressible reals [13].

Next we present a few useful results using the plain Kolmogorov complexity K [8, 19].

Recall that the plain complexity (Kolmogorov) of a string w 2 A⇤
b with respect to a partially

defined computable function ' : A⇤
b ! A⇤

b is K'(w) = inf{|p| : '(p) = w}. It is well-known
that there is a universal partially computable function U : A⇤

b ! A⇤
b such that

KU (w)  K'(w) + c',
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holds for all strings w 2 A⇤
b . Here the constant c' depends only on U and ', but not on

the particular string. We will denote the complexity KU simply by K.

For the sequence x we denote by x � n its prefix of length n.

Fact 3.1 ([19]). (a) Let x be the b-ary expansion of a Martin-Löf random number. Then

lim infn!1K(x � n)/n = 1. (b) If x is the b-ary expansion of a computable number then

lim supn!1K(x � n)/n = 0.

Using a result of Kolmogorov [22] this fact can, to a certain extent, be reversed.

Lemma 3.1 ([32, Corollary 9]). Let x be the b-ary expansion of a number. If

lim infn!1K(x � n)/n = 1, then x is normal in base b.

Since the value of lim infn!1K(x � n)/n is independent of the chosen base (see e.g.

[32]), we need no relativisation to certain base in Lemma 3.1.

The following result appears in the proof of Lemma 10 of [32]. It provides a su�cient

condition for expansions of non Liouville numbers.

Lemma 3.2. There is a computable function  : A⇤
b ! A⇤

b such that lim infn!1K (x �
n)/n = 0 for every b-ary expansion x of a Liouville number.

Combining Fact 3.1 and Lemma 3.2 we obtain the following.

Corollary 3.1. The sets of Liouville numbers and Martin-Löf random numbers are dis-

joint.

Next we generalise an idea of [28, Lemma 1] to construct Liouville numbers of a certain

shape (including normal ones). Maillet [24] sketched, without proof, a similar construction

as in our Lemma 3.3 (see also [30, Kapitel 1]).

To this end let the length of a finite or infinite string ⌘ over Ab be |⌘|; the jth letter

(j = 1, . . . , |⌘|) of ⌘ is denoted by ⌘(j). If w 2 A⇤
b and i � 0 is an integer, then wi is

the concatenation ww . . . w (i times) and w! is the infinite concatenation ww . . . w . . . .

Using finitely or infinitely many strings wi 2 A⇤
b we can construct b-ary expansions of real

numbers.

Lemma 3.3. Let (wi)i2IN be a family of non-empty strings wi 2 A⇤
b , f : IN ! IN \ {0},

and ni =
Pi

j=0 f(i) · |wi|. If lim infi!1
ni�1+|wi|

ni
= 0, then x =

Q1
j=0w

f(j)
j is the b-ary

expansion of a rational or a Liouville number.

Proof. First observe that ni =
��Qi

j=0w
f(j)
j

��. Next, choose i, n 2 IN such that (ni�1+ |wi|) ·
n < ni � 1 and consider the b-ary expansion yi =

Qi�1
j=0w

f(j)
j · w!i . Then yi is the b-ary
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expansion of the rational number

ai
bni�1

+
a0i

bni�1(b|wi| � 1)
,

with ai =
Pni�1

j=1 yi(j) · bni�1�j and a0i =
P|wi|

j=1wi(j) · b|wi|�j , thus of the form pi/qi with

the denominator qi = bni�1(b|wi| � 1) < bni�1+|wi|.

By construction, the b-ary expansions x and yi have a common prefix of length ni.

Thus the real number ↵ = 0.x satisfies

��↵� pi
qi

��  b�(ni�1)  (bni�1+|wi|)�n < q�n
i .

In [28] normal Liouville numbers have been constructed using wi = B(2, i) and f(i) = ii

(see Eq. (3) below). The above construction with w2i = 0, w2i+1 = 1, f(2i) = i! and

f(2i+ 1) = 1 gives the “classical” Liouville number with the 2-ary expansion
Q1

j=0 0
j!1.

4 Relations between L, C,N , and M

First, how large are the classes L, C,N ,M from the points of view of measure and category

(in Baire sense, cf. [29])? While C is countable, all the other classes have the cardinality of

the continuum. L is a dense G�-set (hence co-meagre), measure zero set [29, 6]. N and M
are constructive measure one [25], but constructively meagre in the Cantor space [29, 9]

(a constructive meagre set is a meagre set covered by computably enumerable union of

computably enumerable nowhere dense subsets; a constructive meagre set is “smaller”

than a meagre set). In [10] it is shown that M is co-meagre for a suitably chosen metric

topology.

Second, some relations are easy to see or are known. Liouville’s “classical” number is

computable, but not normal in base 10. Every Martin-Löf random number is absolutely

normal (see [7] or Lemma 3.1 and Fact 3.1) and incomputable [8, 19]. Normal numbers

may be incomputable; for example, Martin-Löf random numbers. Champernowne number

is computable and normal in base 10, but not absolutely normal (in general, normality in

base a implies normality in base b if and only if a is a power of b, [20]); for computable

normal numbers see [2, 3, 17].

As mentioned above, M ⇢ N , and, clearly C \ M = ;. Moreover, from Liouville’s

construction it follows that C \ L 6= ; [2]. Also, C \ N 6= ; and for cardinality reasons

L 6✓ C and N 6✓ C.
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We study all possible combinations between the four classes of numbers considered. We

denote by S̄ the complement of the set S. Out of 16 possible combinations the following

seven sets are empty: L̄ \ C̄ \ N̄ \M, L̄ \ C \ N̄ \M, L \ C̄ \ N̄ \M, L \ C \ N̄ \M
(all because M ⇢ N ), L̄ \ C \ N \M, L \ C \ N \M (both because C \M = ;), and
L \ C̄ \N \M (because of Corollary 3.1).

Next we show that all other 9 intersections are non-empty, but they are all “small” in

measure or/and category.

To prove the first two results we will use de Bruijn words over Ab of order r � 1 which

are strings w of length br+ r�1 such that any string of length r occurs as a substring of w

(exactly once). It is well-known that de Bruijn words of any order and for every Ab exist,

and have an explicit construction [18, 33]. For example, 00110 and 0001011100 are binary

de Bruijn strings of orders 2 and 3 respectively.

Note that de Bruijn words are derived in a circular way, hence their prefix of length

r � 1 coincides with the su�x of length r � 1. Denote by B(b, r) the prefix of length 2r of

a de Bruijn string of order r. The examples of binary de Bruijn words of orders 2 and 3

previously presented are derived from the strings B(2, 2) = 0011 and B(2, 3) = 00010111,

respectively. Thus the string B(b, r) · B0(b, r), where B0(b, r) is the length r � 1 prefix

of B(b, r), contains every b-ary string of length string r exactly once as a substring. For

definiteness, we agree here on the fact that B(b, r) starts with r zeroes and ends on a

symbol di↵erent from 0. Thus B(b, r) is not a prefix of B(b, r + 1).

According to [27, 28] every sequence of the form

xf =
1Y

i=1

B(i)f(i) = B(b, 1)f(1)B(b, 2)f(2) · · ·B(b, i)f(i) · · · (3)

is normal in base b provided the function f : IN ! IN is increasing and satisfies the condition

f(i) � ii, for all i � 1. If, moreover, the family
�
B(b, i)

�
i2IN and f satisfy the hypothesis

of Lemma 3.3 the real ↵f = 0.xf is a Liouville number.

4.1 L \ C \N \ M̄

Let f(i) = ii. Then f is a computable function and thus ↵f is also computable, normal

and a Liouville number, thus, in view of Fact 3.1 and Lemma 3.2, not Martin-Löf random.

4.2 L \ C̄ \N \ M̄

In [21] incomputable disjunctive (a sequence is disjunctive in case every string appears in

it) Liouville numbers have been constructed. These numbers are not normal, hence not

Martin-Löf random.
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If ii + 1 � f(i) � ii is an incomputable function, then ↵f is an incomputable normal

Liouville number which by Fact 3.1 and Lemma 3.2 is not Martin-Löf random.

4.3 L \ C \ N̄

Liouville “classical” number
P1

i=1 b
�i! is computable, hence not Martin-Löf random, and

not normal in base b. This set is countable because of C.

4.4 L \ C̄ \ N̄

The construction of Lemma 3.3 with w2i = 0, w2i+1 = 1, f(2i + 1) = 1 and f(2i) � i!,

where the function f : IN ! IN is incomputable yields a non-computable Liouville number

with the expansion
Q1

j=0 0
f(2j)1 which is not normal in base b.

4.5 L̄ \ C \N

Any Stoneham number F (1/2) =
P1

i=1 2
�ki · k�i (where k 2 IN is odd , k � 3) is com-

putable, normal in base 2 (but not in base 6, see [1]), and, by [16, Theorem 1], has

irrationality exponent µ(F (1/2)) = k, thus, is not Liouville.

4.6 L̄ \ C̄ \ N̄

Let ↵ = 0.x1x2 . . . xn . . . , xi 2 Ab be Martin-Löf random (given by a b-ary expansion) and

let � = 0.y, where y = x100x200 . . . xn00 . . . . Then � is not normal in base b because it

contains at least 2/3 more zeroes than ones. It is not computable, for otherwise ↵ would

be computable. Finally, since lim infn!1K(y � n)/n = 1/3 (actually � is 1/3–Martin-Löf

random in the sense of [14]), Lemma 3.2 shows that � is not a Liouville number.

4.7 L̄ \ C̄ \M

Here L̄ \ C̄ \M = M 6= ; follows from the obvious relation C \M = ; and Corollary 3.1.

4.8 L̄ \ C \ N̄

Every rational number is computable but neither Liouville nor normal.

4.9 L̄ \ C̄ \N \ M̄

Let ↵ = 0.x1x2 . . . xn . . . be a Martin-Löf random real (given by a 2-ary expansion) and

let y(2i) = 0 and y(j) = xj , otherwise. Then lim infn!1K(y � n)/n = 1 (see [26,

8



Example 4.1]) but � = 0.y is not Martin-Löf random (use the Martin-Löf constructive

null set given by the open sets Oi = {� | �(2j) = 0, for j = 0, . . . , i}). Now Fact 3.1,

Lemma 3.1 and 3.2 show that � is normal, not computable and not a Liouville number.

All sets included in C are countable. The set L̄\ C̄ \M = M has constructive measure

one, but is constructive meagre [9]. The remaining non-empty sets have all constructive

measure zero.

5 Computable correlations in Martin-Löf random numbers

We can now come back to the phenomenon discussed at the end of Section 1. Replac-

ing a Turing machine by a finite transducer we can define the finite-state complexity of

strings [11, 12] denoted by CS ; this complexity depends on the computable enumeration S of

the set of finite transducers. A sequence x is CS–incompressible if lim infnCS(x � n)/n = 1,

cf. [13].

Theorem 5.1. There is a computable enumeration S such that every finite-state CS–

incompressible sequence satisfies the computable correlations (1).

Proof. Proposition 4.1 of [13] and Lemma 3.2 prove that there is a computable enumeration

S[ ] such that CS[ ](w)  K (w)+2, for all w 2 A⇤
b . Thus finite-state CS[ ]–incompressible

numbers are not Liouville by Lemma 3.2, so in view of Fact 1.1 every finite-state CS[ ]–

incompressible number satisfies (1).

So, for some S, finite-state CS–incompressible numbers are normal and incomputable.

Every Martin-Löf random sequence is CS–incompressible, but the converse implication is

not true [13, Proposition 5.1].

Corollary 5.1. Every Martin-Löf random number (sequence) satisfies the pattern (1), but

there exist non Martin-Löf random numbers satisfying (1).

In view of Corollary 5.1 the computable correlations (1) do not correspond to a con-

structive null set. This fact is interesting because (1) is not a Ramsey type of correlation,

typically incomputable, but appearing in every sequence: correlations (1) are computable,

but they appear only in some sequences, including all Martin-Löf random sequences. The

existence of Liouville numbers which are not Martin-Löf random is less surprising. These

facts show that the irrationality exponent is not a measure of randomness.

The number ⇡ is not Liouville [23]. Obviously, ⇡ is not Martin-Löf random due to its

computability; the property of ⇡ not to be Martin-Löf random cannot be excluded because

⇡ has (1). An interesting open question is to find a set of correlations in ⇡ which are not

9



related to computability and exclude its Martin-Löf randomness, i.e. a constructive null

set not related to computability which contains ⇡.
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randomness, and to the University of Auckland for the financial support of his sabbatical

leave in 2013.

References

[1] D. H. Bailey, R. E. Crandall. Random generators and normal numbers, Experiment.

Math. 11 (2002), no. 4 (2003), 527–546.

[2] V. Becher, S. Figueira. An example of a computable absolutely normal number, The-

oretical Computer Science 270 (2002), 947–958.

[3] V. Becher, P. Heiber, T. A. Slaman. A polynomial-time algorithm for computing

absolutely normal numbers, Information and Computation 232 (2013), 1–9.
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