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Foreword

This meeting was held on 26–28 January, 2012, at the Westport Field Station of the Uni-
versity of Canterbury, on the South Island of New Zealand. It was aimed at fostering the
exchange of ideas between various disciplines, emphasizing links between mathematics,
computer science, philosophy and statistics.

Tutorials and talks on various aspects of non-classical logics were run, with a view to
using these aspects in other areas of research. Talks generally ran for about an hour,
with a generous period of discussion and questions following. Thanks to the wide-ranging
nature of the research interests of the group, this format proved to be very conducive to
generating cross-disciplinary ideas and constructive critique. Participants also had the
opportunity to explore the seal colony near Westport and walked from the colony to the
lighthouse.



Participants of
ConstruMath South 2012: Applications of Non-Classical Logic

and Their Double Pendulum Release Signatures

The participants from left to right in the first image are: Ruriko Yoshida, Cris Calude,
Raazesh Sainudiin, Maarten McKubre-Jordens, Elena Calude, Nicholas Duncan, James
Dent, Ty Baen, Zach Weber, Ed Mares and Bruce Burdick. Each participant released a
mechatronically measurable double pendulum. The remaining eleven images (from left
to right and row by row) show the positions of each arm of the double pendulum through
time upon release by each participant in the above list order.
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What’s the Deal with Relevance?

An Introduction to Relevant Logic

Edwin Mares
Victoria University of Wellington

Relevant Logics are logical systems that reject the so-called paradoxes of material and
strict implication. They also brand certain inferences valid in classical or intuitionist
logic as fallacies of relevance. Consider, for example, the inference

A

) B ! B
.

This inference is valid in classical and intuitionist logic because B ! B is provable in
any context (read ‘context’ as possible world for classical logic, evidential situation for
intuitionist logic). The proof of B ! B need have nothing to do with A, but this does
not matter according to classical or intuitionist logic. The premise in an inference that
is considered to be deductively valid in relevant logic, on the other hand, has really to be
used in the proof of the conclusion. It is this notion of real use that is the key concept of
relevant logic.

The notion of real use can be understood in various ways. In terms of a Gentzen-style
sequent calculus, for example, it can be understood at least in part in terms of the
rejection of weakening on the left-hand side of the turnstile. In terms of Fitch-Lemmon
style natural deduction system, it can be understood in terms of labels that are employed
to keep track of the use of hypotheses. For example, the following is a relevant deduction:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

�������������������

A ! (B ! C){1}���������������

A ! B{2}�����������

A{3}
A ! (B ! C){1}
B ! C{1,3}
A ! B{2}
B{2,3}
C{1,2,3}

A ! C{1,2}
(A ! B) ! (A ! C){1}

hyp.
hyp.
hyp.
1, reit.
3, 4, ! E
2, reit.
3, 6, ! E
5, 7, ! E
3� 8, ! I
2� 9, ! I

11. (A ! (B ! C)) ! ((A ! B) ! (A ! C); 1� 10, ! I

The treatment of the subscripted labels can be tricky, especially in the rules concerning
conjunction (see the slides for the talk), but the basic idea is quite simple. When a
hypothesis is introduced, it is given a new number. The hypothesis has to be used in the
proof of a conclusion for it to be discharged, and this use is evident from the appearance
of its number in the subscript of the conclusion. Similarly, if we leave a hypothesis
undischarged – as a premise in an argument – its number must appear in the subscript
of the conclusion in order for the deduction to be considered relevantly valid.

I interpret the subscripts in terms of the theory of situations. A situation is a partial
representation of a universe. A situation need not contain all the information about a
universe in it. For example, as I write this, I have no idea what the weather is in New
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York; that information is not available to me and so it is not in this situation (I could
be considered to be also in various other situations, some of which include the current
weather in New York, but I will leave that for now). A step in a relevant proof, say,
A{1} says that a particular situation, s

1

, contains the information that A. In the proof
above, we have the hypotheses that the information that A ! (B ! C) is contained in
s
1

, A ! B is contained in s
2

, and A is contained in s
3

. We also are assuming that these
three situations obtain in the same world. On the basis of this, we infer, for example,
that B ! C is contained in a situation (labelled in the proof as {1, 3}) in the same world.

The logic described in the foregoing paragraphs is the logic R of relevant implication. Not
all relevant logicians accept R as representing the last word on relevance. Many accept
weaker logics. One reason for doing so is that they want a logic to act as a basis for a
naive theory of truth or a naive set theory. Here I will only treat theories of truth, since
the chapter by Zach Weber treats naive set theory. I don’t need to go through all the
issues concerning the theory of truth, but I will present the key problem, that is, the
Curry paradox. Consider the Curry sentence,

(C) If this sentence is true, then the moon is made of green cheese.

Let p mean ‘the moon is made of green cheese’. We know that, by virtue of the meaning
of C that is is logically equivalent to C ! p. So, the following proof is valid in R:

1.
2.
3.
4.

��������

C{1}
C $ (C ! p);
C ! p{1}
p{1}

hyp.
stipulation
1, 2, $ E
1, 3, ! E

5. C ! p; 1� 4, ! I
6. C $ (C ! p); stipulation
7. C; 5, 6, $ E
8. p; 5, 7, ! E

In order to bar this derivation, some relevant logicians to replace the sets in the sub-
scripted labels with multisets. In a multiset, the same number can occur twice. The
proof cannot be completed now:

1.
2.
3.
4.

��������

C
[1]

C $ (C ! p)
[]

C ! p
[1]

p
[1,1]

hyp.
stipulation
1, 2, $ E
1, 3, ! E

5. C ! p
[1]

1� 4, ! I
6. ????

We only have one hypothesis to discharge, but it was used twice to prove C ! p. Thus
we have part of a means of banning the derivation of Curry’s paradox. But the question
is: how can we interpret logics with this restriction?

Further Reading

The natural deduction system for the relevant logic R is set out in Anderson and Belnap,
Entailment, volume I (Princeton: Princeton University Press, 1975). Natural deduction
systems for alternative relevant logics are set out in Ross Brady (ed.), Relevant Logic and
its Rivals, volume 2 (Farnham, Surrey: Ashgate, 2003). Philosophical interpretations of
relevant logics are found in Stephen Read, Relevant Logic: A Philosophical Interpretation

7



of Inference (Oxford: Blackwell, 1989) and Edwin Mares, Relevant Logic: A Philosophical
Interpretation (Cambridge: Cambridge University Press, 2004). Greg Restall, Introduc-
tion to Substructural Logic (London: Routledge, 2000) places relevant logic in a more
general context.
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Paraconsistent Mathematics

Zach Weber
University of Otago

Overview

When we practice mathematics, we make some very intuitive assumptions that can trigger
contradictions. Well known examples include the original infinitesimal calculus and naive
set theory, the latter based on naive comprehension:

9y8x(x 2 y $ A(x))

Paraconsistency is a method for preserving our original mathematical intuitions, by con-
trolling for inconsistency with a weaker logical consequence relation, `.

‘Classical’ inferences

In a paraconsistent setting, classical inferences like ex falso quodlibet (A,¬A ` B) and
disjunctive syllogism (A,¬A _ B ` B) are not in general valid. Nevertheless, because
paraconsistent theories are not trivial (i.e. some sentences are not satisfied), these infer-
ences can be restored in appropriate forms. An absurdity constant is defined

? := 8x8yx 2 y

yielding the property that ? ` A for any sentence A. Then ex falso and disjunctive
syllogism are both valid when ¬A is replaced by the property that A entails ?. If we
further identify

0 := {x : ?}, 1 := {0}
then we find a consistency point at the bottom of the number line: 0 = 1 is absurd,
and thus so is any sentence that implies 0 = 1. Using this consistency point, we can
confirm some structural facts that are very ‘far away’, such as N being unbounded in
R, König’s Lemma (and Brouwer’s Fan Theorem), and the Heine-Borel Theorem. A
complementary consistency point is generated at the top of the number line, at the
universal set V = {x : 9yx 2 y}.

Connections with other areas

Paraconsistent mathematics thus o↵ers a way to control arguments in a more nuanced
way (especially when the underling logic is a relevant logic). The logic makes ‘intensional’
distinctions’, which is especially clear when we look at non-equivalent definitions of empty
sets, such as {x : ?} and {x : x 6= x}. (The latter may have some members, even though
it has no members.)

Paraconsistency is a natural dual to constructive mathematics, but it is not opposed to
constructivisim – in fact, constructive techniques are particularly powerful in paracon-
sistent settings. The goals of the program are to recapture classical results, and extend
them into the study of the inconsistent, which is intrinsically interesting and beautiful in
its own right, and which may yet find applications in any domain where inconsistency is
possible.
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Constructive Methods in Mathematics

Maarten McKubre-Jordens
University of Canterbury

In Brief

The point of using constructive methods in mathematics is to explicitly exhibit any
object or algorithm that the mathematician claims exists; so constructive proof provides,
in principle, a mechanical method. Loosely speaking, one replaces the absolute notion of
truth in mathematics, with (algorithmic) provability. Constructive proofs:

1. embody (in principle) an algorithm (for computing objects, converting other algo-
rithms, etc.), and

2. prove that the algorithm they embody is correct (i.e. that it meets its design speci-
fication).

Constructive techniques

Upon adopting only constructive methods, we lose some powerful proof tools in our
arsenal, such as unrestricted use of the Law of Excluded Middle (LEM) and anything
which validates it, such as double negation elimination and unrestricted use of proof by
contradiction1. We cannot, in general, constructively prove 9xP (x) by assuming ¬9xP (x)
and deriving a contradiction; that doesn’t compute the required x.

However the news isn’t all bad. In a lot of cases, constructive alternatives to non-
constructive classical principles in mathematics, leading to some very strong results. For
example, the classical least upper bound principle is not constructively provable.

LUB Any nonempty set of reals that is bounded from above has a least upper bound.

However the constructive least upper bound principle is provable.

CLUB Any order-located nonempty set of reals that is bounded from above has a least
upper bound.

A set is order-located if given any real x, the distance from x to the set is computable. It
is quite common for a constructive alternative to be classically equivalent to the classical
principle; and, indeed, classically every nonempty set of reals is order-located.

To see why LUB is not provable, we may consider a so-called Brouwerian counterexample
(or weak counterexample), such as the set

S = {x 2 R : (x = 2) _ (x = 3 ^ P )}

where P is some as-yet unproven statement, such as Goldbach’s conjecture. If the set
S had a computable LUB, then we would have a quick proof of the Goldbach conjec-
ture’s truth or of its unprovability. A Brouwerian counterexample is an example which

1
Which is not to say that LEM is false. Both Russian recursive mathematics, in which LEM is provably false, and

classical mathematics, in which it is logically true, are models of constructive mathematics—so in a way, LEM is independent
of constructive mathematics, and hence non-constructive.
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shows that if a certain property holds, then it is possible to constructively prove a non-
constructive principle (such as LEM); and thus the property itself must be essentially
non-constructive.

It is often the case that a classical theorem becomes more enlightening when seen from
the constructive viewpoint2. For example, in the least upper bound principle the extra
computational information provided by being order-located is enough to guarantee the
computability of the least upper bound.

Within constructive mathematics a number of methods has been developed, enriching
the subject to a degree where it is comparable to its classical counterpart in complexity,
and often exceeds it in computational informativity.

Connections with other disciplines

The connection of constructive mathematics with computer science and programming is
clear. A major upshot of the constructive approach is to identify with relative ease the
sorts of things that computers cannot do (it is usually easier to prove a negative result),
and so to guide the programmer to focus on what is achievable.

Like paraconsistency, constructivism brings out finer-grained details of proof that are
often casually dismissed in classical proofs. In fact, a single classical theorem can lead to
several constructively discernible di↵erent theorems, where the constructive techniques
bring to the fore extra computational strength required in the hypotheses, or further
information contained in the conclusion.
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Abstract Stone Duality - A Logic for Topology

Nicholas Duncan
University of Canterbury

Abstract

Abstract Stone Duality (ASD) is a logical system for reasoning and computing with topological
spaces. Compared to other systems of logic the quantifiers 8 and 9 are restricted to compact and overt
spaces, respectively, in ASD. The concept of overt spaces is not seen in topology, as all topological
spaces are overt, but they play an important computational role in ASD.

In this paper we start with the definition of topology and relate it to computability. Then we
focus on the construction of the type theory underlying ASD, starting with the types, which represent
spaces, moving on to terms, which represent continuous functions, and finally reaching judgements,
which deal with proving results in the calculus.

Next we will consider how local compactness allows computation in the calculus and the con-
nection to interval arithmetic. Finally we compare this system to other computable systems, like
Recursive Analysis.

Introduction

Abstract Stone Duality (ASD) is a logical system created by Paul Taylor for reasoning
and computing with topological spaces. It is named after Stone’s duality between Boolean
algebras and Stone spaces. This duality manifests itself in the fact that spaces are also
algebras, so we can avoid the use of sets by using the spaces as carriers of those algebras.
However, in this article we will not dwell on this important aspect of ASD, instead we
will focus on the logic. This system is given as an example of a logic that is suitable for
a specific domain in mathematics.

Instead of starting with a large all-encompassing system, such as a set theory, and then
placing continuous and computable structures on sets, we begin with a logical system in
which everything is computable and continuous and the operations of the system preserve
these properties.

This system is a type theory whose types represent topological spaces, and the terms of
the calculus represent continuous functions. Everything that can be constructed preserves
continuity and computability.

A major restriction in this system is that quantifiers may only range over certain kinds
of spaces. The universal quantifier 8 can only quantify over compact spaces, like the
unit interval [0, 1], but not N or Q. The existential quantifier 9 can only quantify over
overt spaces. Classically all topological spaces are overt, however in some constructive
topological settings like locale theory not all spaces are overt. Many of the spaces in ASD
are overt, like N, Q, and R, however not all spaces are overt. Indeed those that are overt
embody some computational process to access their elements. The subspace of all zeros
of a function is often not overt, since deciding whether a real number is equal to zero is
not computable.

Parts of this calculus, like the real numbers, can be transformed into programs using
interval arithmetic. The calculus insures that these programs succeed and return an
interval solution to within a given tolerance. This way results can be extracted from the
calculus.
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In comparison with other approaches to computable topology the closed interval [0, 1]
is compact in ASD. This allows us to use the universal quantifier over closed bounded
intervals, which is vital for the translation to interval arithmetic.

Topology and Observability

We start with the definition of a topological space.

Definition 1. A topological space consists of a set X of points along with a set T of
subsets of X, whose elements are called open subsets, such that

• The subsets ; and X are open subsets.

• If U and V are open subsets so is U \ V .

• If {Ui}i2I is a collection of open subsets then
S

i2I Ui is an open subset.

Example 2. The real numbers R has the Euclidean topology where the open sets are
arbitrary unions of open intervals (a, b):

U =
[

i

(ai, bi), where (ai, bi) = {x 2 R | ai < x < bi}

We compare the definition of open subsets with the concept of observable properties of
a set. An observable property is some subset in which membership is semi-decidable. A
non-rigorous definition is the following:

Definition 3. Let X be a set. A subset S of X is observable if there is a computer
program, such as a Turing machine, which when given an encoding of an element x of X,
halts if x 2 S, or loops (runs forever) otherwise.

Example 4. The standard example of observable subsets are the recursively enumerable
subsets of N. Every recursively enumerable subset is given by a computer program, and
an element x is in a recursively enumerable subset if and only if this computer program
halts on input x.

There are some similarities between open subsets of a topological space and observable
subsets:

• The subset ; is observable, just use a program which runs forever. This program
never halts, so it does not accept any element of X.

• The subset X is observable, use the program which immediately halts.

• If U and V are observable with programs u and v, then U \ V is observable. Take
the program which runs u until it halts, then it runs v. If x is in U and V then
both programs halt, so x is in U \ V . If x is not in both U and V then one of the
programs will loop on input x. This shows that U \ V is observable.

• Let (Ui)i2N be a sequence of observable subsets, where the sequence of accepting
programs is also computable (e.g. if the computer programs are encoded by numbers
ui, then the function i 7! ui should be computable). Then U =

S
i2N Ui is also

observable.
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To see this let (ui) be the sequence of computer programs in which ui accepts Ui.
We construct a computer program u that takes an input x and interleaves the com-
putations of each ui(x), terminating as soon as one ui(x) terminates. This program
could perform one step of u

0

(x), then one step of u
0

(x) and u
1

(x), then another of
u
0

(x), u
1

(x) and u
2

(x), and so on. Each loop we introduce a new program in the se-
quence. Since the sequence is computable this method of introducing new programs
is also computable.

If x is in some Ui then eventually the program ui will halt. If x is not in any of the
subsets Ui then each program ui will loop on input x, so the program u above will
also loop on x. Hence the union is observable.

So we see that observable properties have binary intersections, but only some unions,
and the indexing set of these unions must somehow be computable. If the sequence (Ui)
was not computable then we cannot construct a new program in each iteration of the
program u above. Furthermore, if the indexing set of the union is not countable then we
cannot interleave the operations like we did in u, and we would miss some elements of
the indexing set.

In ASD we do not have all unions, but we do have computable unions like in the observable
subsets case. The indexing spaces of these unions will be overt spaces, which we will define
shortly. If a collection of open subspaces is indexed by an overt space then the union is
open. However not all spaces are overt, so we do not have all unions.

Open Subsets vs Predicates vs Functions

Instead of treating observable properties as subsets we will treat them as continuous
functions of a special kind. This will reduce the number of primitive concepts that we
have to consider. First we give the definition of a continuous function.

Definition 5. Given spaces X and Y a continuous function f : X ! Y is a function
such that for every open subset U of Y the inverse image f�1(U) is an open subset of
X. The inverse image of U is the set:

f�1(U) = {x 2 X | f(x) 2 U}

To treat open subsets as continuous functions we need a special topological space, called
the Sierpinski space.

Definition 6. The Sierpinski space ⌃ classically consists of two points, which we call T
and F , and the topology consists of the three subsets ;, ⌃ and {T}. Note that {F} is
not open.

Given a continuous function � : X ! ⌃ we have an open subset ��1({T}) of X. Con-
versely, given any open subset U of X we can define a continuous function X ! ⌃, which
classically is defined by f(x) = T if x 2 U , or f(x) = F otherwise.

This construction gives us a correspondence between continuous functions X ! ⌃ and
open subsets of X. This can be further extended to closed subsets of X, which classically
are the set complements of open subsets. A closed subset is given by the inverse image
of the closed set {F}.
Now let us consider the continuous functions⌃ ! ⌃. We know that these correspond to
open subsets of⌃ , of which classically there are three: ;, ⌃ and {T}. They correspond
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to the continuous functions F (constantly false), T (constantly true), and the identity
function.

Notice that there is no continuous function which swaps T and F . This has important
computational significance. The space ⌃ can be thought of as the space of termination
possibilities of a computer program - either a program terminates (T ), or a program loops
(F ). If we think of a space X as the space of inputs of a program, and f : X ! ⌃ as
a computer program recognising an observable property, then f(x) = T if the program
halts, or f(x) = F if the program loops.

If we had a function ¬ : ⌃ ! ⌃ which swaps T and F then the set complement of
any observable property would also be observable, just take the corresponding function
f : X ! ⌃ and post-compose with ¬. In the recursively enumerable subset example
this would mean that co-recursively enumerable subsets would also be observable, so
the halting problem would be decidable. This is not computable, so we would lose
computational ability if ¬ was an acceptable function. Luckily the topology of ⌃ prevents
this behaviour.

Objects of ASD

We have seen that open subsets of a space X can be represented by a continuous function
X ! ⌃. The calculus allows us to abstract away from the set theoretic nature of topolo-
gies, and so instead of considering open subsets of a space X we will consider continuous
functions X ! ⌃. Since we also want to abstract away from the set-theoretic nature of
functions we use the word morphism instead of continuous function.

ASD is a type theory whose types represent spaces. How do we represent the topology on
a space X? Classically it is given by a collection of subsets of X, but we have seen that
these subsets may be represented by morphisms X ! ⌃. To avoid the use of sets this
collection of morphisms, which we denote⌃ X , should itself be a space. So the topology
of a space X in ASD is itself a space,⌃ X . Classically, for this to be a suitable space X
must be a locally compact topological space, and then we can give⌃ X the Scott topology.
Locally compact spaces will be considered later on in this article, but we will not cover
the Scott topology. See [6] for details. So the classical model of ASD will interpret the
types as locally compact topological spaces.

Suppose we have interpretations for the types X and⌃ X , how do we ensure that ⌃X is the
topology on X? For this we use a notion from category theory called a monad. If you do
not know about monads then feel free to skip this paragraph. Monads allow us to define
algebras whose carriers are not necessarily sets, and the arity of the operations in the
algebra do not need to be indexed by sets. We require that the adjunction (⌃(�) a ⌃(�))
be monadic, where⌃ (�) is the exponential functor. This makes the objects ⌃-algebras,
and this method bypasses any requirements of underlying sets. For more details see [5].

This leads us to our first axiom, which gives the types of ASD. The calculus of ASD
consists of four syntactic elements: types, terms, statements, and judgements. Many of
these depend on each other, so the formal definition of the calculus requires a mutually
inductive definition. We will give parts of the calculus independently, and some stages
may refer to future stages of definition. This is not intrinsic to ASD itself, as other type
theories have this di�culty.

Axiom 1. The types of ASD consist of the following:

• The basic types 1, ⌃ and N.
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• If X is a type then so is⌃ X .

• If X and Y are types, so is X ⇥ Y .

• Technical condition: If X is a type then any ⌃-split subspace is also a type. This
construction comes from the monad above, and allows the construction of a variety
of derived types. These types are denoted by {X |E}, where E is a special term of
type⌃ X⇥⌃

X
called a nucleus. See [4] for details on this construction.

The derived types of ASD can be constructed from the type constructors above, and they
include the empty space 0, Q, R, [0, 1], and many other spaces.

In a model of ASD these types are sent to certain objects, but note that the derived type
R need not necessarily be interpreted as the real numbers. In certain constructive settings
the closed interval [0, 1] is not compact, so R can not be interpreted as the standard real
numbers in such a setting. Also note that the classical interpretation of Q is with the
discrete topology, not the order topology. We will see more of this later.

Logical Terms of the Calculus

Now we will consider the logical terms of the calculus, which will represent logical prop-
erties and subspaces. The terms of type ⌃ are called propositions, and the terms of type
⌃X are called predicates.

Axiom 2. The logical terms of ASD consist of the following:

• Variables: The types ⌃ and⌃ X all have a countable supply of variables, often
denoted �,⌧ for propositions and �, for predicates. Each variable has an associated
type.

• Constants: >,? are terms of type⌃ , which represent true and false.

• Connectives: if � and ⌧ are terms of type⌃ , the connectives � _ ⌧ and � ^ ⌧ are
terms of type ⌃, representing disjunction and conjunction, respectively.

• �-abstraction: if �(x) is a term of type ⌃ with a free variable x of type X then
�x.�(x) is a term of type ⌃X . �-abstraction is used to construct functions in type
theory.

• �-application: if � is a term of type⌃ X and a is a term of type X, then �(a) is a
term of type ⌃. This term is also denoted �a.

• Equality: if N is a discrete space and n and m are terms of type N , then n =N m
is a term of type ⌃.

• Inequality: if H is a Hausdor↵ space and n and m are terms of type H, then n 6=H m
is a term of type ⌃.

• Universal quantification: If X is compact and �(x) is a term of type ⌃ with a free
variable x of type X, then 8x : X.�x is a term of type ⌃.

• Existential quantification: Similarly, if X is overt, then 9x : X.�x is a term of type
⌃.
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Note that we do not have the connectives ¬ or ! of type⌃ . These would lead to
non-computability, as we have seen earlier.

These logical terms require us to consider certain kinds of spaces. The discrete, Hausdor↵
and compact spaces have their regular interpretation in topology. However, classically
all spaces are overt, so the concept does not show up in classical topology.

First we consider the discrete spaces. These are spaces in which equality is observable.
Classically this corresponds to spaces whose diagonal subset

{(x, x) 2 X ⇥X | x 2 X}

is open, which implies that all subsets are open. In ASD the spaces N,Z and Q are
discrete. Note that R is not discrete. If we consider real numbers as infinite decimal
expansions then to check equality we are required to check the entire expansion, which is
not observable as it would take an infinite amount of time.

Next are the Hausdor↵ spaces. In these spaces inequality is observable. Classically
these correspond to Hausdor↵ topological spaces, where the diagonal is closed. In ASD
the spaces N,Z,Q,R, and [0, 1] are all Hausdor↵. Classically all discrete spaces are
Hausdor↵, but this is not so in ASD. Open subsets are not closed under arbitrary unions,
so the classical proof that discrete implies Hausdor↵ does not apply.

The compact spaces correspond to the compact spaces in topology, which classically are
given by the finite subcover property:

Definition 7. A topological space X is compact if for any family of open subsets {Ui}i2I
whose union is the whole space X, there is a finite subset J of I such that the subfamily
{Uj}j2J also covers the whole space X.

Note that we do not require compact spaces to be Hausdor↵. In ASD the bounded closed
intervals [a, b] are compact, as well as the Sierpinski space ⌃ .

The overt spaces are invisible in classical topology. A topological space X is overt if the
unique continuous function X ! 1 sends open subsets to open subsets. Classically all
topological spaces are overt, however in constructive locale theory not all spaces have
this property. Earlier terminology from locale theory called overt spaces open spaces,
as the unique map X ! 1 is open. However this clashes with the terminology for open
subspaces, so overt spaces are the preferred terminology.

In locale theory an overt locale has a positivity predicate Pos(a), which holds if a is
inhabited. Constructively not all non-empty subsets are inhabited, i.e. have an element,
so overt spaces have a way of recognizing when an open is inhabited.
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Here is a chart taken from [1], Examples 4.26, which gives a variety of di↵erent types of
ASD and the properties they have:

space overt discrete compact Hausdor↵

N⇥ ⌃ X 7 7 7

R,Rn X 7 7 X
⌃ X 7 X 7

[a, b], 2N X 7 X X
free SK-algebra X X 7 7

N,Z,Q X X 7 X
K-finite X X X 7

finite X X X X
set of codes of
non-terminating
programs

7 X 7 X

The free SK-algebra is the free algebra with a non-associative operation x ·y and symbols
S and K such that the two equalities:

((S · x) · y) · z = (x · z) · (y · z) and (K · x) · y = x

hold. This represents combinatory logic with the combinators S and K. Equality is
observable, as we can loop through all possible equalities. However, inequality is not
observable, as programs can be represented as combinators.

K-finite spaces correspond to spaces in which all the elements can be finitely listed, but
there may be repetitions, as inequality is not observable. Some examples are subspaces
of a finite space given by a semi-decidable predicate.

Other Terms of the Calculus

Now that we have considered the logical terms we move on to the other terms of the
calculus.

Axiom 3. Non-logical terms of ASD.

Variables: Every term has a countable supply of variables. Each variable has a distin-
guished type.

Product terms:

• If s is a term of type S, and t is a term of type T , then hs, ti is a term of type S⇥T ,
representing an ordered pair.

• If x is a term of type S ⇥ T , then ⇡
1

x is a term of type S and ⇡
2

x is a term of type
T . These represent projections from an ordered pair to one of its components.

Numerical terms:

• Zero: 0 is a term of type N.
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• Successor: If n is a term of type N, then Sn is a term of type N.

• Definition by description: If �(n) is a term of type ⌃ with a free variable n of type
N then the n.�n is a term of type N if the two statements:

�n ^ �m ) n =N m and 9n : N.�n , >

hold. Since we have not covered statements yet these can be read as the uniqueness
and existence properties of definition by description.

• We also have terms for primitive recursion over any type.

Note that definition by description turns logical predicates into terms of type N. This
allows unbounded minimization to be represented in the calculus, so we can represent
all partial recursive functions. However unbounded minimization implies that equality in
the calculus is no longer decidable, but we wanted to represent all computable functions,
so this is not a problem.

We can derive more predicate terms from the ones above, like ,�, <,> for N and Q,
by using primitive recursion and equality.

There are also derived terms for the derived types. For example the real numbers have
the following derived terms, which we give as an axiom:

Axiom 4. The type R has the following terms:

• Constants: 0 and 1 are terms of type R. Note that 0 is di↵erent from the term 0 of
type N, so we use context to determine which term we mean.

• Operators: If x and y are terms of type R, then x+ y, x⇥ y, x� y are terms of type
R. If we have the judgement y > 0 _ y < 0 , >, then x÷ y is a term of type R.

• Dedekind cuts: Given predicates � and ⌫ of type⌃ Q, or even of type ⌃R, then
cut du.�d ^ ⌫u is a term of type R if the following six judgements hold:

9e.(d < e) ^ �e , �d 9t.⌫t ^ (t < u) , ⌫u

9d.�d , > 9e.⌫e , >
�d ^ ⌫u ) d < u � d_ ⌫u ( (d < u)

These judgements have been organised into two columns to illuminate the symmetry
between them. The first line states that the cuts are rounded, so have no maximum
or minimum elements. The next line states that the cuts are inhabited. The fifth
judgement states that cuts are disjoint, and the final judgement states that cuts are
order-located.

This axiom is not strictly necessary, as the reals can be constructed in the calculus, but
it is useful to see the properties of the real numbers. See [1] for the construction of R
from the basic types.

Statements and Judgements

We have given many of the terms of the calculus, the next thing to consider are the
statements. These describe a relationship, such as equality, between two terms.

Definition 8. There are two types of statements :
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• If a and b are terms of type X, then a = b is a statement. Note we have no subscript
on the equality sign. Such a statement expresses the fact that a and b represent the
same element of X.

• If ↵ and � are terms of type⌃ X , then ↵ ) �, ↵ ( � and ↵ , � are statements.
The statement ) states that the open subspace corresponding to ↵ is included in
the open subspace corresponding to �. The statement , is the same as =, but we
will use the form , for predicates.

We stated earlier that ¬ and ! are not terms of type⌃ , so are not propositional connec-
tives. However we can use statements to give some form of negation or implication. The
proposition a ! b can be represented as a ) b, and ¬a can be represented by a ) ?.
However the logic is limited, in which we can only have one implication or negation, and
it must occur as the outermost connective.

Finally we reach judgements, which are used to express some logical truth in our system.

Definition 9. A context � for a judgement consists of two lists. One list of variable
declarations, e.g n : N, and another list of statements, where the free variables of the
statements occur in the first list.

Example 10. The following is a valid context:

n : N,� : ⌃N,�n, >

Definition 11. There are three types of judgements:

• Valid type formation: This has the form ` X : type, and states that X is a valid
type.

• Term formation: This has the form� ` a : X, which states that a is a valid term of
type X in the context�.

• Statement formation: Similarly this has the form� ` s : X, where s is a statement
between terms of type X. This states that the statement s holds in the context�.

Note that type formation does not have a context, so we cannot form types which depend
on terms, or dependent types as they are called in type theory. Future extensions of the
calculus may allow such types.

We have given a large part of the syntax of the calculus, so now we will consider how to
interpret this syntax. A type judgement can just be interpreted as a space of some sort,
such as a topological space, a locale, or a more exotic object. We will assume that we
are interpreting the types of the calculus as topological spaces.

The representation of a context is similar to the type judgement. The variable declarations
are represented by a product of topological spaces, one for each variable. The list of
statements then forms a subspace of that topological space. For the context in Example
10 above the representation will be the subspace

{(n,� ) 2 N⇥ ⌃N | �(n) = >}.

A term judgement � ` a : X is represented by a continuous function from the representa-
tion of � to the representation of X. So in this calculus terms are continuous functions.
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The empty context is interpreted as the one element topological space {⇤}, so term
judgements of the form ` a : X represent continuous functions {⇤}! X. But such
functions correspond to elements of X, hence term judgements with empty contexts
represent elements of a space.

Finally for statement judgements we have to consider the structure of ⌃. Every topolog-
ical space is equipped with a preorder called the specialization preorder, denoted by the
binary relation 6 (rather than ). The specialization preorder on ⌃is F 6 T , and on
⌃X it is

f 6 g if and only if 8x 2 X.f(x) 6
⌃

g(x)

The judgement� ` ↵ ) � : ⌃X states that the functions f and g which represent ↵ and
�, respectively, satisfy f 6 g. The judgement �` ↵ , � : ⌃X similarly state that the
functions f and g are equal.

The specialization preorder on any Hausdor↵ spaces is trivial, i.e. x 6 y implies x = y,
so this preorder is not often seen in topology.

Aside. From the category theory viewpoint the category of topological spaces is an
enriched category over preorders. This means that every homset carries a preorder, and
function composition preserves this order. For the category of locally compact topological
spaces the preorder is a partial order, and the category is enriched over posets.

Example 12. An example of a judgement is one for ✏-� continuity. Let f be the repre-
sentation of a term

x : R ` f(x) : R
Classically the function f is continuous at x if for all ✏ > 0 there exists a � > 0 such
that for all y, if |x � y| < � then |f(x) � f(y)| < ✏. To convert this into the ASD
calculus we run into a few problems. First ✏ is given by quantifying over all positive real
numbers. However the space (0,1) or even R is not compact, so we cannot perform this
quantification. This can be fixed by converting it to a statement, but note that we are
no longer allowed to use implication or negation in the rest of the term.

The existence of � is fine, but the quantification over the interval (x� �, x + �) leads to
another problem. We can fix this by quantifying over the compact interval [x� �, x+ �]
instead. We end up with the judgement:

x : R, ✏ : R ` ✏ > 0 ) 9� : R. �> 0 ^ 8y : [x� �, x+ �]. |f(x)� f(y)| < ✏

One slight problem with this formulation is that the type [x � �, x + �] depends on the
terms x and � but we have not included dependent types in the calculus. A future
adjustment of the calculus may allow such types, but for the cases of quantifying over
bounded intervals in the reals we have the following translation: Given a predicate � of
type⌃ R we transform

8x : [a, b].� x
into the following acceptable form:

8x : [0, 1].�(ax+ b(1� x))

This translation is straightforward, so we prefer to use the version above.

The Logical Axioms of ASD

We have given the syntax of the calculus and how to interpret the syntax, so now we
show how to reason with the calculus. This is done through proof rules, which have the
two forms
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Judgement 1
Judgement 2

Judgement 1

Judgement 2

The left rule states that if Judgement 1 holds then we can assert that Judgement 2 holds
as well. The double line version states that if Judgement 1 holds then we can assert that
Judgement 2 holds, and vice-versa.

We start with the proof rules for propositions, which are the terms of type ⌃. We have
the connectives ^ and _ representing conjunction and disjunction.

Axiom 5. The logical connectives ^ and _ satisfy the following proof rules:

�, � , > ` ↵ ) �

� ` � ^ ↵ ) �

�, � , ? ` � ) ↵

� ` � ) � _ ↵

If we interpret the spaces as sets then the first rule is constructively valid, but the second
is not. This proof rule can be interpreted as the equivalence between ¬� ! (� ! ↵) and
� ! (� _↵). If we take � to be true, and ↵ to be ¬�, then we get (� _¬�). However we
cannot express negation in ASD, so we do not have the law of excluded middle. In fact
this proof rule represents a relationship between topological properties of spaces. While
the second rule is not constructively valid if interpreted as sets, it is constructively valid
if we interpret spaces as locales.

Next we consider the logical properties of the space ⌃. We have seen that classically
there are three open subsets of ⌃. We want to avoid mentioning subsets, so instead we
consider continuous functions⌃ ! ⌃. Classically these functions are determined by their
values on T and F . The Phoa principle represents this property, and is a major axiom
in the system.

Axiom 6. The Phoa principle: Functions from ⌃ to ⌃ are determined by their values
on ? and >:

�, F : ⌃⌃, � : ⌃ ` F� , F? _ � ^ F>

This has the consequence that F is monotone: F? ) F>, therefore we cannot represent
a negation function.

Now we consider the equational axioms of the system. Many of the equality statements
are � or ⌘ rules for type constructors. See [3] chapter 7.2 for an overview of these types
of equalities in type theories.

Axiom 7. Equational axioms:

• Lattice structure: The predicates of a type⌃ X form a distributive lattice. The
conjunction of two predicates � and  is the predicate �x.�x^ x and the definition
for disjunction is similar. We have the following proof rules linking the specialization
order with these connectives:

�,�, : ⌃X` �)  

�,�, : ⌃X` � ^  , �

�,�, : ⌃X` � _  ,  
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• Application: The � and ⌘ rules hold for �-abstraction and application.

(�x.�)a = �[x := a] �x.�x = �

where the notation �[x := a] means that we have replaced all the free-variables x
with the term a.

• Projections: The � and ⌘ rules hold for projections and pairing:

⇡
1

ha, bi = a,⇡
2

ha, bi = b, and h⇡
1

p,⇡
2

pi = p

• Recursion: The � and ⌘ rules hold for recursion over N.

Now we will consider the logical axioms for discrete and Hausdor↵ spaces.

Definition 13. A space X is discrete if the left proof rule holds, and it is Hausdor↵ if
the right proof rule holds:

� ` n = m : X
� ` (n =X m) , > : ⌃

� ` n = m : X
� ` (n 6=X m) , ? : ⌃

These proof rules allow us to pass from the equality/inequality predicate to an equality
statement and vice-versa.

For compact and overt spaces we also require proof rules.

Definition 14. A space X is overt if the left proof rule holds, and it is compact if the
right rule holds:

�, x : X ` �x ) �

� ` 9X.�x ) �

�, x : X ` � ) �x

� ` � ) 8X.�x

With these proof rules we can use the quantifiers in similar ways to how they are normally
used. For example, if we have the judgement ` 8x : X.�x , > : ⌃, and we have a term
judgement ` a : X, then we may assert ` �a , > : ⌃ .

In constructive mathematics if we have a term of the form 9x : X.�x then there exists a
term a : X such that �a holds. This result does not hold for ASD. Even in the term model,
whose types and terms only consist of those that can be constructed from the axioms of
the system, we do not have this property. However if the context � only consists of overt
spaces then in the term model if� ` 9x : X.�x , > : ⌃ holds we can construct a term
a such that� ` �a , > : ⌃ holds.

Furthermore, even if we prove ` �a , > : ⌃ for every term a of a compact space X
it does not imply that we can assert ` 8x : X.�x , > : ⌃, even in the term model.
E↵ectively the spaces represented by the types in this system consist of more than their
definable elements. This corresponds with the localic point of view where spaces are not
determined by their points.

Now we will move on to a numerical axiom. The Archimedean axiom prevents non-
standard models of the rationals, and allows us to extract numerical results from the
calculus up to a given tolerance.
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Axiom 8. The spaces Q and R satisfy the Archimedean principle. For p and q of type
Q or R we have the judgement

q > 0 ) 9n : Z. q(n� 1) < p < q(n+ 1)

There are a few remaining axioms which we will not spend much time on, but they do
play an important role in ASD. The Scott continuity axiom is a topological one and is
based on the idea that continuous functions⌃ X ! ⌃ preserve directed unions.

Another collection of axioms involve the term focus which we have not mentioned. This
term is based on the monadic principle, and can be used to construct points of a space
X from certain points of⌃ ⌃

X
. For more details see the papers [4] and [5].

Local Compactness and Interval Arithmetic

The classical model of ASD is given by locally compact topological spaces, and a con-
structive model is given by locally compact locales. The property of being locally compact
allows us to perform some form of computation on the space. We start with the topolog-
ical definition.

Definition 15. A topological space X is locally compact if for every x 2 X and every
open subset U containing x, there exists an open subset V and a compact subset K such
that

x 2 V ✓ K ✓ U ✓ X

A locally compact space is computably generated if the above open and compact subsets
can by computed by a computer program. For the precise definition of computably
generated locally compact space see [6].

Example 16. For the real numbers we can take the open subsets to be open intervals with
rational endpoints, that is the open intervals (a, b) with a, b 2 Q, and the corresponding
compact subset can then be taken to be [a, b]. As the open subsets of R are given by
unions of open intervals, each x is inside some open interval (a, b). Now take rational
numbers between a and x, and then another between x and b, to get an open interval
with rational endpoints containing x.

The computable open subsets and compact subsets coming from local compactness will
be called cells, and will be denoted with a bold symbol like x. We will now convert the
topological definition of locally compact into an ASD statement. We assume that all
spaces are computably generated, so the cells will be indexed by an overt discrete space
N . For example, the cells of R can be indexed by Q⇥Q or even N.
Local compactness states:

a : X,� : ⌃X ` �a , 9x : N. a 2 x ^ 8x : x.� x: ⌃
where a 2 x means that a is in the open interval subspace corresponding to the cell x.
In other words this statement says that a is in the open subset corresponding to � if and
only if there is a cell x such that a is in the open subset corresponding to that cell, and
for all elements x in the compact subset corresponding to the cell x, the element x is in
the open subset corresponding to �.

So how do we compute with locally compact spaces? The cells are indexed by an overt
discrete space, so they can be represented on a computer. The locally compact property
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allows us to replace terms �a with the right hand side above, which initiates a search for
a cell which satisfies the necessary conditions.

The condition a 2 x is observable, as x represents an open subset, so a non-deterministic
search will find cells which satisfy this. The other condition, 8x : x.� x is a bit harder
to satisfy. However, if the cell is chosen to be su�ciently small then this quantifier can
be replaced with a di↵erent term involving interval arithmetic, which can be verified
by computer. Any predicate � can be transformed into one which only involves logical
connectives, interval operations, and existential quantification over an overt discrete space
like N. The transformed predicate does not involve quantification over R or [a, b]. For
details on this translation see [2].

The process of converting a term like � into an interval arithmetic program is involved,
and one method requires a form of Prolog which includes non-deterministic branching, �-
calculus and interval constraints. The running time of such a program is not yet known,
but the calculus guarantees that the program will eventually halt if given a required
precision.

Comparison to Other Systems

There are a number of models of ASD, with the classical one being locally compact
topological spaces. Constructive locale theory and formal topology can also provide
models. Furthermore it is possible to use other meta-theories, like Bishop’s Constructive
Mathematics or Martin-Löf’s Type Theory to construct the term model of ASD.

First we consider the soundness and completeness of the calculus. This system is sound
since the axioms are derived from topological properties of locally compact spaces. For
completeness we need to consider the term model of ASD, which consists of only the
types and terms which can be constructed from the axioms alone. The term model can
be characterised in terms of certain topological spaces:

Theorem 17 (Theorem 17.5 in [6]). The category of types and terms of the term model
of ASD is equivalent to the category of computably generated locally compact spaces and
computable continuous functions.

This implies that any computably generated locally compact space can be represented
by a type in ASD, and any computable continuous function can be represent by a term,
up to homeomorphism. However, one slight problem with this theorem is that it requires
classical logic, as it uses the proof that locally compact locales and locally compact
topological spaces agree.

Next we compare ASD to other systems which involve computation with real numbers.
One such system is Recursive Analysis. A fundamental property of ASD is that the unit
interval is compact. This does not hold in Recursive Analysis due to the the existence
of singular covers. However ASD can be interpreted in Recursive Analysis, which may
seem to cause a problem. The reason why there is no di�culty is that the real numbers
in ASD di↵er from the real numbers in the meta-theory. Interpreting the reals from ASD
will give a di↵erent object than the reals in Recursive Analysis.

Even though the two objects are di↵erent there still could be a problem with singular
covers. In the term model of ASD constructed in Recursive Analysis it is possible to define
a sequence of intervals (dn, en) with rational endpoints, whose total length is bounded by
1

2

, and it is possible to prove in the meta-theory that (Remark 15.4 in [1])

if ` t : [0, 1] then ` 9n : N. dn < t < en
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This would seem to say that every element of the unit interval is covered by one of the
intervals in the sequence, therefore the unit interval is covered by intervals whose total
length is less than 1

2

. However it is not possible to pass from these judgements to

t : [0, 1] ` 9n : N. dn < t < bn

The proof in the meta-theory only talks about definable elements of the unit interval,
but this is not enough in ASD. Like locale theory, the unit interval consists of more than
just its definable elements. In this way singular covers do not cause any di�culties for
ASD, and there is no contradiction with a compact unit interval.

Conclusion

The logical calculus of Abstract Stone Duality is an interesting system from a logical
perspective as it involves a fairly weak logic. The use of implication and negation is
severely restricted, but we have seen that this is necessary to ensure continuity and
computability. The quantifiers are also restricted to certain types, the compact and the
overt types. Finally equality and inequality are also restricted, to the discrete and the
Hausdor↵ types, respectively.

These restricted types all correspond to various properties of spaces: discrete, Hausdor↵,
compact, and overt. The overt spaces are not visible classically, as all topological spaces
are overt. However in constructive settings overtness is a very useful property for a
space to have. In this calculus overtness embodies a computational principle. Due to
the computational properties of this system results can be computed and extracted, in a
form which involves interval arithmetic.

For an example application of ASD to the Intermediate Value Theorem see the paper
[7] where two versions of the Intermediate Value Theorem are given. One version is
computational and the other is not. This is because the space of computable solutions is
overt, whereas the space of non-computable solutions is not overt. The calculus has the
ability to distinguish between the two types of solutions.

Abstract Stone Duality is a prime example of a foundational system which involves
a restricted logic which reflects the domain that it models. Instead of using an all-
encompassing system, which may have di�culties joining computation and continuity,
a smaller system which involves only those principles which preserve computability and
continuity may be a more appropriate system in various domains.
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