
CDMTCS
Research
Report
Series

Synchronization in
P Modules

Michael J. Dinneen
Yun-Bum Kim
Radu Nicolescu

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-378
February 2010

Centre for Discrete Mathematics and
Theoretical Computer Science



Synchronization in P Modules

Michael J. Dinneen, Yun-Bum Kim and Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

{mjd,yun,radu}@cs.auckland.ac.nz

Abstract

In the field of molecular computing, in particular P systems, synchronization is
an essential requirement for composing or sequentially linking together congenial
P system activities. We provide an improved deterministic algorithm based on
static structures and traditional rules, which runs in 4e + 13 steps, where e is the
eccentricity of the initiating cell. Using the same model, extended with the support
of cell IDs, we provide another deterministic algorithm, which runs in 3e+13 steps.
Our algorithms use a convenient framework, called P modules, which embraces the
essential features of many popular types of P systems.

Keywords: P systems, P modules, synchronization, cellular automata.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) [17, 11, 8, 15, 9, 18] is one of the
best studied problems for cellular automata. The problem involves finding a cellular
automaton, such that, after a command is given, all the cells, after some finite time,
enter a designated firing state simultaneously and for the first time. Several variants of
FSSP have been proposed and studied [15, 17]. Studies of these variations mainly focus
on finding a solution with as few states as possible and possibly running in optimum
time.

There are several applications that require synchronization. We list just a few here.
At the biological level, cell synchronization is a process by which cells at different stages
of the cell cycle (division, duplication, replication) in a culture are brought to the same
phase. There are several biological methods used to synchronize cells at specific cell
phases [7]. Once synchronized, monitoring the progression from one phase to another
allows us to calculate the timing of specific cells’ phases. A second example relates to
operating systems [16], where process synchronization is the coordination of simulta-
neous threads or processes to complete a task without race conditions. In distributed
computing, in particular consensus problems, such as the Byzantine agreement problem,

1



processes need to be in a common state at certain fixed times, see Lynch [10]. Finally,
in telecommunication networks [6], we often want to synchronize computers to the same
time, i.e., primary reference clocks should be used to avoid clock offsets.

The synchronization problem has recently been studied in the framework of P systems.
Using tree-based P systems, Bernardini et al. [2] provided a non-deterministic solution
with time complexity 3h and a deterministic solution with time complexity 4n + 2h,
where h is the height of the tree structure underlying the P system and n is the number
of membranes of the P system. The deterministic solution requires membrane polarization
techniques and uses a depth-first-search.

More recently, Alhazov et al. [1] described an improved deterministic algorithm for
tree-based P systems, that runs in 3h + 3 steps. This solution requires conditional
rules (promoters and inhibitors) and combines a breadth-first-search, a broadcast and a
convergecast.

We continued the study of FSSP for digraph-based P systems [4]. We proposed two
uniform deterministic solutions to a variant of FSSP [17], in which there is a single com-
mander, at an arbitrary position, for hyperdag P systems [12] and for neural P systems
[13] with symmetric communication channels. We further generalized this problem by
synchronizing a subset of cells (or membranes) of the considered hyperdag or neural
P system. Our first solution dynamically extends P systems with mobile channels. Our
second solution is solely based on classical rules and static channels. In contrast to the
previous FSSP solutions for tree-based P systems, our solutions do not require membrane
polarizations or conditional rules, but require states, as typically used in hyperdag and
neural P systems. These solutions take ec + 5 and 6ec + 7 steps, respectively, where ec is
the eccentricity of the commander cell of the digraph underlying these P systems.

We continue our work on FSSP for digraph-based P systems (neural and hyperdag
P systems), using a single framework, called P modules [5], which embraces the compu-
tational functionality of many popular types of P systems.

In Section 3 of this paper, we improve our previous results for a natural four-phase
FSSP algorithm (classical rules and static structures) by reducing the multiplicative
factor from 6 to 4, such that the overall running time is 4ec + 13. Further, in Section 4,
by exploiting the notion of cell IDs, we provide a slightly faster algorithm of running
time 3ec + 13. In Section 2, we first define a virtual structure for a given P system
structure, based on a neighboring relationship from a commanding node and formally
define a P module. Finally, in Section 5, we summarize our results and conclude with
some open problems.

2 Preliminary

We assume that the reader is familiar with the basic terminology and notations, such
as relations, graphs, nodes (vertices), arcs, directed graphs (digraphs), directed acyclic
graphs (dags), trees, alphabets, strings and multisets [12].

For a given tree, connected dag or (weakly) connected digraph, we define the eccen-
tricity of a node c, ec, as the maximum length of a shortest path between c and any other
node in the corresponding underlying undirected structure.

2



For a tree, the set of neighbors of a node x, Neighbor(x), is the union of x’s parent
and x’s children. For a dag (X, δ) and a node x ∈ X, we define Neighbor(x) = δ(x) ∪
δ−1(x)∪δ(δ−1(x))\{x}, if we want to include the siblings, or, Neighbor(x) = δ(x)∪δ−1(x),
otherwise. For a graph (X,A) and a node x ∈ X, we define Neighbor(x) = A(x) = {y |
(x, y) ∈ A}. Note that, as defined, Neighbor is always a symmetric relation.

A special node c of a structure will be designated as the commander. For a given
commander c, we define the level of a node x, levelc(x) ∈ N, as the length of a shortest
path between the c and x, over the Neighbor relation.

For a given tree, dag or graph and commander c, for nodes x and y, if y ∈ Neighbor(x)
and levelc(y) = levelc(x) + 1, then x is a predecessor of y and y is a successor of x.
Similarly, a node z is a peer of a node x, if z ∈ Neighbor(x) and levelc(z) = levelc(x).
Note that, for a given node x, the set of peers and the set of successors are disjoint. A
node without a successor will be referred to as a terminal. The eccentricity of a node c
is ec = max{levelc(x) | x ∈ X}. A level-preserving path from c to a node y is a sequence
x0, . . . , xk, such that x0 = c, xk = y, xi ∈ Neighbor(xi−1), levelc(xi) = i, 1 ≤ i ≤ k. We
define countc(y) as the number of distinct level-preserving paths from c to y. Also define
spanc(y) = max{levelc(z) | z is in a level-preserving path that contains y}.

Definition 1 (P module [5]). A P module is a system Π = (O,K, δ, P ), where:

1. O is a finite non-empty alphabet of objects ;

2. K is a finite set of cells and each cell σ ∈ K is represented as σ = (Q, s, w,R),
where:

• Q is a finite set of states for the cell;

• s ∈ Q is the cell’s current state;

• w ∈ O∗ is the cell’s current multiset of objects;

• R is the cell’s finite ordered set of multiset rewriting rules of the form: s x→α

s′ x′ (u)βγ , where s, s′ ∈ Q, x, x′ ∈ O∗, u ∈ O∗, α ∈ {min,max} is the
rewriting operator, β ∈ {↑, ↓, l} and γ ∈ {one, spread, repl} ∪ K are the
transfer operators (see below for details). If u = λ (the emptyset), this rule
can be abbreviated as s x→α s

′ x′.

3. δ is a binary relation on K, i.e., a set of structural arcs, representing duplex or
simplex communication channels between cells;

4. P is a subset of K, indicating the port cells, i.e., the only cells can be connected to
other modules.

The rules given by the ordered set(s) R are applied in the weak priority order [14].
For a cell σ = (Q, t, w,R), a rule s x→α s

′ x′ (u)βγ ∈ R is applicable if t = s and x ⊆ w.
Additionally, if s x →α s′ x′ (u)βγ is the first applicable rule, then each subsequent
applicable rule’s target state (i.e., state indicated in the right-hand side) must be s′.

The rewriting operator α = max indicates that the applicable rewriting rule is applied
as many times as possible. The transfer operators β = l and γ = repl (presented as

3



(u)lrepl in a rewriting rule) indicate that the multiset u is replicated and sent to all
neighbor cells. The other rewriting and (non-deterministic) transfer operators are not
used in this paper and are described in [5] for those interested.

3 Deterministic FSSP solution

In the FSSP, the commander sends an order to all (firing) squad cells, which will prompt
them to synchronize by entering the designated firing state. However, in general, the
commander does not have direct communication channels to all squad cells. Relaying
the order through intermediate cells results in some squad cells receiving the order be-
fore other squad cells. In this case, to ensure that all squad cells enter the firing state
simultaneously, each squad cell needs to wait until all other squad cells receive the order.

For convenience and ease of understanding, we present the algorithmic steps into four
conceptual phases. The details of these phases are given first, for the solution with a
finite set of alphabet objects and later in Section 4, for the solution with cell ID objects.

The initial configuration of a P module Π with n > 1 cells, as qualified by δ below,
for our FSSP solution with a finite set of alphabet objects is as follows:

1. O = {a, b, c, d, e, f, g, h, u, v, w}.

2. K = {σ1, . . . , σn} is the set of all cells, σc ∈ K is the commander and F ⊆ K is the
set of squad cells. For each cell σi = (Qi, si, wi, Ri) ∈ {σ1, . . . , σn}:

• Qi = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}, where s10 is the firing state.

• si = s0.

• wi =


{a} if σi = σc and σi /∈ F,
{a, f} if σi = σc and σi ∈ F,
{f} if σi ∈ F \ σc,
∅ if σi ∈ K \ (F ∪ {σc}).

• Ri is given in Phases 1, 2, 3 and 4.

3. δ is either a symmetric digraph with simplex channels or is a (weakly) connected
digraph with duplex channels.

4. P = ∅.

For the proofs below, we define, for a cell σi, φi ∈ N as the total number of an object
a in all of σi’s peers (i.e., the number of distinct level-preserving paths from σc to all σi’s
peers), and τi ∈ N is the total number of an object a in all of σi’s successors (i.e., the
number of distinct level-preserving paths from σc to all σi’s successors).

Phase 1 (FSSP-I: First broadcast from the commander).
Overview: The commander σc initiates a broadcast, which relays a broadcast message
from the predecessors to their successors. The commander starts a counter, which is
incremented by one in each step.

4



Each cell relays the broadcast message as follows. If a cell σi receives a broadcast mes-
sage from its predecessors, σi becomes do-broadcast cell and sends a broadcast message
to all its successors. All do-broadcast cells ignore any subsequently received broadcast
messages.
Precondition: The initial configuration of the P module Π.
Postcondition: Each cell σi ends in state s4 and σi has: countc(i) copies of a; countc(i)
copies of b; τi copies of d; four copies of e, if σi = σc; one copy of f , if σi ∈ F ; φi copies
of v.
Number of steps: For each cell σi, this phase takes levelc(i) + 4 steps.
Rules: 0. For state s0:

1) s0 a→max s1 abe (d)lrepl

2) s0 d→max s1 ab (d)lrepl

1. For state s1:

1) s1 be→max s2 bee

2) s1 a→max s2 a (u)lrepl

3) s1 u→max s2

4) s1 d→max s2

2. For state s2:

1) s2 be→max s3 bee

2) s2 a→max s3 a

3) s2 u→max s3 v

3. For state s3:

1) s3 be→max s4 bee

2) s3 a→max s4 a

3) s3 u→max s4

Proof. Consider a cell σi at levelc(i). Note that, an object d (the broadcast message)
needs levelc(i) steps to relay down to a cell σi at level levelc(i).

• At step levelc(i) + 1: if σi is the commander, it transits to state s1, broadcasts
one d to each of its neighbors and produces one b. If σi is not the commander, σi
transits to state s1, broadcasts countc(i) copies of d to each of its neighbors and
produces countc(i) copies of a and b by accumulating one copy of a and b for each
sent d.

• At step levelc(i)+2: σi transits to state s2, broadcasts countc(i) copies of u, receives
φi copies of u from its peers and receives τi copies of d from its successors. At the
same time, σi eliminates all superfluous copies of u and d.

• At step levelc(i)+3: σi transits to state s3 and converts τi copies of u into τi copies
of v.

• At step levelc(i) + 4: σi transits to state s4 and eliminates all superfluous copies of
u.

In this phase, each cell σi is idle in steps 0, . . . , levelc(i) and is active in steps levelc(i)+
1, levelc(i)+2, levelc(i)+3, levelc(i)+4 as stated above. Thus, each σi takes levelc(i)+4
steps.

The commander σc initially has one a and produces four copies of e by accumulating
one e in each step, levelc(i) + 1, . . . , levelc(i) + 4. In this phase, f is not produced or
consumed, thus, σi ∈ F has one f . The number of each object a, b, d, u and v, for a cell
σi, is verified in the steps levelc(i) + 1, . . . , levelc(i) + 4.

5



Phase 2 (FSSP-II: Convergecasts from terminal cells).
Overview: Immediately after the first broadcast (Phase 1), each terminal cell σt ini-
tiates a convergecast, which relays a convergecast message from the successors to their
predecessors, for all distinct level-preserving paths from σc to σt.

Each non-terminal cell relays the convergecast message as follows. If a cell σi re-
ceives a convergecast message from all its successors, σi becomes a ready-to-convergecast
(RTC) cell and sends a RTC-notification to all its peers. If a RTC cell σj receives
RTC-notifications from all its peers, σj becomes a do-convergecast (DC) cell and sends
a convergecast message to all its predecessors.

After σc receives convergecast messages from all its successors, σc stops the counter
(which was started in Phase 1) and uses this counter to compute its eccentricity, where
the counter is the number of steps for σc to send a message to a farthest cell σz and
receive a reply message from σz.
Precondition: As described in the postcondition of Phase 1.
Postcondition: This phase ends when the commander enters state s7. Each cell σi ends
in state s7 and σi has: countc(i) copies of a; ec + 2 copies of e, if σi = σc; one copy of f ,
if σi ∈ F .
Number of steps: For each cell σi, this phase takes 3ec − levelc(i) + 4 steps.
Rules: 4. For state s4:

1) s4 h→max s5

2) s4 cd→max s4 cd

3) s4 ad→max s4 ad

4) s4 a→max s4 ah (w)lrepl

5) s4 w →max s4

6) s4 cd→max s5

7) s4 vw →max s5 v

8) s4 cv →max s5 cv

9) s4 av →max s5 av (w)lrepl

10) s4 a→max s5 ah (c)lrepl

11) s4 be→max s4 bee

12) s4 be→max s5 ee

5. For state s5:

1) s5 h→max s6

2) s5 vw →max s5 v

3) s5 cv →max s5 cv

4) s5 av →max s5 av (w)lrepl

5) s5 a→max s5 ah (c)lrepl

6) s5 eee→max s6 e

6. For state s6:

1) s6 cv →max s6

2) s6 bc→max s6

3) s6 b→max s6 b

4) s6 a→max s7 a

5) s6 v →max s7

6) s6 w →max s7

Proof. To establish the correctness of this phase, we categorize a cell σi into one of four
groups.

(1) spanc(i) = ec.

(2) spanc(i) < ec and σi has no peers.

(3) spanc(i) < ec and for each σi’s peer σj, spanc(j) ≤ spanc(i).

6



(4) spanc(i) < ec and σi has a peer σj, spanc(j) > spanc(i).

A cell σi in group (1), (2) or (3) progresses through two convergecast steps, t1 =
spanc(i) + 5 + 2(spanc(i) − levelc(i)) = 3spanc(i) − 2levelc(i) + 5, t2 = 3spanc(i) −
2levelc(i) + 6, to send countc(i) copies of c (the convergecast message).

• At step t1: σi remains in state s4, broadcasts countc(i) copies of w and produces
countc(i) copies of h by accumulating one h for each sent w. At the same time, σi
eliminates all superfluous copies of w.

• At step t2: σi transits to state s5 and consumes countc(i) copies of h, φi copies of
w, τi copies of c and τi copies of d. At the same time, σi broadcasts countc(i) copies
of c and produces countc(i) copies of h by accumulating one h for each sent c.

Note that, if spanc(i) = ec, step t1 = 3ec−2levelc(i)+5 and step t2 = 3ec−2levelc(i)+
6. Hence, each other cell σj in level levelc(i) sends countc(j) copies of c, before or at step
3ec − 2levelc(i) + 6.

A cell σi in group (4), where 0 < levelc(i) < ec, progresses through three convergecast
steps, t′1, t

′
2, t
′
3 ∈ {levelc(i) + 5, . . . , 3ec − 2levelc(i) + 6}, where t′1 < t′2 < t′3, to send

countc(i) copies of c. Note that, for levelc(i) = 1, steps t′1, t
′
2, t
′
3 ∈ {6, . . . , 3ec + 4} and

for levelc(i) = ec − 1, steps t′1, t
′
2, t
′
3 ∈ {ec + 4, . . . , ec + 8}.

• At step t′1: σi remains in state s4, broadcasts countc(i) copies of w and produces
countc(i) copies of h by accumulating one h for each sent w. At the same time, σi
eliminates all superfluous copies of w.

• At step t′2: σi transits to state s5, broadcasts countc(i) copies of w and consumes
countc(i) copies of h, τp copies of c and τp copies of d.

• At step t′3: σi remains in state s5, broadcasts countc(i) copies of c and produces
countc(i) copies of h by accumulating one h for each sent c.

Each cell progresses through the convergecast steps, after all its successors progress
through the convergecast steps. Hence, the commander is the last cell to apply the
convergecast steps and this phase ends when it enters state s7 (the commander belongs
to group (1), hence it transits to state s6 after it progresses through the convergecast
steps).

Note that, countc(i) copies of c, sent from σi, is received by σi’s neighbors, which
include σi’s successors. In general, the commander transits from state s6 to s7 in one
step and a non-commander cell σk transits from state s6 to s7, after σk receives countc(j)
copies of c from each predecessor σj. Thus, when σc transits to state s7, all other cells
are already in state s7.

To compute the running time of this phase for each cell σi, let us first compute the
step, in which the commander transits to state s7. Consider a level-preserving path,
σc, . . . , σt, where levelc(c) = 0 and levelc(t) = ec. The terminal cell σt ends its last
phase at step ec + 4 and each cell σj in this path progresses through two steps, 3ec −
2levelc(j)+5, 3ec−2levelc(j)+6, to send countc(j) copies of c. Further, the commander

7



takes one step to transit from state s6 to s7. Thus, commander transits to state s7 at
step (ec + 5) + 2(ec + 1) + 1 = 3ec + 8, i.e., all other cells end this phase at step 3ec + 8.

Each cell σi ends its Phase 1 at step levelc(i)+4, thus, σi takes (3ec+8)− (levelc(i)+
4) = 3ec − levelc(i) + 4 steps in this phase.

For a cell σi, the rules in this phase do not produce or consume copies of a and f ,
thus, σi still has countc(i) copies of a and still has one f , if σi ∈ F . Additionally, σi
consumes all copies of b, c, d, h, v and w by rules 4.12, 5.1, 6.1, 6.2, 6.5 and 6.6.

In any level-preserving path, σc, . . . , σt, where levelc(c) = 0 and levelc(t) = ec, the
terminal cell σt starts its convergecast steps at step levelc(t) + 5 = ec + 5. After 2(ec + 1)
steps, all cells in this path progress through their convergecast steps. In this phase, from
step levelc(c) + 5, the commander accumulates one e in each step, until it progresses
through all its convergecast steps. The commander initially has four copies of e from
Phase 1 and in this phase, the commander accumulates (ec+5)−(levelc(c)+5)+2(ec+1) =
3ec + 2 copies of e. Hence, the commander has 4 + (3ec + 2) = 3(ec + 2) copies of e. The
commander σc then consumes two thirds copies of e by rule 5.6, thus, σc ends this phase
with ec + 2 copies of e.

Remark 2. The purpose of designating cells as DC cells or RTC cells is to ensure that
the commander correctly computes its eccentricity. To highlight this need, consider the
case when a RTC cell sends a convergecast message, without receiving RTC notifications
from all its peers. A scenario for this considered case assumes the following: cell σi
has one successor σ′i and one peer σj; cell σj has one successor σ′j and one peer σi;
countc(i) = countc(j); spanc(i)+2 = spanc(j). When σi receives a convergecast message
from σ′i, σi sends a convergecast message to its neighbors, which includes σi’s predecessors,
σi’s successor σ′i and σi’s peer σj. One step later when σj receives σi’s convergecast
message, σj sends a convergecast message. In this case, the commander may compute a
value, which is less than its actual eccentricity.

Phase 3 (FSSP-III: Second broadcast from the commander).
Overview: Note that, the commander σc computes the eccentricity ec in Phase 2. In
this phase, σc initiates a second broadcast by sending the broadcast message eec . This
broadcast message is relaid from predecessors to successors.

In this phase, each cell relays a broadcast message as follows. If a cell σi receives a
broadcast message ek, where k = ec − levelc(i), from its predecessors, σi becomes a do-
broadcast cell and sends a broadcast message ek−1 to all its successors. All do-broadcast
cells ignore any subsequent broadcast messages.
Precondition: As described in the postcondition of Phase 2.
Postcondition: Each cell σi ends in state s9 and σi has: countc(i) copies of a; one copy
of f , if σi ∈ F ; (ec − levelc(i) + 1)countc(i) copies of g.
Number of steps: For each cell σi, this phase takes levelc(i) + 3 steps.
Rules: 7. For state s7:

1) s7 ae→max s8 ah

2) s7 e→max s8 g (e)lrepl

8. For state s8:

1) s8 h→max s8

2) s8 a→max s9 a

3) s8 e→max s9

8



Proof. Consider a cell σi. Note that, the object e needs levelc(i) steps to propagate
down to a cell σi at level levelc(i). Note that, if σi is not the commander, σi receives
(ec − levelc(i) + 2)countc(i) copies of e at step 3ec + levelc(i) + 7.

• At step 3ec + levelc(i) + 8: σi transits to state s8, consumes countc(i) copies of e
and produces countc(i) copies of h. At the same time, σi broadcasts the remaining
(ec − levelc(i) + 1)countc(i) copies of e and produces (ec − levelc(i) + 1)countc(i)
copies of g by accumulating one g for each sent e.

• At step 3ec + levelc(i) + 9: σi remains in state s8 and consumes countc(i) copies of
h.

• At step 3ec + levelc(i) + 10: σi transits to state s9 and eliminates all superfluous
copies of e.

In this phase, each cell σi is idle in steps 3ec + 7, . . . , 3ec + levelc(i) + 7 and is active
in steps 3ec + levelc(i) + 8, 3ec + levelc(i) + 9, 3ec + levelc(i) + 10 as stated above. Thus,
each σi takes levelc(i) + 3 steps.

The rules in this phase do not produce or consume f , thus, each squad cell still ends
with one f . The number of each object a, e, g and h, for a cell σi, is verified in the three
steps 3ec + levelc(i) + 8, 3ec + levelc(i) + 9, 3ec + levelc(i) + 10.

Phase 4 (FSSP-IV: Counting down for entering the firing state).
Overview: In this phase, each cell performs a countdown as follows. At each step a cell
σi decrements the counter k of the broadcast message ek (from Phase 3) by one, until
k = 0. If k = 0, σi becomes a ready-to-synchronize cell. A squad ready-to-synchronize
cell enters the firing state and a non-squad ready-to-synchronize cell enters the initial
state.
Precondition: As described in the postcondition of Phase 3.
Postcondition: Firing squad cells end in state s10 and other cells end in state s0. All
cells are empty.
Number of steps: For each cell σi, this phase takes ec − levelc(i) + 2 steps.
Rules: 9. For state s9:

1) s9 ag →max s9 a 3) s9 a→max s0

2) s9 af →max s10 4) s9 a→max s10

Proof. For a cell σi, from the postcondition of Phase 3, the number of g’s is a multiple
of the number of a’s, where the multiplier is (ec − levelc(i) + 1).

• Between step 3ec + levelc(i) + 11 and step 4ec + 12: σi remains in state s9 and
consumes countc(i) copies of g at each step.

• At step 4ec + 13: if σi has one f , it transits to state s10 and consumes one a and
one f , otherwise, it transits to state s0 and consumes one a.

9



In this phase, each cell σi progresses through steps 3ec + levelc(i) + 11, . . . , 4ec +
12, 4ec + 13 as stated above. Thus, each σi takes ec − levelc(i) + 2 steps.

The number of each object a, f and g, for a cell σi, is verified in steps 3ec+ levelc(i)+
11, . . . , 4ec + 13.

Theorem 3. With finite set of alphabet objects, we can solve the FSSP in 4ec+13 steps,
where ec is the eccentricity of the commander σc.

Proof. The result is obtained by summing the individual running times of the four phases,
as given by Phases 1, 2, 3 and 4: (levelc(i) + 4) + (3ec − levelc(i) + 4) + (levelc(i) + 3) +
(ec − levelc(i) + 2) = 4ec + 13.

In Table 1 on Page 14, we present the traces of the FSSP algorithm for the P module
shown in Figure 1. Note, for convenience, the phase boundaries are shaded in Table 1.

4 Improved deterministic FSSP solution using cell

IDs

The difficulties discussed in Remark 2 are naturally resolved, if a cell is able to determine
the convergecast message sender, i.e., to distinguish between its successors or peers. In
this section, we provide a revised FSSP solution, which allows each cell to determine the
message sender by having the sender’s label (cell IDs) attached in the received message,
e.g., a cell σi sends an object ci.

Since a cell σi is now able to distinguish the messages sent from successors and peers,
σi does not need to communicate with all its peers during the convergecast phase. Thus,
the number of steps σi takes in Phase 2 (convergecasts from terminal cells) is reduced by
ec, which contributes to the improvement of Theorem 4.

The initial configuration of a P module Π′ = (O′, K ′, δ′, P ′) (with n cells) for this
revised FSSP solution is same as the initial configuration of the previous FSSP solution
in Section 3, with the following adjustments: O′ = {a, b, e, f, g, h} ∪ {ci, c̄i, pi, p̄i | i ∈
{1, . . . , n}}. For each cell σi, the set of multiset rewriting rules R′i is given in Phases 1′,
2′, 3′ and 4′.

This improved FSSP solution is essentially the FSSP solution given in Section 3, with
reduced running time in Phase 2. Using cell IDs, this revised FSSP solution enables
each cell to avoid steps that were needed to distinguish the message sender. That is, all
aspects of the previous FSSP solution remain the same. Thus, the overviews and the
correctness proofs of all four phases are omitted.

Phase 1′ (FSSP-I: First broadcast from the commander).
Precondition: The initial configuration of P module Π′.
Postcondition: Each cell σi ends in state s4 and σi has: countc(i) copies of a; one b, if
σi = σc; countc(i) copies of c̄j, for each σi’s successor σj; three copies of e, if σi = σc; one
f , if σi ∈ F .
Number of steps: For each cell σi, this phase takes levelc(i) + 4 steps.

10



Rules: 0. For state s0:

1) s0 a→max s1 abe (pi)lrepl

2) s0 pj →max s1 ap̄j (cipi)lrepl

1. For state s1:

1) s1 a→max s2 a

2) s1 cj →max s2

3) s1 pj →max s2

4) s1 be→max s2 bee

2. For state s2:

1) s2 a→max s3 a

2) s2 cj →max s3 c̄j

3) s2 pj →max s3

4) s2 be→max s3 bee

3. For state s3:

(a) s3 a→max s4 a

Phase 2′ (FSSP-II: Convergecasts from terminal cells).
Precondition: As described in the postcondition of Phase 1′.
Postcondition: This phase ends when the commander enters state s7. Each cell σi ends
in state s7 and σi has: countc(i) copies of a; ec+2 copies of e, if σi = σc; one f , if σi ∈ F .
Number of steps: For each cell σi, this phase takes 2ec − levelc(i) + 4 steps.
Rules: 4. For state s4:

1) s4 h→max s5

2) s4 cj c̄j →max s4

3) s4 ac̄j →max s4 ac̄j

4) s4 a→max s4 ah (ci)lrepl

5) s4 be→max s4 bee

6) s4 be→max s5

7) s4 ee→max s5 e

5. For state s5:

1) s5 a→max s6 a

6. For state s6:

1) s6 cj p̄j →max s6

2) s6 p̄j →max s6 p̄j

3) s6 ck →max s6

4) s6 a→max s7 a

Phase 3′ (FSSP-III: Second broadcast from the commander).
Precondition: As described in the postcondition of Phase 2′.
Postcondition: Each cell σi ends in state s9 and σi has: countc(i) copies of a; one f , if
σi ∈ F ; (ec − levelc(i) + 1)countc(i) copies of g.
Number of steps: For each cell σi, this phase takes levelc(i) + 3 steps.
Rules: 7. For state s7:

1) s7 ae→max s8 ah

2) s7 e→max s8 g (e)lrepl

8. For state s8:

1) s8 h→max s8

2) s8 a→max s9 a

3) s8 e→max s9

Phase 4′ (FSSP-IV: Counting down for entering the firing state).
Precondition: As described in the postcondition of Phase 3′.
Postcondition: Firing squad cells end in state s10 and other cells end in state s0. All
cells are empty.
Number of steps: For each cell σi, this phase takes ec − levelc(i) + 2 steps.

11



Rules: 9. For state s9:

1) s9 ag →max s9 a 3) s9 a→max s0

2) s9 af →max s10 4) s9 a→max s10

Theorem 4. Extending the set of alphabet objects with cell IDs, we can solve the FSSP
in 3ec + 13 steps, where ec is the eccentricity of the commander σc.

Proof. The result is obtained by summing the individual running times of the four phases,
as given by Phases 1′, 2′, 3′ and 4′: (levelc(i) + 4) + (2ec − levelc(i) + 4) + (levelc(i) +
3) + (ec − levelc(i) + 2) = 3ec + 13.

5 Conclusion

We have proposed improved deterministic FSSP solutions in the framework of P systems,
expressed using P modules. Both of our solutions are based on static structures and
traditional rules. Our first FSSP algorithm runs in 4ec + 13 steps, where ec is the
eccentricity of the initiating cell. Our second FSSP algorithm, which is extended with
the facility of using cell IDs, runs in 3ec + 13 steps. Note that, the former algorithm
benefits by using a finite set of alphabet objects, while the latter algorithm requires a
linear number of alphabet objects.

We end this paper with a couple of open problems. First, is the multiplier of the
running times optimal for our two solutions? Note, we can slightly reduce the number of
states and run-time steps (additive constants). Another question relates to the type of
channels. Are there FSSP solutions for an arbitrary P module that uses simplex channels
and its structure is also strongly connected?

References

[1] Artiom Alhazov, Maurice Margenstern, and Sergey Verlan. Fast synchronization in P
systems. In David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozenberg,
and Arto Salomaa, editors, Workshop on Membrane Computing, volume 5391 of
Lecture Notes in Computer Science, pages 118–128. Springer, 2008.

[2] Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey Verlan.
How to synchronize the activity of all components of a P system? Int. J. Found.
Comput. Sci., 19(5):1183–1198, 2008.

[3] Cristian S. Calude, Michael J. Dinneen, Gheorghe Păun, Mario J. Pérez-Jiménez,
and Grzegorz Rozenberg, editors. Unconventional Computation, Fourth Interna-
tional Conference, UC 2005, Sevilla, Spain, October 3-7, 2005, Proceedings, volume
3699 of Lecture Notes in Computer Science. Springer, 2005.

[4] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. New solutions to the firing
squad synchronization problem for neural and hyperdag P systems. In Membrane
Computing and Biologically Inspired Process Calculi, Third Workshop, MeCBIC
2009, Bologna, Italy, September 5, 2009, pages 117–130, 2009.

12



[5] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. P systems and the Byzan-
tine agreement. In The Journal of Logic and Algebraic Programming, pages 1–31,
to appear. (Also see CDMTCS-375 research report http://www.cs.auckland.ac.
nz/CDMTCS/researchreports/375Byzantine.pdf).

[6] Roger L. Freeman. Fundamentals of Telecommunications, 2nd Edition. Wiley-IEEE
Press, 2005.

[7] Tim Carter Humphrey. Cell Cycle Control: Mechanisms and Protocols. Humana
Press, 2005.

[8] Katsunobu Imai, Kenichi Morita, and Kenji Sako. Firing squad synchronization
problem in number-conserving cellular automata. Fundam. Inform., 52(1-3):133–
141, 2002.

[9] Kojiro Kobayashi and Darin Goldstein. On formulations of firing squad synchro-
nization problems. In Calude et al. [3], pages 157–168.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[11] Jacques Mazoyer. A six-state minimal time solution to the firing squad synchroniza-
tion problem. Theor. Comput. Sci., 50:183–238, 1987.

[12] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling with
hyperdag P systems: Part A. In Miguel Angel Mart́ınez del Amor, Enrique Fran-
cisco Orejuela-Pinedo, Gheorghe Păun, Ignacio Pérez-Hurtado, and Agustin Riscos-
Núñez, editors, Membrane Computing, Seventh Brainstorming Week, BWMC 2009,
Sevilla, Spain, February 2-6, 2009, volume 2, pages 85–107. Universidad de Sevilla,
2009.

[13] Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[14] Gheorghe Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.
Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 1–42. Springer, 2006.

[15] Hubert Schmid and Thomas Worsch. The firing squad synchronization problem with
many generals for one-dimensional CA. In Jean-Jacques Lévy, Ernst W. Mayr, and
John C. Mitchell, editors, IFIP TCS, pages 111–124. Kluwer, 2004.

[16] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Con-
cepts, Seventh Edition. Wiley, 2004.

[17] Helge Szwerinski. Time-optimal solution of the firing-squad-synchronization-
problem for n-dimensional rectangles with the general at an arbitrary position.
Theor. Comput. Sci., 19(3):305–320, 1982.

[18] Hiroshi Umeo, Masaya Hisaoka, and Shunsuke Akiguchi. A twelve-state optimum-
time synchronization algorithm for two-dimensional rectangular cellular arrays. In
Calude et al. [3], pages 214–223.

13



Appendix

2 5 7

1 3 6

4

Figure 1: A digraph structure for a P module with duplex channels.

Table 1: The FSSP trace of the P module shown in Figure 1, where c = 1, e1 = 3,
F = {σ1, σ3, σ5, σ7}.

σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 s0 af s0 s0 f s0 s0 f s0 s0 f

1 s1 abef s0 d s0 df s0 d s0 f s0 s0 f

2 s2 abd3e2f s1 abd2u s1 abd2fu s1 abd2u s0 d2f s0 d s0 f

3 s3 abd3e3fu3 s2 abd2u2 s2 abd3fu2 s2 abu2 s1 a2b2fu2 s1 abu s0 d2f

4 s4 abd3e4f s3 abd2u2v2 s3 abd3fu3v2 s3 abv2 s2 a2b2d2f s2 ab s1 a2b2fu2

5 s4 abd3e5f s4 abd2v2 s4 abd3fv2 s4 abv2 s3 a2b2d2fu2 s3 ab s2 a2b2f

6 s4 abd3e6fw s4 abd2v2w s4 abd3fv2w s4 abhv2 s4 a2b2d2f s4 ab s3 a2b2f

7 s4 abd3e7fw s4 abd2v2w s4 abd3fv2w2 s5 abv2 s4 a2b2d2f s4 abh s4 a2b2f

8 s4 abd3e8fw s4 abd2v2w s4 abcd3fv2w s5 abv2 s4 a2b2d2fw2 s5 abh s4 a2b2fh2

9 s4 abd3e9fw s4 abd2v2w s4 abcd3fv2w s5 abv2 s4 a2b2c2d2f s6 ab s5 a2b2fh2

10 s4 abd3e10fw s4 abd2v2w3 s4 abcd3fv2w3 s5 abv2 s4 a2b2c2d2fh2 s6 ab s6 a2b2fw2

11 s4 abd3e11fw s4 abc2d2v2w s4 abc3d3fv2w s5 abv2 s5 a2b2fh2 s6 ab s6 a2b2c2fw2

12 s4 abd3e12fw3 s4 abc2d2hv2w2 s4 abc3d3fhv2w2 s5 abv2w2 s6 a2b2fw2 s6 abw s6 a2fw2

13 s4 abc3d3e13f s5 abc2hv2 s5 abc2fhv2 s5 abc2hv2 s6 a2b2c2fw2 s6 abcw s7 a2f

14 s4 abc3d3e14fh s6 abc2v2w s6 abc2fv2w s6 abc2v2w s6 a2fw2 s6 aw s7 a2f

15 s5 ae15fh s6 abcw s6 abcfw s6 abcw s7 a2f s7 a s7 a2f

16 s6 ae5f s6 aw s6 afw s6 aw s7 a2f s7 a s7 a2f

17 s7 ae5f s7 a s7 af s7 a s7 a2f s7 a s7 a2f

18 s8 afg4h s7 ae4 s7 ae4f s7 ae4 s7 a2f s7 a s7 a2f

19 s8 ae9fg4 s8 ae6g3h s8 ae6fg3h s8 ae6g3h s7 a2e6f s7 ae3 s7 a2f

20 s9 afg4 s8 ae10g3 s8 ae12fg3 s8 ae6g3 s8 a2fg4h2 s8 ag2h s7 a2e4f

21 s9 afg3 s9 ag3 s9 afg3 s9 ag3 s8 a2e2fg4 s8 ag2 s8 a2fg2h2

22 s9 afg2 s9 ag2 s9 afg2 s9 ag2 s9 a2fg4 s9 ag2 s8 a2fg2

23 s9 afg s9 ag s9 afg s9 ag s9 a2fg2 s9 ag s9 a2fg2

24 s9 af s9 a s9 af s9 a s9 a2f s9 a s9 a2f

25 s10 s0 s10 s0 s10 s0 s10

14


