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Abstract

In this paper we study the problem of labeling the edges of a graph with positive
integers such that the sequence of the sums of incident edges of each vertex makes
a finite arithmetic progression. We give conditions for paths, cycles, and bipartite
graphs to have such a labeling. We then address the opposite problem of finding an
edge labeled graph for a given finite arithmetic progression. We use a constructive
procedure to fully characterize those finite arithmetic progressions that have rep-
resentations as edge labeled graphs. Then by presenting a pseudo polynomial-time
algorithm, we address a more general problem of finding edge labels for a graph
when the vertex labels are given. Finally, we count the connected graphs, up to
eight vertices, that accept such a labeling by using a simple algorithm that detects
a valid edge labeling.

Key words: graph labeling, arithmetic progression, graph algorithm

1 Introduction

A graph labeling is a mapping from graph elements (vertices, edges, faces, or a com-
bination of them) to a nonempty set. Sometimes it is more convenient to consider the
range as a set with a structure, like a ring, a field, or a subset of integers. Also, by
restricting the type of mappings to injective, surjective, or bijective maps, and also the
range of a mapping, one can define many types of labeling. Gallian’s updated survey
[Ga09] is a comprehensive reference on the subject, see also [Wa01, Su05]. Among the
most studied methods of graph labeling we mention magic labeling [KR70], edge magic
labeling [LST92], graceful labeling [Ro66, BS76], (k, d)-arithmetic labeling [AH90], and
super edge-antimagic labeling [BM08]. In these types of labeling the mapping and its
domain are very restricted and few graphs accept those kinds of labelings. The problem
of deciding whether every tree has a graceful labeling is an open problem.
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Figure 1: An AP-graph representing the sequence (2, 4, 6, 8, 10, 12).

One problem that arises naturally is how some of the restrictions can be relaxed to
allow for more labeled graphs. To achieve this objective, we will consider those edge
labelings of a graph that produce arithmetic progressions on the vertices. To be more
specific, we study these two problems: (1) Given a graph G, is it possible to assign
positive integers to its edges such that the sequence of the sums of neighboring (inci-
dent) edges of each vertex makes a finite arithmetic progression? and (2) Given a finite
arithmetic progression of positive integers with n terms, is it possible to find an edge
labeled graph with n vertices such that the sequence of the sums of incident edges of
its vertices produces the same arithmetic progression? As we see later, there are many
graphs that are yes instances for the first question, and we refer to them as Arithmetic
Progression Graphs, or AP-graphs. We also refer to the type of edge labeling that
produces an AP-graph, as an AP-labeling. In Figure 1 a graph with its AP-labeling
is depicted. We will also address the second question and give a full characterization of
those finite arithmetic progressions that have edge labeled graphs, with respect to our
definition.

The paper is organized as follows. In the next section, after listing some basic results,
we present those conditions that are necessary and sufficient to test whether a graph is
AP-labelable. In Section 3 we present necessary and sufficient conditions for paths and
cycles that have AP-labelings; then, a necessary condition is given for bipartite graphs. In
Section 4 we study those finite arithmetic progressions that have AP-graphs. To this end,
constructive procedures are given that find the appropriate graphs for valid arithmetic
progressions. A pseudo-polynomial time algorithm is given in Section 5 that determines
whether there is an edge labeling for a graph with a given vertex labeling. We finish the
paper by presenting some computational results, as summarized in Table 1, that indicate
that most graphs are AP-graphs. The paper ends with a conclusion and some remarks
on open problems.

2 Definitions and Basic Results

In this paper we assume that all graphs are simple connected graphs without any loops
and multi-edges. We denote the set of the (exclusive) neighbors of a vertex v by N(v).
Let G = (V,E) be a graph with n vertices, we say G has an AP-labeling (X, a, d), where
X : E → Z+ is a total function, a is the initial value, and d is the constant difference of
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the arithmetic progression a, a+ d, ..., a+ (n− 1)d such that for each vertex vi ∈ V (G),
0 ≤ i ≤ n− 1, we have ∑

u∈N(vi)

X(uvi) = a+ σ(i)d,

where σ is a permutation on {0, 1, . . . , n− 1}. If a graph has such a labeling we say it is
an AP-graph.

Sometimes we just refer to an edge labeling X on a graph G(V,E) by the list of its
values on the set of edges as X = (x1, . . . , xm), where m is the number of edges, and
X(ei) = xi, ei ∈ E. The following results are trivial consequences of the definition.

Proposition 1 Let G be a graph of order n and size m. If there is an AP-labeling
(X, a, d), such that X = (x1, . . . , xm), then

K =
m∑

i=1

xi =
na

2
+
n(n− 1)

4
d.

Proposition 2 Let G be a graph that has an AP-labeling (X, a, d), then δ(G) ≤ a, where
δ(G) is the minimum degree of G.

Proposition 3 Let P = v1, e1, v2, . . . , en−1, vn be a path, that has an AP-labeling (X, a, d).
Also suppose the labeling is such that X(ei) = xi, 1 ≤ i ≤ n− 1. Then d divides |xi− xj|
if both i and j are even or odd.

Proposition 4 Let A be the incidence matrix of a graph G = (V,E), where |V | = n and
|E| = m. Also let (a, d) be a pair of initial value and constant difference in an arithmetic
progression. Then G has an AP-labeling (X, a, d) if and only if there is a permutation
σ of {0, . . . , n− 1} and a linear equation Ax = b that has solutions of positive integers,
where

b =

 a+ dσ(0)
...

a+ dσ(n− 1)

 .
Due to Proposition 1, each AP-labeling also corresponds to an integer partitioning

of K (the sum of an edge labeling) into m positive parts, that can be used as a naive
algorithm for finding an AP-labeling for a graph. Also Proposition 4 reduces the problem
of finding an AP-labeling for a graph to solving a system of linear equations with positive
integer values. In Section 6 we will describe our emperical results by applying these
algorithms and enumerating all AP-graphs with up to eight vertices.

3 Paths, Cycles and Bipartite Graphs

Note that with respect to Proposition 4, to find an AP-labeling (X, a, d) for a graph we
need to choose not only proper values for a and d, but also a proper permutation σ,
that distributes terms of the corresponding arithmetic progression among the vertices of
the graph. In this section we show that, when dealing with paths and cycles, finding an
AP-labeling is equivalent to finding a proper permutation.
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Theorem 5 Let P be a path of length n, then P has an AP-labeling (X, a, d) if and only
if there is a permutation σ that satisfies the following conditions.

1.
∑k−1

i=0 (−1)iσ(i) > −a
d

if k is odd and 1 ≤ k < n, and

2.
∑k−1

i=0 (−1)iσ(i) > 0 if k is even and 2 ≤ k < n− 1, and

3.
∑n−1

i=0 (−1)iσ(i) = 0, when n is even, or
∑n−1

i=0 (−1)i+1σ(i) = a
d
, when n is odd.

Proof. Let P = v1, e1, v2, e2, . . . , vn−1, en−1, vn. If P has an AP-labeling (X, a, d) such
that X = {x1, x2, . . . , xn−1}, where X(ei) = xi, then we have

x1 = a+ σ(0)d
x1 + x2 = a+ σ(1)d

...
xn−2 + xn−1 = a+ σ(n− 2)d

xn−1 = a+ σ(n− 1)d

for a permutation σ on {0, . . . , n − 1}. Now we multiply both sides of the ith equation
with (−1)i−1. By adding the first k terms, 1 ≤ k < n, for odd values of k we have
xk = a+ d

∑k−1
i=0 (−1)iσ(i).

For even values of k, 2 ≤ k < n, we have xk =
∑k−1

i=0 (−1)iσ(i) and since the values of
labels are positive integers, we get the desired inequalities of Statements 1 and 2 in the
theorem. The same argument applies for Statement 3, by adding all terms.

For proving the sufficient condition note that given a permutation σ, that satisfies
the conditions, we can compute the values of the edge labels by

xk =

{
a+ d

∑k
i=0(−1)i+1σ(i) k is even,

d
∑k

i=0(−1)i+1σ(i) k is odd,

and Statements 1–3 ensure us that the values of the labels are positive integers. ut

Theorem 6 Let C be a cycle of length n, then C has an AP-labeling (X, a, d) if and
only if there is a permutation σ that satisfies the following conditions.

1. If n is odd,
∑k−1

i=0 (−1)i+k+1σ(i) +
∑n−1

i=k (−1)i+kσ(i) > a
d
, for 0 ≤ k < n

2. If n is even,
∑n−1

i=0 (−1)iσ(i) = 0, and also there is a positive integer c such that

a+ d
∑k−1

i=0 (−1)iσ(i) > c, for k even, and c > d
∑k−1

i=0 (−1)iσ(i), for k odd.

Proof. Let C = v1, e1, v2, e2, . . . , vn−1, en−1, vn, en, v1 be a cycle. If we write the appro-
priate system of linear equations, we have:

x1 + xn = a+ σ(0)d
x1 + x2 = a+ σ(1)d

...
xn−2 + xn−1 = a+ σ(n− 2)d
xn−1 + xn = a+ σ(n− 1)d
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Now, as in the case of paths, if we multiply each ith equation with (−1)i−1 and add all
the resulting terms, for the case when n is odd we have xn = a

2
+ d

2

∑n−1
i=0 (−1)iσ(i), then

by solving the other equations with respect to the value of xn, for 1 ≤ k < n, we have

xk =
a

2
+
d

2

(
k−1∑
i=0

(−1)i+k+1σ(i) +
n−1∑
i=k

(−1)i+kσ(i)

)
.

When n is even, all variable are cancelled and we have
∑n−1

i=0 (−1)iσ(i) = 0. Note that
in this case by adding the first k terms when k is odd, 1 ≤ k < n, we have

xn + xk = a+ d
k−1∑
i=0

(−1)iσ(i),

and when k is even, 2 ≤ k < n− 1, we have

xn − xk = d
k−1∑
i=0

(−1)iσ(i),

and since the values of edge labels are positive integers we have when k is odd,

xn < a+ d
k−1∑
i=0

(−1)iσ(i)

for 1 ≤ k < n, and also d
∑k−1

i=0 (−1)iσ(i) < xn when k is even and 2 ≤ k < n− 1. ut

Corollary 7 There is no AP-labeling for paths and cycles of length n, when n ≡ 2
(mod 4).

As we saw earlier, there are some paths and cycles that do not accept any AP-labeling.
By the next theorem, we show it is not restricted to just those type of graphs. There are
other bipartite graphs that have the same property. In Section 6 we use the following
theorem and its corollary to prove that many of those graphs that are illustrated in
Figures 3 and 4 are not AP-graphs.

Theorem 8 Let G be a bipartite graph with p and q vertices in each part such that p ≥ q.
If G has an AP-labeling (X, a, d), then

(p− q)(p+ q − 1)

pq
< 2.

Proof. By constructing the appropriate system of linear equations and multiplying those
terms that represent sums of vertices in the part with q vertices by −1, and adding the
equations, we have

(p− q)a+

(
p−1∑
i=0

σ(i)−
p+q−1∑

j=p

σ(j)

)
d = 0
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that results

(p− q)a
d

=

p+q∑
i=p+1

σ(i)−
p∑

j=1

σ(j),

where σ is a permutation on {0, 1, . . . , p+ q − 1}.
If p = q then we have

∑p+q
i=p+1 σ(i) =

∑p
j=1 σ(j), also if (p−q)a

d
≥ 0, then

∑p+q−1
i=p σ(i) ≥∑p−1

j=1 σ(j), both as necessary conditions.
The left hand side of the last inequality takes its largest value when σi ∈ {0, . . . , p− 1},

0 ≤ i ≤ p− 1, and σj ∈ {p, . . . , p+ q − 1}, p ≤ j ≤ p+ q − 1. So we have:

pq +
q(q − 1)

2
>
p(p− 1)

2
.

That yields
(p− q)(p+ q − 1)

pq
< 2.

ut

The following corollary is a result of the proof of the previous theorem.

Corollary 9 A bipartite graph with n vertices and equal parts has no AP-labeling, when
n ≡ 2 (mod 4).

As easily seen by Theorem 8 one class of graphs that accepts no AP-labeling is the
set of stars {K1,p | p ≥ 3}. The next theorem shows that if a graph is close to a star with
respect to a few number of edge contractions, then it also has no AP-labeling.

Theorem 10 A graph G has no AP-labeling if there is a sequence e1, . . . , ek of edges
in G, such that (i) by contracting them G reduces to a star, where the induced con-
nected subgraph H = G[{e1, . . . , ek}] is contracted to the center of the star, and (ii)

k <
2n−1−

√
n2+(n−1)2

2
.

Proof. Let V (G) = {v0, v1, . . . , vn−1}. Also, suppose that there is an AP-labeling
(X, a, d) forG that defines a vertex labeling l0 : G→ Z+ such that l0(vi) =

∑
u∈N(vi)

X(viu) =

a+σ(i)d. We consider G0 = G and we denote by Gi the resulting graph of the contracting
ei in Gi−1, i = 1, . . . , k. After contracting an edge ei = xy to a vertex vxy, we relabel the
edges of Gi by the following rule. If a vertex w was adjacent to both x and y, we replace
any multiple edges by a new edge wvxy and we assign the sum of the labels of wx and
wy in Gi−1 to it. The labels of other edges remain unchanged. After iteration i we have
a new vertex labeling li : Gi → Z+.

After contracting all edges we reach to a bipartite graph with two parts, part A that
has vertices that do not belong to H, and part B that has only the center c of the star
Gk. Since each edge has one side in each part we have
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∑
v∈A

lk(v) = lk(c) (1)

∑
vi∈V (G)−V (H)

(a+ σ(i)d) =
∑

vj∈V (H)

(a+ σ(j)d)− 2

 ∑
uv∈E(H)

X(uv)

 (2)

Now note that Equation 2 is valid if
∑

vj∈V (H) (a+ σ(j)d) is strictly greater than the left
hand side so we must have∑

vi∈V (G)−V (H)

(a+ σ(i)d) <
∑

vj∈V (H)

(a+ σ(j)d)

and since, k <
2n−1−

√
n2+(n−1)2

2
< n

2
, the number of nodes in the contracted part of graph

is less that the number of nodes in the non-contracted part, so we have∑
vi∈V (G)−V (H)

σ(i) <
∑

vj∈V (H)

σ(j)

to make right hand side as large as possible we need to find a value 1 ≤ k < n such that
we have:

1 + 2 + . . .+ (n− k − 1) < (n− k) + . . .+ n− 1

2(n− k)(n− k − 1) < n(n− 1)

0 < −2k2 + (4n+ 2)k − 2(n2 + n).

The statement of the theorem follows by solving the last inequality with respect to the
variable k. ut

4 Graphs of Finite Arithmetic Progression

Let the sequence S = (a, a + d, . . . , a + (n − 1)d) be a finite arithmetic progression of
positive integers with the initial value a and the constant difference d. In this section we
try to find out whether there is an AP-graph G with n vertices, such that the set of the
sums of neighboring edges of the vertices results in the same sequence as S. To this end,
we first consider the case when a = d and we introduce a constructive procedure to make
a desired graph for a given sequence. Also we show that there are arithmetic progressions
that have no representation as an AP-graph. Later on, we extend our results for the case
when a 6= d.

Throughout the proofs of the following results we suppose that the vertices of a
graph are indexed with respect to the increasing order of their labels. Also we consider
the operation of pairing and incrementing by c on a sequence of even number of
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Figure 2: A family of AP-labelings for an AP-graph representing the sequences
{(d, 2d, 3d) | d ≥ 1}.

vertices vs, . . . , vs+k, where k is odd. That is done by considering pairs of consecutive
vertices (vi, vi+1), i ∈ {s, s + 2, . . . , s + k − 1}, and if there is an edge between them,
we increment its label by c. When there is no edge, we connect them by an edge and
we assign c as its label. Note that by this operation the vertex label of each vertex in
vs, . . . , vs+k, is incremented by c.

Lemma 11 Let S = (d, 2d, . . . , nd) be a finite arithmetic progression with n ≥ 3 terms
and with initial value and constant difference both equal to d. Then S has an AP-graph
if and only if

1. the value of d is even, or

2. the value of d is odd, and n ≡ 0 (mod 4) or n ≡ 3 (mod 4).

Proof. Let us first consider the case when d is even. If S has three terms, say S =
(d, 2d, 3d), the graph shown in Figure 2 is an appropriate AP-graph. Now we follow the
argument inductively by considering two cases, when the number of terms is odd or even.

Suppose we have an AP-graph G for S = (d, . . . , (n−1)d). If n is even then we do the
pairing and incrementing by d operation for the sequence of vertices v2, . . . , vn−1 in G.
Then we add a new vertex u and connect it to v1 by an edge labeled by d. The resulting
graph is an AP-graph for the sequence (d, 2d, . . . , nd).

For the case when n is odd, we do the pairing and incrementing operation by d for
the sequence of vertices v3, . . . , vn−1 in G. Then we add a new vertex u and we connect
it to v1 and v2 by two edges, each has d

2
as its label. At last, if there is an edge between

v1 and v2 we increment it by d
2
, otherwise we connect them by a new edge that is labeled

by d
2
.

Now we prove that for odd value of d and n ≡ 3 (mod 4), if there is an AP-graph G
for S with n − 4 terms, then there is an AP-graph for S with n terms. The base case
when n = 3 follows easily by considering the graph illustrated in Figure 2, so we suppose
that n ≥ 7. We first employ the pairing and incrementing by 4d on the sequence of
vertices v2, . . . , vn−4 in G, such that the label of each vertex in this sequence increases by
4d. Then we add four new vertices u1, u2, u3, and u4. Finally, we add an edge from u1 to
u4 labeled by d, an edge from u2 to u3 labeled by 2d, an edge from u3 to v1 labeled by
2d, and an edge from u4 to v1 labeled by 2d.

Now let consider the case when d is odd and n ≡ 0 (mod 4). Since n−1 ≡ 3 (mod 4),
there is an AP-graph G for the sequence (d, 2d, . . . , (n− 1)d). We apply the operation of
pairing and incrementing by d for the sequence of vertices v2, . . . , vn−1 in G. By adding a
new vertex u and connecting it to v1 with an edge labeled by d, we get the desired graph.
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To prove that there is no AP-graph when d is odd and n ≡ 1, 2 (mod 4). Let (X, d, d)
be an AP-labeling of a graph G with the edge labels X = (x1, x2, . . . , xm). Then due to
Proposition 1 the value of

m∑
i=1

xi =
dn

2
+
n(n− 1)

4
d,

must be an integer. But when one computes the right hand side of the equation for those
values of d and n, the resulting values are not integers. ut

Theorem 12 Let S = (a, a+ d, . . . , a+ (n− 1)d) be a finite arithmetic progression with
the initial value a, the constant difference d, and n ≥ 4 terms. Then S has an AP-graph
if and only if

1. the value of d and a are both even, or

2. d is even, a is odd, and n is even, or

3. d is odd, a is even, and n ≡ 0, 1 (mod 4), or

4. d is odd, a is odd, and n ≡ 0, 3 (mod 4).

Proof. To prove this theorem we first apply Lemma 11 to produce an AP-graph G with
n − 1 vertices for S ′ = (d, 2d, . . . , (n − 1)d), for valid numbers of d and n. We use two
procedures to construct an AP-graph from G for S based on the number of terms in S ′.
The first procedure is used when the number of terms in S ′ is odd. It is done by pairing
and incrementing operation by a for the sequence of v2. . . . , vn−1, and then adding a new
vertex and joining it to v1 with an edge labeled by a. The second procedure is used when
the number of terms in S ′ and a are both even. In this procedure we apply the operation
of pairing and incrementing by a on v3, . . . , vn−1, then we add a new vertex and attach
it to v1 and v2 by edges that are labeled by a

2
. Finally, if there is an edge between v1

and v2 we increment it by a
2
, otherwise we join them by a new edge labeled by a

2
. These

procedures, when applied properly, give the proofs for Statements 1–3 and the part of
Statement 4 when n ≡ 0 (mod 4).

Now let us consider the case where d and a are odd and n ≡ 3 (mod 4). Since n ≡ 3
(mod 4), we have n− 3 ≡ 0 (mod 4). So by Lemma 11 there is an AP-graph G for the
sequence (d, 2d, . . . , (n − 3)d). We first apply a pairing and incrementing by a + 2d for
the sequence v3, . . . , vn−3. Then we add three new vertices u1, u2, and u3 to the resulting
graph. To complete the construction, we add two edges labeled by a+d

2
from u3 to both

v1 and v2. Also we connect u1 to u2 by an edge labeled by a, and u2 to u3 by an edge
labeled by d. At last if there is any edge between v1 and v2 we increment it by a+3d

2
,

otherwise we add them via a new edge labeled by a+3d
2

.
With respect to Proposition 1, the same argument as presented for Lemma 11 also

applies to the no instances in this theorem. ut
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To complete the characterization of those arithmetic progression sequences that are
vertex labels for some AP-graph, first note that there are no sequences of length less
than three. Also, for n = 3 there are only two graphs to consider. It is easy to see that
the path (see Figure 2) must have a = d. For the complete graph K3 we get only those
sequences satisfying a > d and a+ d even.

5 Decision algorithms

In this part we present two complexity results on edge labeling of a graph that is closely
related to the problem of deciding if a graph has an AP-labeling. We first consider
the problem of finding edges labels for a graph such that the sums of the edge labels
incident to each vertex yield a specified target set of vertex labels. We show that the
problem is NP-complete by reducing a restricted version of the partition problem into
two equal-sized partitions, denoted here by EqualPartition, (see [SP12] in [GJ79]).

Problem 13. FreeIncidentEdgeLabelable
Input: Graph G = (V,E) and a (multi-)set A = {a1, . . . , a|V |}
Question: Does there exist a bijection f : V → A and an edge labeling h : E → Z+ such

that for all v ∈ V , f(v) =
∑

u∈N(v)

h(uv)

Theorem 14 The problem FreeIncidentEdgeLablable is NP-complete.

Proof. It is easy seen that the problem is NP. To show NP-hardness of the problem we
reduce from EqualPartition. Let {s1, s2, . . . , sn} be an instance of EqualPartition.
If either n or S ′ =

∑n
i=1 si is odd then we map to a known no instance of FreeInci-

dentEdgeLabelable, say G = K2 and A = {1, 2}. Otherwise, we transform it to a
graph G with n+ 2 vertices created by adding an edge between the centers of two stars
K1,n/2 and set A = {s1, . . . , sn, S

′, S ′}. Clearly, if the graph G can be edge labeled by
some h, yielding vertex labels A = {f(1), . . . , f(n+2)}, then the two center vertices must
end up with the two labels S ′. The only way to do this is for the connecting edge to have
label S ′/2 and the edges incident to the pendant vertices having labels that partition
{s1, . . . , sn} into two parts of size n/2, each part summing up to S ′/2. ut

Our next result shows that by assigning fixed values to vertices, finding a proper edge
labeling that produces that vertex labeling is almost polynomial-time solvable.

Problem 15. FixedIncidentEdgeLabelable
Input: Connected undirected graph G = (V,E) with a vertex labeling f : V → Z+.
Question: Does there exist an edge labeling g : E → Z+ such that for all v ∈ V ,

f(v) =
∑

u∈N(v)

g(uv)?

Theorem 16 There exists a pseudo polynomial-time algorithm to decide the problem
FixedIncidentEdgeLabelable.
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Proof. We give a decision algorithm that runs in time that is bounded by a polynomial
of n = |V | and the sum T =

∑
v∈V f(v).

The idea for the algorithm is to start with an initial assignment of edge weights and
gradually increase them until the incident edges sum up to the desired vertex labels.
We say a vertex is unsaturated if the sum of its incident edges is strictly less than
its label. We use an approach similar to the augmenting path techniques used in many
maximal matching algorithms. If there is an odd length sequence of edges, starting and
ending at a unsaturated vertices (which could be the same vertex), then we can improve
the saturation level of the system by adding, in an alternating fashion, +1 and -1 to
the edges in this walk sequence. Here only the saturation levels of the first and last
vertices increase by one. To ensure that each edge label stays positive we only apply this
augmentation when all of the even-indexed edges have value at least 2. We call such a
path an improving walk. The details of the algorithm are sketched in the procedure
below.

Procedure Membership(Graph G, Vertex labels f [1..n])
begin

Edge labels g[1..m] = (1, 1, . . . , 1)
Saturation values s[v] =

∑
uv∈E g[uv], for all v ∈ V

if ∃v, s[v] > f [v] return false
L1: while ∃v, s[v] 6= f [v] do

for each v such that s[v] 6= f [v] do
if there exists an improving walk starting at v do

# Note special case of ending at v if s[v] + 1 = f [v]

Augment the edges of the improving walk by
updating the values of g[] and s[]
next L1

return false
return true

end

The program will terminate with at most T/2 iterations of the while loop at line L1
since the sum of saturation levels always increases by two. To find an improving walk we
need to do a graph traversal using breadth-first search. We need to consider whether each
of the other vertices is reachable at only an odd or even distance (not all the distances)
from the starting vertex. Thus the search tree size is bounded by 2n, and this can be
computed in O(n2) = O(m) steps.

For correctness of the algorithm, if we saturate all of the vertices then we clearly have
found a desired edge labeling (when the while loop at L1 terminates).

There is a special case where there may be an improving walk (circuit) from v to itself
but s[v]+2 > f [v]. Consider that we could have augmented this circuit (i.e. increase s[v]
by 2) then decrease another incident edge vw of v by 1 to get s[v] = f [v]. This would
mean that another unsaturated vertex y is the start of an improving path that ends at
w. Thus we only do this special case if we can find a replacement improving path from
y to w.
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Now suppose the procedure can not find an improving walk from an unsaturated
vertex v. This means that we have created a reachability tree from v (of all saturated
vertices except v) where each edge e at even level has g[e] ≥ 2. Each leaf u of this tree
must either have all its neighbors already in the tree, or u is an odd distance from v
and the edge label is 1 to a vertex not in the tree. By contradiction, assume the graph
has an edge labelable g′ such that each vertex is saturated but the algorithm halts with
unsaturated vertices, given by g. Consider the edges incident to an unsaturated vertex
u0. There must be an edge u0u1 such that g[u0u1] < g′[u0u1]. We will show that there
exists an improvable walk in the graph (not necessarily starting at u0). Increase g[u0u1]
by one. Vertex u1 must have been saturated before the increase (otherwise we would
have an improvable walk of length 1). Thus since u1 is (now) oversaturated there must
be an edge u1u2 such that g′[u1u2] < g[u1u2]. Decrease g[u1u2] by one. Then the process
of incrementing/decrementing values of g[uiui+1] continues. Since the relabeling of g is
converging to g′ we must eventually reach an unsaturated vertex ui+1. If i + 1 is odd
then we found an improving walk. Otherwise, start a new walk at the unsaturated vertex
ui+1 and continue the process of converting g to g′. Since we assumed the graph is edge
labelable and

∑
e∈E |g′[e]−g[e]| is bounded we eventually have to increase the value of an

unsaturated vertex u2k+1. This only happens if we have an odd length walk (or discover
an improving walk u2(k−j), . . . , u2k, u2k+1, 0 ≤ j ≤ k). Thus, our assumption that the
algorithm halts is wrong. Thus, the algorithm will find some labeling if one exists. ut

Note the running-time of the algorithm given in the previous proof of Theorem 16
should be implementable in time O(n3T ). Thus if the maximum vertex label is bounded
by some constant k then we have an algorithm that is fixed-parameter tractable via an
O(kn4) time algorithm. To solve our AP-labeling problem we have to apply this algorithm
n! times, once for each permutation of {a, a + d, a + 2d, . . . , a + (n − 1)d} assigned as
vertex labels. This running time is theoretically better than both our brute-force integer
partition algorithm (Proposition 1) and integer programming algorithm (Proposition 4).

6 Experimental Results

In this section, as a part of our study, we are concerned with the problem of classifying
all small graphs (with order at most eight) as having an AP-labeling or not. Our compu-
tational results are summerized in Table 1. Drawings of the smaller set of no instances

Table 1: The number of AP-graphs for connected graphs up to eight vertices.

Order n 1 2 3 4 5 6 7 8

Yes 0 0 2 5 20 101 849 11087

No 1 1 0 1 1 11 4 30
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are shown in Figures 3–5. To achieve this goal, we implemented (using in Sage [St+09]
libraries) the two simple brute-force algorithms based on the results of Propositions 1
and 4. When the number of edges m was at most the number of vertices n we used the
simple algorithm based on Proposition 1, that is, we generated all integer partitions of
K into m parts. However, in most cases, the size m was larger than the order n and
we reduced our problem to an equivalent integer programming problem and called the
efficient Sage IP solver for n linear equations. In both cases, we considered a wide range
of the values of a and d and tried all permutations of its edges or vertices, respectively.

Figure 3: Connected graphs with six vertices that have no AP-labelings.

Figure 4: Connected graphs with seven vertices that have no AP-labelings.

We used geng program [Mc08] to produce all simple connected graphs up to eight
vertices. For each graph, if the invoked algorithm finds an AP-labeling, then it saves
the result and terminates. For example, Figure 6 displays AP-labelings for each of the
AP-graphs with four vertices. Both our Sage programs and the first found AP-labelings
for the yes instances of order 5 are available in the appendices. In addition, the yes
instances of the AP-graphs with orders 6–8 are available from the authors, on request.

Note that even if the algorithm fails in finding any solution for a given graph, it does
not guarantee the nonexistence of an AP-labeling (since we did not try all combinations
of a and d). So we need a formal proof for the no instances. Fortunately, all of these
remaining cases are easily confirmed as not having an AP-labeling from our theoretical
results of Section 3, as discussed below.
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Figure 5: Connected graphs with eight vertices that have no AP-labeling.
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Figure 6: The AP-graphs with four vertices, with AP-labelings (a = δ(G), d = 1).

Note that by Theorem 8 we know that any star with more than four vertices is not
an AP-graph; this applies to the three stars in the figures. The other graphs in Figure 3
have six vertices and are bipartite and as they have parts with equal size, by Corollary 9
we know that they do not accept any AP-labelings. To prove that the remaining three
graphs in Figure 4 are not AP-graphs we use Theorem 10. We see, in each case, that
only one edge (i.e. k = 1) needs to be contracted to produce the star K1,5 allowing us to
use Theorem 10.

Likewise, the fact that none of the graphs in Figure 5 is an AP-graph follows from
Theorem 8 and (using k ≤ 2) Theorem 10.

7 Conclusions

In this paper we have introduced a new graph labeling problem to decide whether a
graph’s vertices can be labeled as an arithmetic progression (under constraints of being
induced from edge labelings by positive integers). We have developed three different
algorithms: a simple brute-force integer partition algorithm, a mapping to an instance
of integer programming, and, one based augmenting improvement of vertex saturations.
By experimental search, we have discovered that most connected graphs are AP-graphs.
It is observed that most of the ‘no’-cases are sparse graphs and star-like. In the other
direction, we have characterized all arithmetic sequences that are representable by some
AP-graphs.

There are several open questions related to our work in this new area. First, we
would like to find a polynomial-time algorithm or (more likely) a proof that the AP-
graph decision problem is NP-complete. For a given graph we know that we can scale an
edge-labeling (X, a, d) to get another (X ′, k · a, k · d) labeling by simply setting X ′(e) =
k ·X(e), e ∈ E(G). However, we would like to know how many non-equivalent labelings a
graph has, which would be a nice characteristic of the structure of a graph. In particular,
what are the smallest a and d that need to be checked for a graph of order n and m.
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Currently, we do not know of an upper bound for the smallest a and d and need to either
get lucky with a guess or prove (by hand or using the limited structural constraints of
Section 3) that no such arithmetic progression exists.
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A Three Simple Programs that Check for AP-labelings

First we give common code (python/sage) to read in a graph (networkx format) and
extract arithmetic progression parameters a and d from the command-line arguments is
given.

import networkx as nx

from sage.all import *

a=1; d=1

if len(sys.argv)>1: a=int(sys.argv[1]) # command-line args

if len(sys.argv)>2: d=int(sys.argv[2])

def magic(L): # check if the sorted L is an arith. prog.

for i in range(len(L)-1):

if L[i+1]-L[i]!=d: return 0

return 1

g=nx.read_adjlist(sys.stdin) # input graph from networkx

n=g.order(); m=g.size()

print "Graph", [(int(u),int(v)) for (u,v) in g.edges()]

Our first sage algorithm to decide (via combinatorial integer partition search) if a
graph is AP-labelable is given next.

s=(2*n*a+(n-1)*n*d)/4 # desired sum of edges

for x in partitions_greatest_eq(s,m):

for y in permutations(partition_associated(x)):

label=[0]*n; i=0

for (u,v) in g.edges():

label[int(u)]+=y[i]; label[int(v)]+=y[i]; i+=1

if magic(sorted(label)): print label, y; sys.exit(0)

A more practical algorithm to decide (via Integer Programming) if a graph is AP-
labelable is presented next.

for p in permutations(n):

B = [a+(p[i]-1)*d for i in range(n)]

p=MixedIntegerLinearProgram()

b=p.new_variable()

for i in range(n):

p.add_constraint(sum([b[(u,v)] for (u,v) in g.edges(labels=None) \

if i==int(u) or i==int(v)]),min=B[i],max=B[i])

for e in g.edges(labels=None):

p.add_constraint(b[e],min=1)
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p.set_objective(sum([b[x] for x in g.edges(labels=None)]))

p.set_integer(b)

try:

p.solve(solver="Coin")

except sage.numerical.mip.MIPSolverException as e:

pass

else:

print p.get_values(b).items(); sys.exit(0)

Below is an alternative, but slightly slower, IP algorithm using the Singular.

M=Graph(g).incidence_matrix()

for r in range(0,n):

for t in range(0,m): M[r,t]=abs(M[r,t]) # make undirected

singular.LIB("intprog.lib")

singular.eval(’intmat M[%s][%s]=%s’%(n,m,str(M.list())[1:-1]))

I=vector(ZZ,[1]*m); M2=singular("M");

C2=singular((’0,’*m)[:-1],’intvec’)

for p in permutations(n):

B=vector(ZZ,[a+(p[i]-1)*d for i in range(n)])

E=B-(M*I)

if min(E)<0: continue

E2=singular(str(E.list())[1:-1],’intvec’)

N2=singular.solve_IP(M2,E2,C2,’"pct"’)

if N2: print ’vertices =’,B, ’edges =’,list(N2+I); sys.exit(0)

Finally, we present our fastest algorithm based on improving walks.

import networkx as nx

import numpy as np

n=0 # order of input graph

STree=nx.DiGraph() # bipartite search graph

unsat=set() # current nodes not saturated

def set_search_tree(G,g):

global STree

STree=nx.DiGraph()

STree.add_nodes_from(range(2*n))

for x in range(n):

for y in G[x]:

STree.add_edge(x,y+n)

if g[min(x,y),max(x,y)]>1: STree.add_edge(y+n,x)

return
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def improve_walk(v,LoopFlag):

path=nx.single_source_shortest_path(STree,v)

endpoint=unsat

if LoopFlag: endpoint=unsat|set([v])

for w in endpoint:

if w+n in path: return [z%n for z in path[w+n]]

return None

def membership(G,f):

"""

See if connected graph G can have an edge labeling (g[]) such that

the sum of incident edge labels is the value corresponding to the

f[] vertex labeling.

"""

global n, unsat

n=G.order()

g=np.zeros((n,n),int) # current edge labels (adjacency matrix)

for (u,v) in G.edges(): g[u,v]=1

s=np.zeros((n),int) # current saturation values (vector)

for v in G:

s[v]=len(G[v])

if s[v]>f[v]: return None

unsat=set([i for i in range(n) if s[i]<f[i]])

while unsat: # line L1 of pseudocode on page 11

set_search_tree(G,g)

v=unsat.pop()

W=improve_walk(v,s[v]!=f[v]-1) # 2nd argument detects our "special case"

if W:

for i in range(len(W)-1): # augment the edges g[] of the improving walk

if W[i]<W[i+1]: g[W[i],W[i+1]]+=2*((i+1)%2)-1

else: g[W[i+1],W[i]]+=2*((i+1)%2)-1

w=W[-1]; s[v]+=1; s[w]+=1 # and update the saturations s[]

if s[v]!=f[v]: unsat.add(v)

if v!=w and s[w]==f[w]: unsat.remove(w)

else: return None

return [((u,v),g[u,v]) for (u,v) in G.edges()]

B AP-labelings for AP-graphs of Order 5

On the next two pages the twenty AP-graphs with 5 vertices are listed (in geng enumer-
ation order) as incident matrices and AP-labelings with a = 6 and small d.
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geng -c 5 -p2

[0 1 1 0]

[1 0 0 0]

[0 0 0 1]

[0 1 0 0]

[1 0 1 1]

vertices = (15, 6, 9, 12, 18)

edges = [6, 12, 3, 9]

geng -c 5 -p3

[0 1 1 0 0]

[1 0 0 0 0]

[0 0 0 0 1]

[0 1 0 1 0]

[1 0 1 1 1]

vertices = (14, 6, 10, 18, 22)

edges = [6, 13, 1, 5, 10]

geng -c 5 -p4

[0 0 1 1 0]

[1 1 0 0 0]

[0 0 0 0 1]

[1 0 1 0 0]

[0 1 0 1 1]

vertices = (6, 9, 15, 12, 18)

edges = [7, 2, 5, 1, 15]

geng -c 5 -p5

[0 1 1 0 0]

[1 0 0 0 0]

[0 0 0 0 1]

[1 1 0 1 0]

[0 0 1 1 1]

vertices = (6, 8, 10, 12, 14)

edges = [8, 3, 3, 1, 10]

geng -c 5 -p6

[0 0 1 1 0 0]

[1 1 0 0 0 0]

[0 0 0 0 0 1]

[1 0 1 0 1 0]

[0 1 0 1 1 1]

vertices = (6, 8, 10, 12, 14)

edges = [6, 2, 5, 1, 1, 10]

geng -c 5 -p7

[0 0 1 1 0 0]

[1 1 0 0 0 0]

[0 0 0 0 1 1]

[1 0 1 0 1 0]

[0 1 0 1 0 1]

vertices = (6, 9, 15, 12, 18)

edges = [1, 8, 1, 5, 10, 5]

geng -c 5 -p8

[0 0 1 1 0 0 0]

[1 1 0 0 0 0 0]

[0 0 0 0 1 0 1]

[1 0 1 0 1 1 0]

[0 1 0 1 0 1 1]

vertices = (6, 8, 10, 12, 14)

edges = [1, 7, 1, 5, 9, 1, 1]

geng -c 5 -p9

[0 0 1 1]

[1 1 0 0]

[0 0 1 0]

[1 0 0 0]

[0 1 0 1]

vertices = (12, 18, 6, 9, 15)

edges = [9, 9, 6, 6]

geng -c 5 -p10

[0 0 1 1 0]

[1 1 0 0 0]

[0 0 1 0 1]

[1 0 0 0 0]

[0 1 0 1 1]

vertices = (6, 8, 9, 7, 10)

edges = [7, 1, 3, 3, 6]

geng -c 5 -p11

[0 0 1 1 0 0]

[1 1 0 0 0 0]

[0 0 1 0 0 1]

[1 0 0 0 1 0]

[0 1 0 1 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [5, 2, 5, 1, 4, 3]
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geng -c 5 -p12

[0 0 1 1 0]

[1 1 0 0 0]

[0 0 0 1 1]

[1 0 1 0 0]

[0 1 0 0 1]

vertices = (6, 7, 8, 9, 10)

edges = [4, 3, 5, 1, 7]

geng -c 5 -p13

[0 0 1 1 1 0]

[1 1 0 0 0 0]

[0 0 0 1 0 1]

[1 0 1 0 0 0]

[0 1 0 0 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [5, 2, 4, 1, 1, 7]

geng -c 5 -p14

[0 0 1 1 1 0 0]

[1 1 0 0 0 0 0]

[0 0 0 1 0 0 1]

[1 0 1 0 0 1 0]

[0 1 0 0 1 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [5, 2, 1, 4, 1, 3, 4]

geng -c 5 -p15

[0 1 1 1 0 0]

[1 0 0 0 0 0]

[0 0 1 0 1 1]

[0 1 0 0 1 0]

[1 0 0 1 0 1]

vertices = (6, 7, 8, 9, 10)

edges = [7, 3, 1, 2, 6, 1]

geng -c 5 -p16

[0 1 1 1 0 0 0]

[1 0 0 0 0 0 0]

[0 0 1 0 1 0 1]

[0 1 0 0 1 1 0]

[1 0 0 1 0 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [7, 3, 2, 1, 5, 1, 1]

geng -c 5 -p17

[0 0 1 1 1 0 0 0]

[1 1 0 0 0 0 0 0]

[0 0 0 1 0 1 0 1]

[1 0 1 0 0 1 1 0]

[0 1 0 0 1 0 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [1, 6, 2, 2, 2, 5, 1, 1]

geng -c 5 -p18

[0 0 0 1 1 1 0]

[1 1 1 0 0 0 0]

[0 1 0 0 1 0 1]

[1 0 0 1 0 0 0]

[0 0 1 0 0 1 1]

vertices = (6, 7, 9, 8, 10)

edges = [4, 1, 2, 4, 1, 1, 7]

geng -c 5 -p19

[0 0 0 1 1 1 0 0]

[1 1 1 0 0 0 0 0]

[0 1 0 0 1 0 0 1]

[1 0 0 1 0 0 1 0]

[0 0 1 0 0 1 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [1, 4, 2, 2, 3, 1, 6, 1]

geng -c 5 -p20

[0 0 0 1 1 1 0 0 0]

[1 1 1 0 0 0 0 0 0]

[0 1 0 0 1 0 1 0 1]

[1 0 0 1 0 0 1 1 0]

[0 0 1 0 0 1 0 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [1, 1, 5, 2, 1, 3, 5, 1, 1]

geng -c 5 -p21

[1 0 0 0 1 1 1 0 0 0]

[1 1 1 1 0 0 0 0 0 0]

[0 0 1 0 0 1 0 1 0 1]

[0 1 0 0 1 0 0 1 1 0]

[0 0 0 1 0 0 1 0 1 1]

vertices = (6, 7, 8, 9, 10)

edges = [1, 1, 1, 4, 1, 1, 3, 5, 2, 1]
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