
A NOTE ON ACCELERATED TURING MACHINES

CRISTIAN S. CALUDE, LUDWIG STAIGER

ABSTRACT. In this note we prove that any Turing machine which uses only a finite compu-
tational space for every input cannot solve an uncomputable problem even in case it runs
in accelerated mode. We also propose two ways to define the language accepted by an
accelerated Turing machine. Accordingly, the classes of languages accepted by accelerated
Turing machines are the closure under Boolean operations of the sets Σ1 and Σ2.

1. ACCELERATED TURING MACHINES

“Acceleration” was first discussed by Weyl [30] in 1927 (and independently by Blake
[4] and Russell [19]) in the form of the potential realisation of a process in which each step
takes half of the time of the previous step. Copeland [8] and Stewart [26] applied this idea
to Turing computations. An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds) to perform its nth step; we
assume that steps are in some sense identical except for the time taken for their execution.
Such a machine can run an infinite number of steps in one unit of time. Accelerated Turing
machines have been studied by various authors including Barrow [3], Boolos and Jeffrey
[5], Calude and Păun [6], Ord [15], Potgieter [16], Shagrir [20, 21], Svozil [27].

The main feature of an accelerated Turing machine consists in its capability of comput-
ing in a finite time an infinite sequence of steps, thus allowing it to solve uncomputable
problems. For example, the following (informal) accelerated Turing machine can solve
the halting problem of an arbitrarily given Turing machine T and input w in finite time:

begin program
write 0 on the first position of the output tape;
set i = 1;
begin loop simulate the first i steps of T on w;

if T(w) has halted, then write 1 on the
first position of the output tape;
i = i + 1;

end loop

Calude: Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland,
New Zealand, cristian@cs.auckland.ac.nz.

Staiger: Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, D - 06099 Halle, Germany,
staiger@informatik.uni-halle.de.

Work done during L. Staiger’s visit to CDMTCS in January 2009. An early version of this paper was
presented at the Workshop on Hypercomputation, Ponta Delgada, Portugal, September 2009.

2 CRISTIAN S. CALUDE, LUDWIG STAIGER

end program

By inspecting the first position of the output tape we need one unit of time to run the
above machine in order to decide whether T(w) stops or not. Note that Svozil [27] proved
that the halting problem of accelerated Turing machines is not decidable by any acceler-
ated Turing machine. Relativistic computation offers a physical model for acceleration,
see [12, 9, 1].

Are accelerated Turing machines physically possible? This is a challenging problem
discussed by various authors, [14]. We contribute with a small result to this discussion by
examining the computational space required by an (accelerated) Turing machine running
an infinite computation: is it finite or not? This question was posed to the first author by
Fearnley [11].

2. IS THE SPACE USED BY AN ACCELERATED TURING MACHINE ALWAYS FINITE?

Let us start with the following informal example:

set i=0;
begin loop i=i+1;
end loop

It is clear that the accelerated Turing machine executing the above set of instructions
needs an infinite computational space. Is this just an accident or do we have a more
general situation?

Before being tempted by a hasty answer let us note that the following set of instructions
computation is infinite, but requires only a finite amount of space:

set i=1;
while (i > 0) do i=1;
end while

To be able to answer the above question we fix a formal model of Turing machine and
state a few general facts. We assume that reader is familiar with the basics of Turing
computability, e.g. [22, 29].

Let M = (X, Γ, S, s0, sa, �, δ) be a Turing machine in which X is the input alphabet,
Γ ⊃ X is the working tape alphabet, S is the set of states, s0 is the initial state, sa is the
accept state, � ∈ Γ \ X is the blank symbol1, and δ is the (partial) transition function. We
assume that the Turing machine has one input read-only tape (where initially the input is
written on) and k, k ≥ 1 working tapes. If we need an output tape (for writing the results
of computations) we use working tape k. The machine starts its processing in state s0 by
scanning the first symbol of the input word.

A configuration of the Turing machine with k working tapes on input x is a 2k + 2-tuple
(i, s, u1, v1, . . . , uk, vk) where i, 0 ≤ i ≤ |x|+ 1 denotes the position of the head on the input

1We explicitly exclude the blank symbol from the input alphabet.

A NOTE ON ACCELERATED TURING MACHINES 3

tape, s is the current state and uj ∈ Γ∗ and vj ∈ Γ∗, uj /∈ � · Γ∗, vj /∈ Γ∗ · � are the contents
of the working tape j, 1 ≤ j ≤ k to the left or right, respectively, of the head position.

The successor configuration κ� of a configuration κ is derived as usual for multi-tape
Turing machines (cf. [2, 29]).

The computation of M on x started in s0 is a sequence of configurations starting with
κ0 = (1, s0, ε, . . . , ε) each of which is a successor of its predecessor.

A word x is accepted by M if the computation of M started in s0 on x stops in sa. The
language accepted by M is the set of words accepted by M.

Let M = (X, Γ, S, s0, sa, �, δ) be a Turing machine and x an input word. We define the
computational space used by M on x, space

M
(x), to be the number—finite or infinite—of

cells used by M during its computation on x (or, with input x); a cell used once is counted
as used. Obviously, if space

M
(x) is finite then the computation process as described above

can have only a finite number of different configurations. This observation will be crucial
for our further considerations.

The function timeM(x) denotes the number of steps executed by M on input x (see
[2, 29]). By M(x) < ∞ we denote the fact that M stops on x. The reader is warned not to
confuse our space function space

M
with the space complexity usually used in complexity

theory (see [29]) which is defined by

(1) sM(x) =
�

spaceM(x), if M(x) < ∞,
∞, otherwise .

Clearly, space
M

(x) < ∞ whenever M(x) < ∞, and M(x) = ∞ iff timeM(x) = ∞ iff
sM(x) = ∞.

The halting problem for a particular Turing machine M is the problem of deciding given x

whether M(x) < ∞. It is well known that the halting problem for most Turing machines
M is undecidable.

Following the argument of Lemma 2.25 in [2] one could prove that if, for a computable
function f : N → N, space

M
(x) ≤ f (|x|) whenever M halts on x, then the halting problem

for this particular machine M is decidable. We show that one can drop the requirement
on a computable upper bound for space

M
.

We start with a more general result.

Theorem 1. There is a uniformly effective procedure which transforms every Turing machine M

into a machine DM which accepts the same inputs as M and has the property that DM halts on all

inputs x such that space
M

(x) < ∞.

Proof. The machine DM works as follows. It runs the machine M on input x and simulta-
neously keeps track of a list of all configurations the machine M has run through. Then
three cases are possible.

If M stops then DM stops, too, and accepts x iff M accepts x.
As soon as one configuration appears twice in the list DM stops and rejects the input.
If M does not stop and no configuration is repeated then DM runs indefinitely.

4 CRISTIAN S. CALUDE, LUDWIG STAIGER

To prove the assertion it suffices to remark that, since M is a deterministic machine,
if space

M
(x) < ∞ and the computation is infinite then necessarily one configuration is

repeated and thus the sequence of configurations is eventually periodic; in particular, no
new configuration will appear.

�
The same idea can be used to prove the following result.

Theorem 2. If for every x, space
M

(x) < ∞, then the halting problem for M is decidable.

Proof. Having in mind the proof of Theorem 1, one constructs an observer Turing machine
OM that lists all configurations of M generated by the computation M(x) and continues
as follows:

(1) If M stops on x then OM stops too and declares M(x) < ∞.
(2) If M does not stop on x then on the first repetition in the list of configurations

generated by M(x) the machine OM stops and declares that M(x) = ∞. �

Corollary 3. If the halting problem for M is undecidable then {x ∈ X
∗ : space

M
(x) = ∞} �= ∅.

Corollary 4. The set {(M, x) : M is a Turing machine, x ∈ X
∗, space

M
(x) < ∞} is computably

enumerable but not computable.

As Corollary 4 shows, our decidability result (Theorem 2) for Turing machines using
only a finite amount of space does not allow to solve the general halting problem: given
a pair (M, x), decide whether the machine M halts on x. Following a suggestion of one
referee we mention that the following weaker versions of this problem are decidable.

Theorem 5. Let f : N → N be a computable function. Then there is a Turing machine D which,

given a pair (M, x), decides whether the machine M halts on x in space space
M

(x) ≤ f (|x|).

If, moreover, f is space constructible and f (n) ≥ log2 n, then this decision procedure runs in

space
2

bounded by space
D
(x) = sD(x) ≤ f (|x|).

Here, as usual, a function f : N → N is called space constructible if there is a Turing
machine Mf which maps the binary expansion bin(n) of n to the binary expansion of
f (n) using only space sMf

(bin(n)) ≤ |bin(f (n))| ≤ log2(f (n)) + 1.

A Turing machine M running in ‘accelerated mode’ is denoted by AM. In other words,
M and AM have the same description, but M runs in normal mode, i.e. each instruction
is executed in a fixed unit of time, while AM runs in an accelerated mode. Observe that
M(x) = ∞ iff timeM(x) = ∞ iff timeAM

(x) = 1. The function timeM classically counts the
number of steps executed by M, while timeAM

measures the length of a time interval; with
the assumption that each step takes precisely one unit of time, these functions become
essentially equivalent.

2For the function sD see Eq. (1).

A NOTE ON ACCELERATED TURING MACHINES 5

There is a similarity between computational time and space; however, this parallel is
not perfect. For example, it is not true that an accelerated Turing machine which uses
unbounded space has to use an infinite space for some input (as it seems to be claimed in
Ord [15, p. 24]). The reason is that the space used by the machine on every input x can
be finite, although it grows indefinitely with |x|.

Let χM : X
∗ → {0, 1} be the function defined by

χM(x) =
�

1, if M(x) < ∞,
0, otherwise.

This function can always be computed by an accelerated Turing machine AM� in finite
time.3 If the computational space is finite for every input, then acceleration does not add
computational power:

Corollary 6. Let AM be an accelerated Turing machine with space
AM

(x) < ∞ for all inputs x.

Then the function χM is Turing computable. The Turing machine computing χM is not necessarily

M.

3. COMPUTATIONAL POWER

How can we use accelerated Turing machines to trespass the Turing barrier, more pre-
cisely, to accept languages other than computably enumerable ones? A proposal based
on physical considerations to use accelerated Turing machines with an oracle provided
by another accelerated Turing machine was made in [31]. Here we pursue a different
approach dating back to the late 1970s where infinite acceptance processes for Turing ma-
chines were considered [7, 10, 25].

These processes consider acceptance conditions based on the set of states occurring
or occurring infinitely often during the computation process. To this end we pair the
machine M with one or two observer machines M

� and M
��. There are two ways to observe

the computation of M and, consequently, decide its output.
In the first case the output is based on the set of states occurring during the compu-

tation. The machine M
� simply collects the (finite) set of states Sx occurring during M’s

computation process on input x.
In the second case the output is based on the set of states occurring infinitely often

during the computation. During the computation of M on x the first observer machine M
�

writes into cell i of its output tape successively (a symbol denoting) the set of states Sx(i, t)
the machine M runs through starting from step i up to step t. Thus, after finishing its
work, cell i contains (a symbol denoting) the set of states M has run through starting from
moment i on. This sequence of sets is non-increasing, so the second observer machine M

��

can compute its limit Sx.
In both cases, the input word x is accepted according to whether Sx satisfies a previ-

ously given condition described below.

3
AM� is not necessarily equal to AM.

6 CRISTIAN S. CALUDE, LUDWIG STAIGER

The processes considered here may stop or not after finitely many steps. To treat both
cases in a uniform way we assume in the first case that the last state is repeated indefi-
nitely. In this way we don’t need to test whether the computation of M eventually stops
or not, so we avoid paradoxes like the Thompson lamp [28].

A detailed account of such acceptance processes is given in the survey papers [13, 24].
We denote by ran(M, x) (in(M, x), respectively) the set of states Sx of M occurring (occur-
ring infinitely often, respectively) in the computation process on input x. For an acceler-
ated Turing machine M = (X, Γ, S, s0, sa, �, δ) and a subset T ⊆ 2S define the following
languages

ATran(M,S) = {x : ran(M, x) ∈ T }(2)
ATin(M,S) = {x : in(M, x) ∈ T }(3)

Let Σ1, Π1, Π2 and Σ2 be the first classes of the arithmetical hierarchy of languages (see
[17, 29]). In particular, Σ1 is the class of computably enumerable languages and Π1 is the
class of their complements. By Bool(M) we denote the closure of a set of sets M under
Boolean operations.

Based on [23], we have the following results:

Theorem 7. For the classes of accepted languages the following identities hold true:

{ATran(M,S) : M = (X, Γ, S, s0, �, δ) an ATM } = Bool(Σ1),
{ATin(M,S) : M = (X, Γ, S, s0, �, δ) an ATM } = Bool(Σ2).

ACKNOWLEDGMENT

We thank L. Fearnley for posing the problem discussed in this note, P. Potgieter for
illuminating discussions, and the anonymous referees for excellent critical comments.

REFERENCES

[1] H. Andréka, I. Németi, P. Németi, J. X. Madarász, G. Székely. Logic and Relativity Theory, Course Notes
2006, 27 pages.

[2] J. L. Balcázar, J. Dı́az, L. Gabarró, Structural Complexity I, Second revised ed., Springer-Verlag, Berlin
1995.

[3] J. Barrow. The Infinite Book. A Short Guide to the Boundless, Timeless and the Endless, Jonathan Cape, London,
2005.

[4] R. M. Blake. The paradox of temporal process, J. Philos. 23 (1926), 645–654.
[5] G. Boolos, R. C. Jeffrey. Computability and Logic, Cambridge University Press, Cambridge, 1980.
[6] C. S. Calude, G. Păun. Bio-steps beyond Turing, Biosystems 77 (1–3) (2004), 175–194.
[7] R. S. Cohen and A. Y. Gold. ω-computations on Turing machines, Theoret. Comput. Sci. 6 (1978), 1–23.
[8] B. Copeland. Accelerating Turing machines, Minds and Machines 12 (2) (2002), 281–300.
[9] G. Etesi, I. Németi. Non-Turing computations via Malament-Hogarth space-times, International Journal

of Theoretical Physics 41 (2002), 341–370.
[10] L. H. Landweber. Decision problems for ω-automata, Math. Syst. Theory 3, 4 (1969), 376–384.
[11] L. Fearnley. Email to (and discussions with) C. Calude, 3 December 2008.

A NOTE ON ACCELERATED TURING MACHINES 7

[12] M. Hogarth. Does general relativity allow an observer to view eternity in a finite time? Foundations of

Physics Letters 5 (1992), 173–181.
[13] J. Engelfriet, H. J. Hoogeboom. X-automata on ω-words, Theoret. Comput. Sci. 110, 1 (1993), 1–51.
[14] L. Floridi (ed.). The Blackwell Guide to the Philosophy of Computing and Information, Blackwell, Malden MA,

2004.
[15] T. Ord. Hypercomputation: Computing More than the Turing Machine, Honours Thesis, Computer Science

Department, University of Melbourne, Australia, 2002; arxiv.org/ftp/math/papers/0209/0209332.
pdf.

[16] P. H. Potgieter. Zeno machines and hypercomputation, Theoretical Computer Science 358 (2006), 23–33.
Also in arXiv:cs.CC/0412022.

[17] H. Rogers. Theory of Recursive Functions and Effective Computability, McGraw Hill, New York 1967.
[18] G. Rozenberg, A. Salomaa (eds.). Handbook of Formal Languages, Springer-Verlag, Berlin, 1997.
[19] B Russell. The limits of empiricism, Proc. Aristotelian Soc. 36 (1936), 131–150.
[20] O. Shagrir. Accelerating Turing machines, in F. Stadler and M. Stroltzner (eds.). Time and History (Papers of

the 28th International Wittgenstein Symposium), Austrian Ludwig Wittgenstein Society, 2005, pp. 276–278.
[21] O. Shagrir. Super-tasks, accelerating Turing machines and uncomputability, Theoretical Computer Science,

317 (2004), 105–114.
[22] M. Sipser. Introduction to the Theory of Computation, PWS, Boston, 2006, second edition.
[23] L. Staiger, ω-computations on Turing machines and the accepted languages, in L. Lovász and E. Sze-

merédi (eds.). Coll. Math. Soc. Janos Bolyai No.44, North Holland, Amsterdam 1986, 393–403.
[24] L. Staiger. ω-languages, in [18], Vol. 3, 339–387.
[25] L. Staiger and K. Wagner. Rekursive Folgenmengen I, Zeitschr. Math. Logik u. Grundl. Mathematik 24, 6

(1978), 523–538 (in German). A preliminary version appeared as: K. Wagner and L. Staiger, Recursive
ω-languages, in M. Karpiński (ed.). Proc. Fundamentals of Computation Theory ’77, Lect. Notes Comput.
Sci. 56, Springer Verlag, Berlin 1977, 532–537.

[26] I. Stewart. Deciding the undecidable, Nature 352 (1991), 664–665.
[27] K. Svozil. The Church-Turing thesis as a guiding principle for physics, in: C. Calude, J. Casti, M. Dinneen

(eds.). Unconventional Models of Computation, Springer, Berlin, 1998, 371–385.
[28] K. Svozil. On the Brightness of the Thomson Lamp. A Prolegomenon to Quantum Recursion Theory,

CDMTCS Research Report 360, 2009.
[29] K. Wagner, G. Wechsung. Computational Complexity, Deutscher Verlag der Wissenschaften, Berlin, 1986.
[30] H. Weyl. Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, 1949.
[31] J. Wiedermann, J. van Leeuwen. Relativistic computers and non-uniform complexity theory, in C. S.

Calude, M. J. Dinneen, F. Peper (eds.). Unconventional Models of Computation, Lecture Notes Comput. Sci.
2509, Springer-Verlag, Heidelberg, 2002, 278–298.

CDMTCS
Research
Report
Series

A Note on Accelerated
Turing Machines

C. S. Calude1 and L. Staiger2

1University of Auckland, NZ
2Martin-Luther-Universität, Germany

CDMTCS-350
February 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

