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Abstract

We consider the problems of finding spanning k-caterpillars and k-trees in
graphs. We first show that the problem of whether a graph has a spanning k-
caterpillar is NP-complete, for all k ≥ 1. Then we give a linear time algorithm for
finding a spanning 1-caterpillar in a graph with treewidth k. Also, as a generalized
versions of the depth-first search and the breadth-first search algorithms, we intro-
duce the k-tree search (KTS) algorithm and we use it in a heuristic algorithm for
finding a large k-caterpillar in a graph.

1 Introduction

One can consider k-trees as generalization of trees and they are built from a complete
graph on k vertices by repeated addition of vertices, such that each new vertex is just
connected to a k-clique [13, 1]. To build a k-caterpillar we need to restrict the process of
attaching a new vertex to k vertices of one of those last k-cliques that has been formed (for
more formal definitions see Section 2). Having a spanning tree is considered as a measure
of reliability in a network and one may need to find a spanning k-tree or k-caterpillar as
a more reliable substructure in a network; since a network with such substructure would
be immune to k− 1 nodes or k− 1 links failures. For results concerning spanning 2-trees
see Farley [7]. Recently, Tan and Zhang [14] used 1-caterpillars to solve some problems
concerning the Consecutive Ones Property problem. They also showed that the Spanning
1-Caterpillar problem in graphs with maximum degree 3 is NP-complete.

Bern [2] showed that for all k ≥ 2 the problem of whether a graph has a spanning
k-tree is NP-complete. He also gave an approximation algorithm for finding a minimum
spanning k-tree in a weighted graph, using an idea of Farley [7]. Cai and Maffraye [5]
proved that the problem remains NP-complete even when it is restricted to split graphs,
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graphs with maximum degree 3k + 2, and planar graphs (for k = 2). Later, Cai [4]
presented an approximation algorithm for finding a minimum spanning 2-tree in graphs
whose edge weights satisfy the triangle inequality and graphs that are complete Euclidean
graphs on a set of points in the plane.

The natural question that arises is whether the problem of finding a spanning k-
caterpillar is easier than finding a spanning k-tree. In Section 2 we give a negative
answer to this question by showing that the problem remains NP-complete even when
it is restricted to searching for a spanning k-caterpillar in a graph, for any k ≥ 1. To
cope with the hardness of the problem we present an algorithm for finding a spanning 1-
caterpillar in a graph with bounded treewidth in Section 3. Then in Section 4 we present
and analyze the performance of a heuristic algorithm that finds a large k-tree in a given
graph and we modify the algorithm to search for a large k-caterpillar in a graph.

2 Preliminaries

In this paper we suppose that all graphs are undirected and they have no multiple edges
or loops. If G = (V, E) is a graph and U ⊆ V is any set of vertices, G[U ] denotes the
induced subgraph on U . We also use the same notation to refer to the induced subgraph
G[H ] on a subgraph H . For each H ⊆ G we denote its neighborhood by

N(H) = {v | ∃u ∈ H, (u, v) ∈ E and v /∈ H}.

The closed neighborhood of H is denoted as N [H ] = N(H)∪H . A graph G is a k-tree if
G is a k-clique or G is obtained recursively from a k-tree G′ by attaching a new vertex to
an induced k-clique of G′. The first k-clique in this process is called the base of a k-tree.
Each vertex of degree k in a k-tree is called a k-leaf. A partial k-tree is any subgraph of
a k-tree.

Partial k-trees are also referred as graphs with bounded treewidth k. The concept of
treewidth became widely known by Robertson and Seymour’s work on graph minors [12].
Although, before that, it was appeared by different names in literatures, see Halin [9]
and Rose [13]. Here we use the constructive definition of partial k-trees. Since, as we
later show, it is closer to our k-parse data structure for representing graphs of bounded
treewidth. For an up-to-date survey on treewidth refer to Bodlaender [3].

A simplicial vertex of a graph is a vertex whose neighborhood induces a clique. An
ordering of the vertices σ = [v1, . . . , vn] is called a perfect elimination scheme if for
every 1 ≤ i ≤ n, vi is a simplicial vertex in G[vi, . . . , vn]. If vi is a vertex in a perfect
elimination scheme then we refer to each clique in N(vi) ∩ {vi, . . . , vn} as a parent of vi.
We say two k-cliques are smooth neighbors if the induced subgraph of their union has a
perfect elimination scheme. Note that each k-tree has a perfect elimination scheme.

A k-boundaried graph is a pair (G, ∂) of a graph G = (V, E) and an injective function
∂ from {0, . . . , k} to V . The image of ∂ is the set of boundaried vertices and is denoted by
Im(∂). When it is clear from the context, we abuse the notation and refer to Im(∂) as ∂.
A graph G is a k-caterpillar if it is (1) a k-clique; or (2) a k-boundaried (k +1)-clique; or
(3) a k-boundaried graph (G′, ∂′) that results from attaching a new vertex v to k vertices
of Im(∂) of a k-caterpillar (G, ∂), such that Im(∂′) = N [v]. It is easy to see that each
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Figure 1: (a) A 1-caterpillar with heads (dashed), leaves (dash-dotted), and spine (dot-
ted), (b) a 1-star.

k-caterpillar is also a k-tree. Some authors use the term k-path instead of k-caterpillar
but since k-path also refers to a different concept in the Mathematics and Computer
Science literature, we use the term k-caterpillar to avoid any confusion, for example see
[8, 10].

If one deletes all k-leaves of a k-caterpillar the remaining (nonempty) subgraph is
called a k-spine. A k-star is a k-caterpillar that has a k-clique as its k-spine. If a k-
caterpillar G is not a k-star, then its k-spine can be considered as an alternating sequence
of distinct k-cliques and (k + 1)-cliques (e0, t1, . . . , tn, en). Where eis are k-cliques and
tis are (k + 1)-cliques, and the sequence starts and ends with k-cliques, e0 and en, see
Proskurowski [11]. Each k-caterpillar has two heads. Each head is a subgraph induced
by the union of ej , for j = 0, n, and the k-leaves attached to it. See Figure 1.

A spanning k-tree (k-caterpillar) of a graph is a k-tree (k-caterpillar) that composed
of all the vertices of the graph.

Here we introduce the k-parse data structure for representing partial k-trees and k-
caterpillars. We first show how a k-caterpillar can be represented by a string of single or
paired boundary values. For more detailed description refer to Dinneen [6].

The partial k-caterpillars can be generated by strings of (unary) operators from the
following operator set Σk = Vk ∪ Ek:

Vk = { 0j, . . . , kj} and Ek = { i j | 0 ≤ i < j ≤ k}.

To generate partial k-trees, an additional (binary) operator ⊕, called circle plus, is added
to Σk. The semantics of these operators on boundaried graphs G and H of boundary
size at most k + 1 are as follows:

G ij Add an isolated vertex to the graph G, and label it as
the new boundary vertex i.

G i j Add an edge between boundaried vertices i and j of G
(ignore if operation causes a multi-edge).

G ⊕ H Take the disjoint union of G and H except that equal-
labeled boundary vertices of G and H are identified.

It is syntactically incorrect to use the operator i j without being preceded by both ij

and jj, and the operator ⊕ must be applied to graphs with the same boundary ∂. A
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Figure 2: (a) A graph G and (b) its spanning 2-caterpillar instance.

graph described by a string (tree, if ⊕ is used) of these operators is called a k-parse, and
has an implicit labeled boundary ∂ of at most k + 1 vertices. By convention, a k-parse
begins with the operator string [ 0j, 1j, . . . , kj] which represents the edgeless graph of
order k + 1. Throughout this paper, we refer to a k-parse and the graph it represents
interchangeably. Let G = (g0, g1, . . . , gn) be a k-parse and Z = (z0, z1, . . . , zm) be any
sequence of operators over Σk. The concatenation (·) of G and Z is defined as

G · Z = (g0, g1, . . . , gn, z0, z1, . . . , zm).

(For the treewidth case, G and Z are viewed as two connected subtree factors of a
parse tree G · Z instead of two parts of a sequence of operators.)

As we noted earlier, Bern [2] showed that, for a fix k, finding a spanning k-tree in
a graph is NP-complete. In the following theorem we prove that when the problem is
restricted to finding a spanning k-caterpillar, it still remains intractable. Let us state the
problem formally.

Problem: Spanning k-Caterpillar
Instance: A graph G = (V, E),
Question: Does G contain a spanning k-caterpillar?

Theorem 1 For each k ≥ 1, the Spanning k-Caterpillar problem is NP-complete.

Proof: We prove the theorem by transforming the Hamiltonian path problem to the
spanning k-caterpillar problem. Let G = (V, E) be an instance of the Hamiltonian
path problem. We construct a graph G̃ = (Ṽ , Ẽ) such that |Ṽ | = (k + 1)|V | and
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|Ẽ| = (k/2)(k + 1)(|E| + |V |). To each v ∈ V we assign a k-clique K̃v that we label its
vertices by {ṽ1, . . . , ṽk}. For each two adjacent vertices v and w in G we assign k(k+1)/2
edges in G̃ by connecting each ṽ to {w̃1, . . . , w̃(k−i+1)}, 1 ≤ i ≤ k. It is easy to see that
by this process each w̃j is also adjacent to {ṽ1, . . . , ṽ(k−j+1)}, 1 ≤ j ≤ k. Then for each
k-clique K̃v in G̃ we add a new vertex l̃v and we connect it to all vertices in K̃v. In Figure
2 the process is shown for a graph G when k = 2.

Now let G = (V, E), |V | = n, be a graph with a Hamiltonian path, P = v1, v2, . . . , vn.
We show G̃ has a spanning k-caterpillar, too. To construct an spanning k-caterpillar
for G̃, we first choose K̃v1

as the base and connect l̃v1
to all its vertices. Then for each

fixed i, i = 2, . . . , n, we choose ṽj
i , j = 1, . . . , k from K̃vi

and we attach it to the vertices

{ṽ1
i−1, . . . , ṽ

(k−j+1)
i−1 } in K̃vi−1

; note that by this process the set {ṽ1
i , . . . , ṽ

j
i , ṽ

1
i−1, . . . , ṽ

(k−j+1)
i−1 }

forms a (k+1)-clique and they are the vertices of the boundary value set. Then we attach
l̃vi

to K̃vi
and continue the process for i + 1, i < n.

Now consider a graph G whose corresponding graph G̃ has a spanning k-caterpillar, H̃.
The construction of H̃ from a base K imposes an ordering on the vertices of G̃, especially
on the k-leaves. Let {lvi1

, . . . , lvin
} be the order of the k-leaves in the construction of

H̃ . We show that P = vi1 , . . . , vin is a Hamiltonian path for G. Let lvi
and lvi+1

,

i = 1, . . . , n−1 be two consecutive k-leaves and also let K̃vi
= N(lvi

) and K̃vi+1
= N(lvi+1

).

Because of our method for constructing G̃ from G, we just need to prove that there is at
least an edge between K̃vi

and K̃vi+1
. As lvi

is just attached to K̃vi
, in ordering of H̃ it

appears exactly after the last vertex of it, also it is the same for lvi+1
and K̃vi+1

. So the

vertices of K̃vi+1
should be attached to K̃vi

. �

3 Finding a spanning 1-caterpillar in a partial k-tree

In this section we show that the problem of finding a spanning 1-caterpillar in a partial
k-tree with n vertices has an algorithm in O(5k+1B2

k+1n), where Bk+1 is the (k + 1)th
Bell number. Throughout this section we suppose that G is represented as a k-parse
G = (g0, . . . , gm).

We use a forest of at most k + 1 different 1-caterpillars as a partial solution, each has
at least one vertex in the boundary set ∂ = {0, . . . , k}. The main point is to code the
information of each partial solution in a state vector S = (A, B). We define the set A as

A = {(b0, Lb0), . . . , (br, Lbr
)},

where in (bi, Lbi
), 0 ≤ i ≤ r ≤ k, each bi represents a distict boundary value from ∂.

Each Lbi
is a label from the set {H, S, C, I}, where H, S, C, and I are characteristics

of boundary vertices in a partial solution. They stand respectively for head, spine,
center (of a k-star), and isolated vertex. The set B is a partition set of ∂. If any
two boundary vertices belong to the same element of B, then they belong to the same
connected component of a partial solution that is represented by B.

Note that we do not consider any label for leaves. Since each leaf that appears as a
neighbor of a spine has no role in extending a partial solution. Those leaves that belong
to a head appear with an H label in a state vector. A leaf that is a boundary vertex and
is not part of a head just appears as a member in an element of a partition set B.
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In accordance with our dynamic programming approach, we use a table T with rows
indexed by state vectors and columns indexed by k-parse operators from gk to gm. We
initialize all entries of T to the value false. Due to our convention for the first k + 1
operators we have gi = ij, 0 ≤ i ≤ k. So at the first step we assign the value true to
T ((A, B), gk), where A = {(0, I), . . . , (k, I)} and B = {{0}, {1}, . . . , {k}}. In the next
steps we compute entries of gp column by using the following rules and the values for
gp−1, k < p ≤ m.

Vertex operator ij: In a vertex operation a boundary vertex i is replaced by an
isolated vertex. Let T ((A, B), gp−1) be a true entry of T and let Si be the element
of B that contains i.

If Si − {i} is not empty, we set the entry T ((A′, B′), gp) to true where

A′ = (A − {(i, Li)}) ∪ {(i, I)}

and
B′ = (B − {Si}) ∪ {{Si − i}, {i}}.

Otherwise, T ((A, B), gp−1) produces no entry true for the new column gp.

Edge operator i j : When gp is an edge operator, we initially set T ((A, B), gp) =
T ((A, B), gp−1). Let Si and Sj be the elements of B that contain i and j, respec-
tively. Then if Si 6= Sj and T ((A, B), gp−1) = true, we set T ((A′, B′), gp) to true
using the following rules:

1. if Li = H and Lj = H if there is no k ∈ Si, Sj such that (k, C) ∈ A then
A′ = (A − {(i, H), (j, H)}) ∪ {(i, S), (j, S)}, otherwise
A′ = (A − {(i, H), (j, H), (k, C)}) ∪ {(i, S), (j, S), (k, H)},

2. if Li = H and Lj = C then A′ = (A − {(i, H), (j, C)}) ∪ {(i, S), (j, H)},

3. if Li = H and Lj = I then A′ = (A − {(j, I)}) ∪ {(j, H)}, also add A′ =
(A − {(i, H), (j, I)}) ∪ {(i, S), (j, H)},

4. if Li = C and Lj = C then A′ = (A − {(i, C), (j, C)}) ∪ {(i, H), (j, H)},

5. if Li = C and Lj = I then A′ = (A − {(j, I)}) ∪ {(j, H)},

6. if Li = S and Lj = I then A′ = A,

7. if Li = I and Lj = I then A′ = (A − {(i, I), (j, I)}) ∪ {(i, C), (j, H)}, also
A′ = (A − {(i, I), (j, I)}) ∪ {(i, H), (j, C)}.

In all cases we set
B′ = (B − {Si, Sj}) ∪ {Si ∪ Sj}.

When Li ∈ {H, C, S} and Lj = S then the resulted graph of joining i and j is not
a 1-caterpillar and is discarded.

Boundary Join Operator G ⊕ G′: We suppose the graphs G and G′ are represented
by G = (g0, . . . , gp) and G′ = (g′

0, . . . , g
′

q), respectively. We use the last columns of
the tables T and T ′ to fill the first column of the table T ′′ for G′′ = G ⊕ G′. Let
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Figure 3: (a) A graph G, (b) a subgraph H and (c) another subgraph H ′.

T ((A, B), gp) and T ′((A′, B′), g′

q) be a pair of true entries in T and T ′. If there are
two different boundary values i and j such that Si = Sj and S ′

i = S ′

j then unifying
the boundary vertices produces a cycle and the resulted graph is not acceptable as
a partial solution. So we consider only those pairs of entries in T and T ′ such that
if Si = Sj then S ′

i 6= S ′

j and vice versa, for i 6= j and i, j ∈ ∂.

The value of a row (A′′, B′′) of the first column of T ′′ is set to true by using the
values of (A, B) and (A′, B′). If (i, Li) ∈ A and (i, L′

i) ∈ A′ then we add (i, L′′

i ) to
A′′ due to the following rules:

1. If Li = S and L′

i ∈ {H, I, C} then L′′

i = S.

2. If Li = H and L′

i ∈ {I, C} then L′′

i = H , but if L′

i = H then L′′

i = S.

3. If Li = C and L′

i ∈ {C, I} then L′′

i = C.

4. If Li = I and L′

i = I then L′′

i = I.

5. If Li = I and there is no (i, L′

i) ∈ A′ then discard (i, L′′

i ).

6. If Li and L′

i do not belong to this list, A′′ = B′′ = ∅.

Also we have
B′′ = {Si ∪ S ′

i | i ∈ ∂, Si ∈ B, S ′

i ∈ B′}.

The final answer is yes if there is at least one entry true in the last column such that
its associated row is indexed by a vector (A, B), where B = ∂.

3.1 Illustrating the algorithm

Before proving the correctness of the algorithm, let us clarify the process by an example.
In Figure 3 we depict a graph G that is the result of the following 2-parse

G = (H ⊕ H ′) · ( 0j, 0 1 , 0 2 , 1j, 0 1).
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The subgraphs H = (h0, . . . , h12) and H ′ = (h′

0, . . . , h
′

11) are partial 2-caterpillars and
they are represented as 2-parses

H = ( 0j, 1j, 2j, 0 2 , 1 2 , 0j, 0 1 , 0 2 , 1j, 1 2 , 2j, 0 2 , 1 2)

and
H ′ = ( 0j, 1j, 2j, 0 1 , 0 2 , 0j, 0 1 , 0 2 , 2j, 0 2 , 1j, 1 2).

When the algorithm is applied to H the true entries of the first two columns and the last
two columns of the table are given next.

column h2: ({(0, I), (1, I), (2, I)}, {{0}, {1}, {2}}),

column h3: ({(0, H), (1, I), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, I), (2, H)}, {{0, 2}, {1}}), also true entries of the column h2.

...

column h10: ({(0, H), (1, I), (2, I)}, {{1}, {0}, {2}}),
({(0, I), (1, H), (2, I)}, {{0}, {1}, {2}}),
({(0, H), (1, H), (2, I)}, {{0, 1}, {2}}),
({(0, H), (2, I)}, {{0, 1}{2}}}).

column h11: ({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, H), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, H), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, H), (2, H), {{0, 1, 2}}),
({(0, H), (2, H)}, {{0, 1, 2}}),
({(0, S), (2, H)}, {{0, 1, 2}}), also true entries of the column h10.

Finally the last two column for H ′ are given next.

column h′

9: ({(0, C), (1, I), (2, I)}, {{0}, {2}, {1}}),
({(0, H), (1, I), (2, I)}, {{0}, {2}, {1}}),
({(0, H), (1, I), (2, I)}, {{0}, {2}, {1}}),
({(0, H), (1, I), (2, I)}, {{0}, {1}, {2}}),
({(1, I), (2, S)}, {{0}, {1}, {2}}),
({(0, S), (1, I), (2, I)}, {{0}, {1}, {2}}).

colum h′

11: ({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I)}, {{0, 2}, {1}}), also true entries of the column h′

9.

Now we use the rule concerning the boundary join operation to the entry

({(0, H), (1, I), (2, I)}, {{1}, {0}, {2}}),
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from column h9 and to the entry

({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),

from column h′

11. The resulting entry is

({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}).

We next apply the 2-parse operators from the extension to this entry (from the first
column of the table of H ⊕ H ′) and we have:

1. 0j: ({(0, I), (1, I), (2, H)}, {{0}, {1}, {2}}),

2. 0 1 : ({(0, H), (1, C), (2, H)}, {{0, 1}, {2}}), ({(0, C), (1,H), (2, H)}, {{0, 1}, {2}}),

3. 0 2 : ({(0, S), (1, C), (2, S)}, {{0, 1, 2}}), ({(0, H), (1, H), (2, S)}, {{0, 1, 2}}),

4. 1j: ({(0, S), (1, I), (2, S)}, {{0, 2}, {1}}), ({(0,H), (1, I), (2, S)}, {{0, 2}, {1}}),

5. 0 1 : ({(0, S), (2, S)}, {{0, 1, 2}}), ({(0, H), (1, H), (2, S)}, {{0, 1, 2}}),
({(0, S), (1, H), (2, S)}, {{0, 1, 2}}).

As it is seen from the result of the last operation, the graph G has a spanning 1-caterpillar.

3.2 Correctness of the algorithm

In this remaining part of the section we provide the next three lemmas that alongside
with Theorem 5 will show the correctness of our spanning 1-caterpillar algorithm.

Lemma 2 Let G = (g0, . . . , gm) be a partial k-tree and also let T be the table produced by
the algorithm. If T ((A, B), gm) is a true entry in the last column of T such that B = ∂,
then the graph G has a spanning 1-caterpillar.

Proof: We show that each true entry in the column p, p ≤ m of T relates to a partial
solution that has the following properties:

1. the partial solution is a forest of 1-caterpillars,

2. the partial solution covers all vertices in (g0, . . . , gp).

The conditions are satisfied for the only true entry in the first column of T . Since in
the first step we set the element T ((A, B), gk) to true, where A = {(0, I), . . . , (k, I)} and
B = {{0}, {1}, . . . , {k}}.

Now suppose that the conditions hold for each true entry in a column p − 1, k ≤
p− 1 < m. We show that they also hold for each true entry in the column p. Due to our
rule for a vertex operation the lemma is true when T ((A′, B′), gp) is the resulted entry
true from T ((A, B), gp) by a vertex operation. When gp is an edge operation Property
2 is trivially hold, since no new vertex is added. Also each rule for an edge operation
maintains the first property. The same argument is applicable when gp is a boundary
join operation.

Since Properties 1 and 2 hold for gm and also since B = ∂, we conclude that the
partial solution corresponds to T ((A, B), gm) is a spanning 1-caterpillar for G. �
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Lemma 3 If G = (g0, . . . , gm) is a partial k-caterpillar that has a spanning 1-caterpillar
then the last column of the table T that results from the algorithm has a true entry
T ((A, B), gm) with B = ∂.

Proof: Without loss of generality we suppose that T is a spanning 1-caterpillar of G such
that each leaf of it is attached to a spine vertex with the smallest index in the k-parse
representation. We prove a stronger claim by showing that such spanning 1-caterpillar
appears as a partial solution represented by an entry true in the last column.

We prove the statement by an inductive argument on the number of vertices of the
spine of T . If T has only one vertex on its spine then it is a 1-star and the vertex that
appears on the center of T takes a unique boundary value in the k-parse, otherwise it fails
to attach to all vertices of G. So the center of the star always appears on each boundary
and we attach it to a vertex u when u appears on a boundary by a vertex operation.

Now assume the lemma is valid for any k-parse that has a spanning 1-caterpillar with
less than p vertices on its spine, p ≥ 2. Let T be a spanning 1-caterpillar of G that has
p vertices on its spine. Suppose v is the spine vertex that is created by gf , the vertex
operation that assumes the largest index among all vertex operators corresponding to
spine vertices of T . We delete v and all its leaves in T and if v is not a head we connect its
two neighbors on the spine by adding an edge. The resulted graph H has a 1-caterpillar
D with p − 1 vertices on its spine. We can consider the k-parse representation of H
as (g0, . . . , gf−1), when v is a head, or (g0, . . . , gf−1).ge, where ge is the edge operation
corresponds to attaching the neighbors of v on the spine. Because of our inductive
assumption, the last column of the table of the algorithm, when applied to H , has a true
entry that its partial solution is D. Note that the table of H is the same as the table
produced by the algorithm when applied to G in the column f −1. If v is not a head in T
we just discard the edge operation ge to allow the neighbors of v on the spine to appear
as heads in the partial solution. Now as v stays as a boundary vertex during gf , . . . , gm,
the leaves of T can be attached to v by their appropriate edge operation. �

Lemma 4 Let G = H ⊕ H ′, where H and H ′ are partial k-caterpillars. If G has a
spanning 1-caterpillar then the column of the table T , that results from applying the
algorithm to G, has a true entry T ((A, B), H ⊕ H ′) with B = ∂.

Proof: If C is a spanning 1-caterpillar in G = H⊕H ′, then H∩C and H ′∩C are forests
of 1-caterpillars that span H and H ′, respectively. To connenct the (spanning) forsests
of 1-caterpillars in H , we first direct the edges on the spine of C from one head to the
other. Then we walk along the path on the spine. Once we leave H (by entering to a
non boundary vertex of H ′) and return to it (by entering to a non boundsry vertex of
H), we add an edge between the two consecutive visited boundary vertices. By the same
method we connect components of H ′ ∩ C. Note that since we connect the connected
components via their heads, the resulted graphs are spanning 1-caterpillar of H and H ′.
We consider the new edges as extensions of the k-parses of H and H ′.

Now we apply the algorithm to the extended k-parses of H and H ′. By Lemma 3 we
know that the last column of each table has a true entry. Since the extensions are done
by adding edges, there are also true entries on the last columns of the tables associated

10



to k-parse representations of H and H ′. In particalar, there are true entries that their
partial solutions are associated to H ∩ C and H ′ ∩ C, so joining them by an ⊕ operator
produces a true entry that has C as its partial solution. �

Theorem 5 The algorithm solves the spanning 1-caterpillar problem in O(5k+1Bk+1n)
for a partial k-caterpillar and in O(5k+1B2

k+1n) for a partial k-tree with n vertices; where
Bk+1 is the (k + 1)th Bell number.

Proof: Note that each k-parse G has a representation as (a) G = G′ · H , or (b) G =
G′ ⊕ G′′, where G′ and G′′ are partial k-trees and H is a sequence of vertex and edge
operators. The correctness of the algorithm follows from an inductive argument on the
number of operators as in (a) and (b). The validity of the base case is the result of
Lemmas 3 and 4. For the induction step one just need to use the same technique as
Lemma 4 to reduce a problem to the cases with less number of operations.

To solve the problem for a partial k-caterpillar, the algorithm uses a table that has
O(5k+1Bk+1n) entries. In the case when the graph is a partial k-tree, the algorithm
processes each boundary join operation by comparing all pairs of entries in the last two
columns of the joined graphs. So it takes O(5k+1B2

k+1n) steps. �

4 Depth-first and breadth-first search for k-trees

There is an efficient algorithm for recognizing a k-tree; that is choosing consecutively
k-leaves to remove vertices from a graph in any order the same as a perfect elimination
scheme. If the process fails to find a k-leaf at some step then the graph is not a k-tree.
As simply seen, this process is not applicable for finding a hidden k-tree in a graph.

The depth-first search and the breadth-first search algorithms are used as subroutines
in many graph algorithms. Since k-trees are considered as generalization of trees, one may
ask how we can generalize these algorithms for finding a hidden k-tree in a graph? We
try to answer this question by introducing a heuristic algorithm that, if it is implemented
in a proper way, resembles the foregoing algorithms. We refer to this algorithm as the
k-tree search algorithm (KTS).

Note that in a graph that has a spanning k-tree, each vertex is attached to at least
one k-clique. We use this trivial fact for designing a heuristic algorithm to extract k-trees
of a graph G. To save information during the process of our algorithm we use a list L to
save the order of vertices in a reverse order of their appearance in a perfect elimination
scheme. We also use a set S (with sompe priorty structure) to save k-cliques that appear
during the search process.

We first choose an arbitrary vertex v of the graph. Then we find a k-clique K in
G[N(v)] and save K in S. We also add the vertices in K as the first k vertices to L and
assign the empty set as the parent of all vertices.

We repeat the following steps until S becomes empty. We remove a k-clique K from
S and add each vertex u ∈ K to L if it is not added yet. For each w ∈

⋂

x∈K N(x) if w is
not in L, we update its parent by considering K as the new parent, otherwise we do not
change the parent of w. We then save all k-cliques comprising w and each set of k − 1
vertices of K in S.
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Figure 4: A graph with a spanning 2-tree.

Note that if one implements S (as a dynamic set) by a queue the resulting k-trees
extend in breadth fashion, and if S is implemented by a stack the resulting k-trees extend
in depth fashion. Sometimes, due to improper choices of vertices or k-cliques, an output
of the algorithm is a forest of k-trees and it does not cover all vertices of a graph. For
example in Figure 4 if we first choose the vertex v and then the edge (u, w) as a 2-clique,
the first resulting 2-tree is G[{v, u, w}]. This cause the output of the algorithm consists
of at least four connected components.

As a solution to such problems we propose to use the concept of neighborhood-
density to guide the search in a proper way. In a graph G the neighborhood-density of
two subgraphs H and H ′ of G is defined as

d(H, H ′) = |N(H) ∩ N(H ′)|.

This concept can be used in the algorithm by this way: In the first step choose the k-clique
K such that d(v, K) gets the maximum value among all k-cliques that are neighbors of
v. Also in the iterative steps of the algorithm, when a k-clique is chosen from the set S,
allow the next k-clique to be chosen if it is built from a vertex w ∈

⋂

x∈K N(x) and a
set of k − 1 vertices of K such that

d(w, K) = max{d(u, K) | u ∈
⋂

x∈K

N(x)}.

Now if one uses the guided version of the algorithm for the graph in Figure 4, the first 2-
clique is (x, y) rather than (u, v). Choosing the next 2-cliques by the same way, produces
a larger k-tree in comparison with the unguided version of the KTS algorithm.

We use the KTS algorithm as a subroutine to find a large k-caterpillar. We refer to
this as the k-caterpillar search algorithm (KCS). To this end we use a function ω that is
defined, on a path P , as

ω(P ) =

∣

∣

∣

∣

∣

∣

⋃

v∈V (P )

N [v]

∣

∣

∣

∣

∣

∣

.
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Figure 5: A somewhat difficult graph to find a spanning 1-caterpillar.

The function ω computes the number of vertices in a k-path comprising the number of
k-leaves that are attached to it. The KCS algorithm first uses the k-tree search algorithm
to find a forest of k-trees in a graph. Then for each pair of k-leaves, it finds a k-caterpillar
that has the largest number of vertices. This is done by computing the weight function
ω for each k-caterpillar between a pair of k-leaves.

It is worth to mention that the result of this algorithm depends on the result of the
k-tree search algorithm. For example see Figure 5. The graph is shown as though the
final result of applying the depth-first search algorithm; with back-edges that are not
part of the tree. As one can easily check by choosing the path with the largest weight, a
small portion of the total number of vertices is covered.

5 Conclusion and further work

We have primarily focused on the graph problem of deciding whether a graph contains
a spanning 1-caterpillar or not. This problem, although closely related to the classic
spanning tree problem (i.e., “Is the graph connected?”), turns out to be just as hard as
deciding if a graph contains an Hamiltonian path. To cope with this apparent intractabil-
ity we provide a new linear-time algorithm to decide this problem when input graphs are
of bounded treewidth. Our explicit dynamic programming rules for this algorithm are
quite simple but are also frugal in the amount of state information that needs to be
maintained.

In this paper we also propose two simple algorithmic heuristics that extend the stan-
dard graph searching techniques of breadth-first and depth-first search to find spanning
‘forests’ of k-trees and/or k-caterpillars. With the goal of finding large spanning k-
caterpillars, our experimental work with these simple heuristics seems promising. How-
ever, we would like to know if there exists a polynomial-time approximation algorithm
for finding the largest 1-caterpillar in a graph. There are other related optimization prob-
lems that are interesting like minimizing or maximizing the spine length over all possible
spanning k-caterpillars (assuming at least one exists).
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A natural extension to the work given in this paper is to study graphs with edge
weights. We know that finding minimum-weighted spanning trees is easy by very simple
greedy algorithms. Since we have shown that even deciding if a spanning k-caterpillar
exists is NP-hard it is easy to see that it is also hard to decide if an edge-weighted graph
contains a spanning k-caterpillar of total weight at most W . [Reduce any unweighted
graph G of order at least k to a copy of graph G with edge weights 1 and use W =
(

k

2

)

+ (|G| − k)k.] Similarly, finding good algorithms for finding minimum edge-weighted
spanning k-trees would be of interest.
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A A detailed example

In this section we give the details of applying the algorithm in Section 3 to the graph
depicted in Figure 3. We just show the true entries that are produced by each operator.
For the result of applying the final ⊕ operator see the main text.

1. The results of the algorithm, when applied to

H = ( 0j, 1j, 2j, 0 2 , 1 2 , 0j, 0 1 , 0 2 , 1j, 1 2 , 2j, 0 2 , 1 2) .

• h2 : ({(0, I), (1, I), (2, I)}, {{0}, {1}, {2}})

• h3 : ({(0, H), (1, I), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, I), (2, H)}, {{0, 2}, {1}}), also h2.

• h4 : ({(0, H), (1, H), (2, C)}, {{0, 1, 2}}),
({(0, C), (1, H), (2, H)}, {0, 1, 2}}),
({(0, C), (1, H), (2, S)}, {0, 1, 2}}),
({(0, I), (1, H), (2, C)}, {{0}, {1, 2}}),
({(0, I), (1, C), (2, H)}, {{0}, {1, 2}}), also h3.

• h5 : ({(0, I), (1, H), (2, C)}, {{0}, {1, 2}}),
({(0, I), (1, H), (2, H)}, {{0}, {1, 2}}),
({(0, I), (1, H), (2, S)}, {0}, {1, 2}}).

• h6 : ({(0, H), (1, H), (2, C)}, {{0, 1, 2}}),
({(0, H), (1, S), (2, C)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, S), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, S)}, {0, 1, 2}}),
({(0, H), (1, S), (2, S)}, {0, 1, 2}}), also h5.

• h7 : ({(0, H), (1, H), (2, C)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, S)}, {{0, 1, 2}}),
({(1, H), (2, S)}, {0, 1, 2}}), also h6.

• h8 : ({(0, I), (1, I), (2, C)}, {{0}, {1}, {2}}),
({(0, I), (1, I), (2, H)}, {{0}, {1}, {2}}),
({(0, H), (1, I), (2, C)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, S)}, {{0, 2}, {1}}),
({(1, I), (2, S)}, {{0, 2}, {1}}).
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• h9 : ({(0, I), (1, H), (2, C)}, {{0}, {1, 2}}),
({(0, I), (1, H), (2, H)}, {{0}, {1, 2}}),
({(0, I), (1, H), (2, S)}, {{0}, {1, 2}}),
({(0, H), (1, H), (2, C)}, {{1, 0, 2}}),
({(0, H), (1, H), (2, H)}, {{1, 0, 2}}),
({(0, H), (1, H), (2, S)}, {{1, 0, 2}}),
({(0, H), (2, S)}, {{1, 0, 2}}),
({(2, S)}, {0, 1, 2}}), also h8.

• h10 : ({(0, H), (1, I), (2, I)}, {{1}, {0}, {2}}),
({(0, I), (1, H), (2, I)}, {{0}, {1, }, {2}}),
({(0, H), (1, H), (2, I)}, {{0, 1}, {2}}),
({(0, H), (2, I)}, {{0, 1}{2}}).

• h11 : ({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, H), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, H), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, H), (2, H)}, {{0, 1, 2}}),
({(0, S), (2, H)}, {{0, 1, 2}}), also h10.

2. The results of the algorithm, when applied to

H ′ = ( 0j, 1j, 2j, 0 1 , 0 2 , 0j, 0 1 , 0 2 , 2j, 0 2 , 1j, 1 2) .

• h′

2 : ({(0, I), (1, I), (2, I)}, {{0}, {1}, {2}}).

• h′

3 : ({(0, H), (1, C), (2, I)}, {{0, 1}, {2}}),
({(0, C), (1, H), (2, I)}, {{0, 1}, {2}}), also h′

2.

• h′

4 : ({(0, H), (1, I), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, C), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, C), (2, H)}, {{0, 1, 2}}),
({(0, C), (1, H), (2, H)}, {{0, 1, 2}}), also h′

3.

• h′

5 : ({(0, I), (1, C), (2, I)}, {{0}, {1}, {2}}),
({(0, I), (1, H), (2, I)}, {{0}, {1}, {2}}),
({(0, I), (1, I), (2, C)}, {{0}, {1}, {2}}),
({(0, I), (1, I), (2, H)}, {{0}, {1}, {2}}),
({(0, I), (1, C), (2, H)}, {{0}, {1, 2}}),
({(0, I), (1, H), (2, H)}, {{0}, {1, 2}}).

• h′

6 : ({(0, H), (1, C), (2, I)}, {{0, 1}, {2}}),
({(0, H), (1, H), (2, I)}, {{0, 1}, {2}}),
({(0, H), (1, S), (2, I)}, {{0, 1}, {2}}),
({(0, H), (1, C), (2, C)}, {{0, 1}, {2}}),
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({(0, C), (1, H), (2, C)}, {{0, 1}, {2}}),
({(0, H), (1, C), (2, H)}, {{0, 1}, {2}}),
({(0, C), (1, H), (2, H)}, {{0, 1}, {2}}),
({(0, H), (1, C), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}})
({(0, H), (1, S), (2, H)}, {{0, 1, 2}}), also h′

5.

• h′

7 : ({(0, H), (1, C), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, C), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, H), (2, C)}, {{0, 2}, {1}}),
({(0, C), (1, H), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, C)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, S)}, {{0, 2}, {1}}),
({(0, H), (1, C), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, C), (2, S)}, {{0, 1, 2}}),
({(1, C), (2, S)}, {{0, 1, 2}}),
({(0, H), (1, H), (2, H)}, {{0, 1, 2}})
({(0, H), (1, H), (2, S)}, {{0, 1, 2}})
({(0, S), (1, C), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, H), (2, H)}, {{0, 1, 2}}),
({(0, H), (1, S), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, S), (2, H)}, {{0, 1, 2}}),
({(0, S), (1, C), (2, S)}, {{0, 1, 2}}), also h′

6.

• h′

8 : {(0, I), (1, I), (2, H), {{0}, {1}, {2}},
{(0, H), (1, I), (2, I), {{0}, {1}, {2}},
{(0, H), (1, I), (2, C), {{0}, {1}, {2}},
{(0, H), (1, I), (2, H), {{0}, {1}, {2}},
{(0, C), (1, I), (2, H), {{0, 2}, {1}},
{(0, H), (1, I), (2, H), {{0, 2}, {1}},
{(0, H), (1, I), (2, S), {{0, 2}, {1}},
({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, H), (1, I), (2, S)}, {{0, 2}, {1}}),
({(1, I), (2, S)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, S)}, {{0, 2}, {1}}).

• h′

9 : {(0, C), (1, I), (2, I), {{0}, {2}, {1}},
{(0, H), (1, I), (2, I), {{0}, {2}, {1}},
{(0, H), (1, I), (2, I), {{0}, {2}, {1}},
({(0, H), (1, I), (2, I)}, {{0}, {1}, {2}}),
({(1, I), (2, S)}, {{0}, {1}, {2}}),
({(0, S), (1, I), (2, I)}, {{0}, {1}, {2}}).

• h′

10 : ({(0, H), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I), (2, H)}, {{0, 2}, {1}}),
({(0, S), (1, I)}, {{0, 2}, {1}}), also h′

9.
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