
CDMTCS
Research
Report
Series

Universal Semimeasures:
An Introduction

Nicholas J. Hay
University of Auckland, NZ

CDMTCS-300
February 2007

Centre for Discrete Mathematics and
Theoretical Computer Science

Universal Semimeasures:
An Introduction

Nicholas James Hay

under the supervision of

Professor Cristian S. Calude and Dr. André Nies

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science in Computer Science,

The University of Auckland, 2007.

Abstract

Universal semimeasures [Hut05][LV97], a type of function derived from probability

and computability theory, describe extremely powerful sequence predictors. They

outperform all other predictors but for a penalty no more than the predictor’s com-

plexity. They learn to predict any computable sequence with error no more than

the sequence’s complexity. Universal semimeasures work by modelling the sequence

as generated by an unknown program running on a universal computer. Although

these predictors are uncomputable, and so cannot be implemented in practice, they

serve to describe an ideal: an existence proof for systems that predict better than

humans.

We review the mathematics behind universal semimeasures and discuss some of its

implications. Our approach differs from previous ones in several respects. We show

semimeasures correspond to probability measures over the set of finite and infinite

sequences, establishing a rigorous footing. We demonstrate the existence of universal

semimeasures using a novel proof of the equivalence between enumerable semimea-

sures and processes. We take into account the possibility of sequence termination

leading to a stronger definition of universality. To make explicit hidden constants we

define a novel complexity measure, simulation complexity, which generalises mono-

tone complexity. Finally, we emphasise the use of logarithmic scoring rules [Ber79]

to measure error in prediction.

iii

Acknowledgements

First, thanks to my supervisors, Cristian Calude and André Nies, for their comments

and advice.

Next, Marcus Hutter and Shane Legg, for their comments on early results presented

at the 2006 Dagstuhl Seminar on Kolmogorov Complexity. Alex Raichev, for help

with both LATEX and math. Ludwig Staiger, for his help with measure theory. Fuad

Tabba, for general help with writing the thesis. Eliezer Yudkowsky, for his comments

on an earlier version of this work, and for discussions which formed the seed for some

of the more “philosophical” sections.

Finally, my family for proofreading the less technical parts of the thesis, and for

their ever-present support.

v

Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Notation ix

Introduction 1

Connection to literature . 2

1 Probability theory 5

1.1 Making decisions . 5

1.1.1 Expected utility theory . 7

1.2 Measuring a prediction’s error . 8

2 Semimeasures 13

2.1 Sequence notation . 13

2.2 Defining semimeasures . 14

2.3 Semimeasures are measures over X# 17

2.3.1 Measurable sets and probability measures 18

2.3.2 From probability measures to semimeasures and back 20

2.3.3 Explicit form for Σ0 sets . 20

2.3.4 Canonical presentation for Σ0 21

2.3.5 From semimeasures to countable additive functions 22

2.3.6 Prefix-free and complete subsets of X∗ 23

2.3.7 Establishing countable additivity 25

vii

viii CONTENTS

3 Computability and prediction 29

3.1 Computability of sets . 30

3.2 Processes: computable systems . 31

3.2.1 Defining processes . 32

3.2.2 Processes are equivalent to interactive algorithms 35

3.2.3 The semimeasure generated by a process 38

3.3 Enumerable semimeasures . 43

3.4 Processes and semimeasures are equivalent 44

3.4.1 A process’s semimeasure is enumerable 45

3.4.2 Building processes . 47

3.4.3 Enumerating processes . 58

3.4.4 Approximating semimeasures with processes 61

3.4.5 Enumerable semimeasures are those generated by processes . . 75

3.4.6 Interpreting the equivalence 77

4 Universal semimeasures 81

4.1 Dominance . 82

4.1.1 Weak and strong dominance are distinct 84

4.2 Universal semimeasures . 86

4.2.1 Simulation . 86

4.2.2 Simulation complexity . 88

4.2.3 Dominance from simulation 90

4.2.4 Universal semimeasures from universal processes 92

4.2.5 Humanly accessible sequences may be simple 94

Future work . 96

Conclusion . 97

A Auxiliary lemmata 99

Bibliography 105

List of Notation

Err[p] The error of a prediction; equal to − log2 p . 12

|x| The length of a sequence x ∈ X# . 13

B The set of binary digits; equal to {0, 1} . 13

X∗ The set of finite sequences (strings) over the set X 14

X∞ The set of infinite sequences over the set X . 14

X# The set of finite and infinite sequences over the set X 14

ε The empty string . 14

xy The concatenation of two sequences x and y . 14

x # y The sequence x is a prefix of the sequence y . 14

xi:j The substring from the ith to jth character . 14

sup S The shortest sequence extending every element of S 14

ν, ρ Typical semimeasure variables . 16

Γx A cylinder set, the set of sequences extending x 18

Σ The smallest σ-algebra containing all cylinder sets 19

Σ0 The smallest algebra containing all cylinder sets 20

λ The uniform semimeasure . 40

µM The semimeasure generated by process M . 41

M [r] The process generated by request sequence r 48

SU(M) The weak simulation complexity of the process M relative to U . 88

SU(M↓) The strong simulation complexity of the process M relative to U 88

SU(ν) The weak simulation complexity of the semimeasure ν 89

SU(ν↓) The strong simulation complexity of the semimeasure ν 89

SU(x) The weak simulation complexity of the sequence x 89

SU(x↓) The strong simulation complexity of the sequence x 89

Γ0
x The set of infinite sequences extending x . 99

ix

Introduction

Suppose you are predicting next week’s weather in order to decide whether to cancel

the county fair. This prediction can take into account a wide variety of information:

the weather today, the newspaper’s forecast, whether your knee is aching, the tem-

perature distribution over the Pacific, or numerical simulations of the atmosphere.

This information is distilled into whether it will be rainy, sunny, cloudy, or snowy

on each day. In general there is uncertainty about which sequence of outcomes will

occur so we use probabilities, numbers between 0 and 1, to weigh how likely each

possibility is [Jay03] (see Section 1.1 for an example and further details).

Suppose instead you are trying to predict the output of a computer running a com-

pletely unknown (or random) program. A computer program is a list of instructions

used to generate a sequence. For example, “output twelve 0’s” is such a program.

Programs are encoded into a sequence of bits, for instance the previous program

might correspond to the sequence “00001100110”. If we know nothing about the

program each bit is equally likely to be 0 or 1. The probability of any particular pro-

gram of length n is then 1/2n. The probability the computer outputs any particular

sequence is the sum of the probabilities of all the programs that output it.

This thesis demonstrates that modelling a sequence as if it were generated by a

computer running a random program is a generally excellent method for predicting

a sequence. These predictors correspond to mathematical objects termed universal

semimeasures. This method works because sequences with patterns in them will be

generated by programs shorter than themselves. Even if the patterns are subtle,

when the sequence is sufficiently long1 these predictors will perform well. Unfortu-

nately, because some programs never halt these predictors cannot be implemented

1Where sufficiently long is more like 220 bits than 2220
bits i.e. the constants aren’t pathological.

Although the sequence of next week’s weather (rainy, sunny, cloudy, or snowy) is too short, the
sequence of temperature and pressure readings over a country probably isn’t.

1

2 INTRODUCTION

on a computer2. It, however, serves as an ideal to approximate, and the theory we

develop also covers predictors we can implement.

Chapter 1 gives an informal introduction to probabilities and how they can be

used to make decisions. This is applied to derive a measurement of prediction

error. Chapter 4 will use this measure to evaluate the performance of universal

semimeasures.

Chapter 2 introduces semimeasures, our mathematical tool for representing predic-

tions. These are proven equivalent to probability measures over the set of all finite

and infinite sequences. This equivalence is interesting as rigorous probability theory

is based on probability measures3 [Ash72]. As a result, it features in later definitions

and proofs.

Chapter 3 adds computability to the mix. It first defines processes, computable

systems which receive input and produce output. It next defines enumerable semi-

measures, those semimeasures which can be computed from below. These two no-

tions of computability are then proven equivalent. All later results depend on this

equivalence.

Chapter 4 constructs universal semimeasures and proves bounds on their perfor-

mance. It introduces and links the concepts of dominance between semimeasures

and simulations between processes. It defines a novel complexity measure, simu-

lation complexity, which features in the bounds proved. It concludes with some

remarks why these semimeasures may be highly effective at predicting sequences in

our universe, were it possible to implement them.

Connection to literature

This thesis is a self-contained exposition on universal (enumerable) semimeasures,

but it does not exist in isolation. Our results are similar those in [Sol64] [ZL70]

[Sol78] [LV97] [Leg97] [Hut05]. In the following we compare our approach those

2We cannot in general separate programs that halt from those which don’t (this is the halting
problem [Odi89]).

3See, however, [Jay03] for cautionary remarks on why measures over infinite sets should be
derived from those over finite sets as a limit. This can be done in our case by treating X#, the
set of finite and infinite sequences, as the limit of X≤n, the set of sequences with length at most
n. Jaynes also offers an illuminating derivation of probability theory as classical logic extended to
uncertain propositions, and a full treatment of the theory from this perspective.

INTRODUCTION 3

before us. This will be interesting to readers who are familiar with the field, or

who have already read the bulk of the thesis. For history and further references see

[Hut05] and [LV97].

1. We differ from [Hut05] and [LV97] in our treatment of semimeasures. As

Section 2.3 demonstrates, semimeasures are best seen as actual measures over

the set of finite and infinite sequences X# than defective measures over the

set of infinite sequences X∞. This is why we insist on ν(ε) = 1 rather than

the weaker ν(ε) ≤ 1 in Definition 2.4.

2. Following the above point, in general we allow the possibility of finite se-

quences. This leads to a stronger definition of dominance and universality

(see Definitions 4.1 and 4.13, and Section 4.1.1). Strong dominance takes into

account the semimeasure’s performance on finite as well as infinite sequences.

The standard universal semimeasure constructions, either as mixtures of all

enumerable semimeasures or as the semimeasure of a universal process, satisfy

this stronger definition.

3. In algorithmic information theory [Cal02] [LV97] bounds are typically proven

up to an unspecified additive constant. For our results the size of constants

are important, the smaller the better, so all constants are labelled. These

constants turn out to have natural interpretations. This leads us to define a

new form of complexity, termed simulation complexity (Section 4.2.2), which

generalises monotone complexity.

4. Strictly proper scoring rules [GR04] are natural ways to measure the error

of a prediction4. For example, Solomonoff’s original result [Sol78] was posed

in terms of the quadratic score. Following [Ber79] we argue the logarithmic

scoring rule is the appropriate way to measure prediction error. See Section

1.2, Definition 4.1, and Theorem 4.8.

5. For various results it is necessary to define a computable sequence transformer:

something which reads a sequence and outputs a sequence, both potentially

infinite. This is often defined through monotone Turing machines [LV97]

[Hut05]. We define the abstract notion of a process (following [Cal02], and

similar to [ZL70]; see Definition 3.6) which axiomatically characterises the

4Actually, these measure the accuracy of a prediction. To measure the error one simply negates
the measure.

4 INTRODUCTION

necessary computability properties. We then prove it equivalent to monotone

machines (see Section 3.2.2).

To summarise the above, this thesis presents the following novelties:

1. Strong dominance and universality (Definitions 4.1 and 4.13, and Section 4.1.1).

2. Simulation complexity (Section 4.2.2).

It also contains detailed proofs which may be of independent interest:

1. Theorem 2.12: Every semimeasure corresponds to a unique probability mea-

sure over the set of finite and infinite sequences X#, and vice versa.

2. Theorem 3.7: Every process is implementable by an interactive algorithm (e.g.

a monotone machine), and vice versa.

3. Theorem 3.29: Every enumerable semimeasure is the output semimeasure of

some process, and vice versa.

4. Theorem 4.8: If a process simulates another process then its semimeasure

dominates the other’s.

Chapter 1

Probability theory

Probability theory [Ash72] is a model of reasoning under uncertainty1 [Jay03]. Prob-

ability distributions capture uncertain states of knowledge by consistently assigning

probabilities to propositions. For instance, to capture knowledge of a bus schedule

we assign probabilities to the propositions “the bus arrives at time t” for each pos-

sible arrival time t. As prediction requires the handling of uncertain knowledge, we

find predictions are well modelled by probability distributions.

Section 1.1 informally introduces probability theory through its primary application:

decision making under uncertainty [Ber93]. Each action will assign probabilities to

the possible outcomes that could result from it. Section 1.2 uses the theory of

decision making from Section 1.1.1 derive a measure of a prediction’s error. This

measure will be used throughout Chapter 4.

1.1 Making decisions

A common approach to decision making under uncertainty is expected utility theory,

where probabilities are used to capture the predicted effect of each action, and utility

functions are used to judge them. We introduce this theory by example.

Consider a racing driver deciding on a strategy. This is a small race, involving only

three cars. There are three possible outcomes for a driver: 1st, 2nd, or 3rd place.

1Although human reasoning often departs from the predictions of probability theory, there
are good reasons to suggest it is human reasoning at fault [KST82] [Jay03]. Regardless, it is a
commonly used and particularly elegant model of uncertainty.

5

6 CHAPTER 1. PROBABILITY THEORY

There are three possible strategies. First is a safe strategy which can guarantee 2nd

place. Second is a risky strategy involving dodging in front of the opponents’ cars,

giving a higher chance of 1st place than the last strategy but an even higher chance

of 3rd place. Finally there is a losing strategy which is a guaranteed 3rd place.

Which strategy the driver prefers depends on which outcome he prefers. One driver

prefers 1st to 2nd to 3rd. Another driver wants only to win: 2nd is as bad as 3rd.

The last wants to lose: he’s being blackmailed by one of the other drivers.

Each outcome has a probability depending on the strategy chosen, detailed in Ta-

ble 1.1. In this example each driver has the same knowledge about which outcomes

follow which strategies, so each assign the same probabilities. In general, probabili-

ties can differ.

1st 2nd 3rd
Safe 0.05 0.80 0.15
Risky 0.20 0.04 0.76
Loss 0.01 0.04 0.95

Table 1.1: Probability of outcome given strategy

Each driver assigns utilities to outcomes depending on their preferences, detailed in

Table 1.2. These differ between drivers as they want different outcomes.

1st 2nd 3rd
Normal driver 1.00 0.50 0.00
Win driver 1.00 0.00 0.00
Blackmailed driver 0.00 0.25 1.00

Table 1.2: Utility of outcome assigned by driver

By multiplying a row of probabilities componentwise with a row of utilities we

compute the expected utility each driver assigns each strategy. For example, the

normal driver assigns to the risky strategy the expected utility

0.20× 1 + 0.04× 0.5 + 0.76× 0 = 0.22,

which is simply the second row of Table 1.1 times the first row of Table 1.2. Table 1.3

has the expected utilities for our example.

Each driver picks the strategy they assign the highest expected utility to. For

1.1. MAKING DECISIONS 7

Safe Risky Loss
Normal driver 0.45 0.22 0.03
Win driver 0.05 0.20 0.01
Lose driver 0.35 0.77 0.96

Table 1.3: Expected utility of strategy assigned by driver

example, the normal driver prefers the safe to the risky strategy, and prefers both

to the loss strategy. He chooses the safe strategy. Similarly, the win driver chooses

the risky strategy, and the blackmailed driver the loss strategy.

1.1.1 Expected utility theory

In general, we have a set O of possible outcomes and a set A of possible actions. Both

outcomes and actions are mutually exclusive and exhaustive: exactly one outcome

actually occurs and exactly one action is taken. To each action a ∈ A and outcome

o ∈ O we assign a probability p(o|a) that outcome o follows from action a.

In the above example we have O = {1st, 2nd, 3rd} and A = {Safe, Risky, Loss}.
Table 1.1 gives the probabilities p(o|a) shared between all drivers.

Definition 1.1. A conditional probability distribution over O given A is a

function p : O × A → [0, 1] such that

∑

o∈O

p(o|a) = 1 for all a ∈ A.

A utility function u : O → R assigns each outcome a utility. The larger the utility

the more that outcome is preferred. Each row of Table 1.2 is a utility function,

one for each driver. A utility function u and conditional probability distribution p

combine to compute the expected utility of each action a ∈ A

Ep[u|a] =
∑

o∈O

p(o|a)u(o).

Each entry of Table 1.3 is an expected utility where p is fixed, u varies between driver,

and a varies over strategies. This gives us an ordering2 over actions. When faced

2More precisely, a total preordering: a reflexive, transitive, and total relation over A.

8 CHAPTER 1. PROBABILITY THEORY

with a decision the decision maker selects an action whose probability distribution

is greatest in this order.

Two observations will be important for the following section:

1. The sets O and A can be infinite, even uncountably so. However, for a fixed

action a the probability p(o|a) will only be nonzero for countably many o.

2. Different utility functions can embody the same preferences. Given a utility

function u define another

v(o) = α u(o) + β

for arbitrary α, β ∈ R with α positive. The parameter α scales u; the param-

eter β translates it. It is easy to see that

Ep[u|a1] ≤ Ep[u|a2] if and only if Ep[v|a1] ≤ Ep[v|a2]

holds for all a1, a2 ∈ A and all probability distributions p : O × A → [0, 1].

1.2 Measuring a prediction’s error

This section applies the expected utility theory of the previous section to derive

a measure of prediction error. This approach is inspired by [Ber79] who proves a

similar result.

A weather forecaster assigns probabilities to the possible states of weather. In gen-

eral a forecaster’s3 forecast is a probability distribution. The process of deciding

which forecast to make can be modelled within the expected utility framework in-

troduced above (Section 1.1). Denote by X the set of possibilities being forecast

e.g. the possible weather states. Denote by

D(X) = {d : X → [0, 1] :
∑

x

d(x) = 1}

the set of all possible forecasts.

From the forecaster’s point of view, an outcome is a pair 〈d, x〉 ∈ D(X) × X of a

forecast and a possibility. The forecaster has knowledge of which outcomes are likely

3We use “forecaster” and “forecast” here to avoid confusion. Forecasters are exactly predictors,
and forecasts are the same as predictions.

1.2. MEASURING A PREDICTION’S ERROR 9

to result from which forecasts, this knowledge being represented by a conditional

probability distribution p : (D(X)×X)×D(X) → [0, 1]. This distribution is of the

form

p(d, x|d0) = [d0 = d]p0(x)

where [d0 = d] equals 1 if d0 = d is true and 0 otherwise, and where p0 ∈ D(X)

is the forecaster’s knowledge of how likely the possibilities x ∈ X are. It is of this

form because the forecaster knows that the forecast she chooses will be the actual

forecast, and that which possibility arises does not depend on the forecast made (a

natural assumption). Note that p follows Definition 1.1 of conditional probability

distributions with O = D(X)×X and A = D(X).

The forecaster has a utility function

u : D(X)×X → R

over the set of possible outcomes. The expected utility of a forecast d0 ∈ D(X) is

then

Ep[u|d0] =
∑

d∈D(X)
x∈X

p(d, x|d0)u(d, x)

=
∑

x∈X

p0(x)u(d0, x).

The forecaster selects a forecast d∗ ∈ D(X) which maximises this sum.

Suppose the forecaster wants to make accurate forecasts. This means her utility

function u measures the accuracy of the forecast made. Given this we expect several

things:

1. The forecast p0 has maximum expected utility. This is because there is no way

to predict reliably better than your current knowledge. Any other distribution

has lower expected utility.

2. A distribution assigning more probability to the correct outcome never has

lower utility than one which assigns less. Increasing the probability of the

correct outcome can never result in a lower utility.

3. The utility function u is continuously differentiable in D(X). This means the

utility function varies “smoothly” as we change the probability of outcomes.

10 CHAPTER 1. PROBABILITY THEORY

These three properties constrain those utility functions u which measure accuracy.

Theorem 1.2. Let u : D(X)×X → R be a real function continuously differentiable

in its first argument. If

1. For any fixed p0 ∈ D(X) the expected utility

∑

x

p0(x)u(q, x)

for q ∈ D(X) is maximised only when q = p0,

2. For all q1, q2 ∈ D(X) and any x ∈ X, if q1(x) < q2(x) then

u(q1, x) ≤ u(q2, x),

then

u(q, x) = A log q(x) + B(x)

for some A > 0 and B : X → R. Conversely, functions of the above form satisfy the

preceding properties.

Proof. We first show that if q1(x) = q2(x) for q1, q2 ∈ D(X) then u(q1, x) = u(q2, x),

where x ∈ X is fixed. This will imply

u(q, x) = u0(q(x), x)

for some u0 : [0, 1] × X → R. Suppose this doesn’t hold. Then without loss of

generality there exists q1, q2 ∈ D(X) where q1(x) = q2(x) yet

u(q1, x) > u(q2, x).

As u is continuous in D(X), there is an open ball about q2 such that the above

inequality remains true. In particular, we can choose q′2 such that q1(x) < q′2(x) and

u(q1, x) > u(q′2, x). This contradicts the hypothesis of this theorem, so the u0 above

exists.

Fix p0 ∈ D(x). By the above,

∑

x

p0(x)u(q, x) =
∑

x

p0(x)u0(q(x), x).

1.2. MEASURING A PREDICTION’S ERROR 11

We know q = p0 is the unique maxima of this sum if q is constrained to satisfy
∑

x q(x) = 1. We can use this to extract information about u0. By the method

of Lagrange multipliers [HH99] any constrained extrema of the above sum is an

unconstrained one of the following

F [q] =
∑

x

p0(x)u0(q(x), x)− A

(
∑

x

q(x)− 1

)
.

where A ∈ R is a Lagrange multipler. If q is an extrema of the above then

0 =
∂

∂q(x̂)
F (q) = p0(x̂)D1u0(q(x̂), x̂)− A

for all x̂ ∈ X where D1u0 denotes the partial derivative of u0 in its first argument,

and ∂
∂q(x̂) the operator of partial differentiation with respect to the x̂ argument of

the function q. Since p0 is a maximal distribution, by hypothesis, we know q = p0

satisfies the above identity, resulting in the differential equation

D1u0(p0(x̂), x̂) = A/p0(x̂) for all x̂ ∈ X.

Since the above must hold for all distributions p0 it must hold for all values of p0(x̂)

within the set [0, 1]. This equation has the unique solution

u0(p(x̂), x) = A log p(x̂) + B(x)

for some A and a function B : X → R. Were A zero then all distributions would

be maxima, contradicting uniqueness of p. Were A negative then p would be the

unique minimum. So A is positive.

Conversely, suppose

u(q, x) = A log q(x) + B(x)

for some A > 0 and B : X → R. Clearly u is continuously differentiable, and

q1(x) < q2(x) implies u(q1, x) ≤ u(q2, x). It remains to show q = p0 is the unique

maximum of

∑

x

p0(x)u(q, x) = A
∑

x

p0(x) log q(x) +
∑

x

p0(x)B(x).

Since A > 0 and
∑

x p0(x)B(x) is constant in q, the maxima of the above expression

12 CHAPTER 1. PROBABILITY THEORY

are exactly the maxima of ∑

x

p0(x) log q(x).

It is an elementary result [CT91] that this is maximised exactly when q = p0.

The above theorem establishes that if u measures accuracy, we must have

u(q, x) = A log q(x) + B(x).

We can restrict this further. A measure of accuracy should be invariant under

permutations of X, so the function B : X → R should be constant. As translations of

utility functions cannot change decisions, we choose B(x) = 0. As positive rescaling

of utility functions cannot change decisions, we choose A to give us the binary

logarithm (we will have probabilities of the form 2−n later). So we have

u(q, x) = log2 q(x)

as our measure of accuracy. As error is negative accuracy (i.e. increased error is

decreased accuracy and vice versa) this leads us to the definition of the error of a

prediction.

Definition 1.3. The error of a prediction is

Err[p] = − log2 p

where p is the probability assigned to the event which actually occurs.

Chapter 2

Semimeasures

We are often faced with predicting a sequence: successive states of a process, such

as the weather; successive outputs from a process, such as bits from computer or

parts from a manufactory; or successive inputs to a process, such as an agent’s

observations over time. Even the process of prediction naturally forms sequences:

predicting multiple things at different times creates a sequence of predictions.

This thesis is about sequence prediction so we require a theory of such predictions.

Predictions in general are modelled through probability theory, so we develop prob-

ability theory for sequences. The previous chapter included a relatively informal

introduction to probability theory, primarily as motivation for our measure of error.

This chapter describes formally the probability theory we require for later chapters,

using the previous chapter only as inspiration. We introduce two approaches, semi-

measures and measures, and prove them equivalent. For a more general coverage of

probability theory see [Jay03] and [Ash72].

2.1 Sequence notation

We first establish notation for sequences.

Let X be a finite set. A finite sequence1(or string) over X is a finite list of elements

from X, written x = x1x2 . . . xn for xi ∈ X and n ∈ N. The length of a finite

sequence is denoted by |x|, equal to n if x = x1 . . . xn. 00100101 is a finite sequence

of length 8 over the set of binary digits B = {0, 1}. An infinite sequence over X

is an infinite list of elements from X, written x = x1x2 . . . for xi ∈ X and i ∈ N.

13

14 CHAPTER 2. SEMIMEASURES

0000 . . . is the infinite sequence of all zeros over B. The length of an infinite sequence

x ∈ X∞ is |x| = ∞. The set of finite sequences over X is denoted by X∗, the set of

infinite sequences by X∞, and the set of all sequences by X# = X∗ ∪X∞.

We denote the empty sequence by ε. This is the only sequence of length 0. The

concatenation of two sequences x, y ∈ X#, denoted xy, consists of the elements of

x followed by the elements of y. If x is infinite then xy = x. A sequence x ∈ X# is

a prefix of another y ∈ X#, denoted x # y, if y starts with x. This holds exactly

when there exists a z ∈ X# such that xz = y. A sequence x is a proper prefix of

another y, denoted x ≺ y, if x # y but not y # x. This means y starts with x and

includes additional elements. If x # y we can also say y extends x. Finally, given a

sequence x the subsequence xi:j = xi . . . xj is the ith through jth elements of x (if

j < i we define xi:j = ε). For instance, x1:|x| = x.

Let S ⊆ X# be a set of sequences. The shortest sequence extending every element

of S, when it exists, is denoted by sup S. A set is prefix-free if for every s, t ∈ S

such that s .= t we have neither t # s nor s # t. Equivalently, it is prefix-free if for

every infinite sequence ω ∈ X∞ there exists at most one s ∈ S such that s # ω.

(See also prefix-free and complete sets in Section 2.3.6.)

2.2 Defining semimeasures

We introduce semimeasures by example, showing how the probability of the propo-

sitions “the sequence begins with x” for x ∈ X∗ and “the sequence is exactly z” for

z ∈ X# can be calculated from them.

Example 2.1. Suppose we generate an infinite2 sequence over B = {0, 1} by re-

peatedly flipping a coin, recording 0 for heads and 1 for tails. The coin is fair

so the probability that the next bit is 0 is 1/2 and the probability that it is 1 is

1/2. The probability our sequence starts with any particular finite sequence of n

zeros and ones is therefore 2−n, no matter which of the 2n sequences of length n we

1We use the same notation for finite and infinite sequence as it is artificial to distinguish between
them in our work. This is primarily because processes can output both finite and infinite sequences.
We will, for example, not find it necessary to define random sequences where the distinction between
finite and infinite is crucial [Cal02].

2Infinite as in unbounded: at any point the sequence generated so far is finite, but you can
always flip another coin if you need another bit.

2.2. DEFINING SEMIMEASURES 15

choose. We can form a function ν1 : X∗ → [0, 1] taking finite sequences x ∈ B∗ to

the probability the true sequence begins with x:

ν1(x) = 2−|x|.

We will call this particular function the uniform semimeasure3 over B. This

corresponds to the prediction that there will always be another coin flip which is

equally likely to be heads or tails. It embodies the knowledge that the sequence is

unbounded in length, but nothing more.

Example 2.2. Suppose we generate a sequence over B = {0, 1} by repeatedly

flipping two coins, recording 0 if the first coin is zero, recording 1 if both coins are

one, otherwise stopping. This sequence may be either finite or infinite in extent.

At any given point the probability is 1/2 that the next digit is 0, 1/4 that it is 1,

and 1/4 that there is no next digit. The probability that the sequence begins with

a prefix x ∈ X∗ is therefore

ν2(x) = 2−|x|04−|x|1

where |x|0 is the number of 0’s in x, |x|1 the number of 1’s.

The probability that the sequence is exactly x ∈ X∗ is

ν2(x↓) = 2−|x|04−|x|14−1.

In Example 2.1 we have ν1(x↓) = 0 for all x ∈ X∗ as the generation process creates

only infinite sequences. Since every sequence that begins with x is either exactly x,

or begins with xb for a unique element b ∈ B (but not both), we should have

ν2(x) = ν2(x↓) +
∑

c∈B
ν2(xb)

which one can easily verify to be the case. This allows us to compute ν2(x↓) from ν

itself:

ν2(x↓) = ν2(x)−
∑

c∈B
ν2(xb).

3See Section 3.2.3 for more on the uniform semimeasure, denoted λ in later chapters.

16 CHAPTER 2. SEMIMEASURES

Example 2.3. Finally, suppose we generate a sequence over B by flipping a coin

once, repeatedly recording 0 if it comes up heads or 1 if it comes up tails. We have,

ν3(x) =






1 if x = ε,

1/2 if x = 0n or x = 1n for some n,

0 otherwise.

where 0n is the sequence of n zeros, similarly for 1n and ones. The sequence is

always infinite, so ν3(x↓) = 0 for finite x. The probability that the sequence is the

infinite sequence of zeros is 1/2. We denote this by ν3(0∞↓) = 1/2. In general, for

any z ∈ X# we have

ν3(z↓) =





1/2 if z = 0∞ or z = 1∞,

0 otherwise.

Note we can derive ν3(z↓) from ν3 for infinite sequences z ∈ B∞ too:

ν3(z↓) = lim
n→∞

ν3(z1:n).

The functions ν1, ν2, and ν3 are examples of semimeasures. Their generalisation

motivates the formal definition below.

Definition 2.4. A semimeasure ν is a function ν : X∗ → [0, 1] satisfying:

1. Normalisation:

ν(ε) = 1,

2. Coherence: ∑

c∈X

ν(xc) ≤ ν(x) for all x ∈ X∗.

We interpret ν(x) as the probability that the actual sequence begins with x. Because

all sequences begin with ε we have ν(ε) = 1. As any sequence that begins with xc

for c ∈ X cannot begin with xc′ for c′ .= c, and as it necessarily begins with x, we

have
∑

c∈X ν(xc) ≤ ν(x).

2.3. SEMIMEASURES ARE MEASURES OVER X# 17

The probability that a sequence is exactly z ∈ X# is denoted ν(z↓). As mentioned

above, this can be defined from the semimeasure ν by

ν(z↓) =





ν(z)−

∑
c∈X ν(zc) if z ∈ X∗,

limn→∞ ν(z1:n) if z ∈ X∞.
(2.1)

The coherence requirement of Definition 2.4 is equivalent to ν(z↓) being nonnegative

for all z. Thus, we can restate the coherence requirement:

ν(x) = ν(x↓) +
∑

c∈X

ν(xc) for all x ∈ X∗. (2.2)

where ν(x↓) ∈ [0, 1] for all x.

From the above we see that if
∑

c∈X ν(xc) = ν(x) holds then ν(x↓) = 0. If this

equality holds for all x ∈ X∗ then the probability of the sequence being finite is

zero. Inequality is required for finite sequences to have nonzero probability.

2.3 Semimeasures are measures over X#

Another way to capture probabilities is through probability measures. A set of

sequences A ⊆ X# is interpreted as the proposition “the true sequences lies within

the set A”. For example “the true sequence begins with x” corresponds to the set

{y ∈ X# : x # y} = {xz : z ∈ X#}.

This is the set of all sequences consistent with the proposition. A probability measure

is a function taking a set of sequences to the probability that the true sequence lies

within this set. The probability assigned to the above set corresponds to ν(x) in

the realm of semimeasures. We show probability measures and semimeasures are

equivalent ways of recording probabilities.

For technical reasons, probability measures assign probabilities only to particular

“measurable” sets of sequences. All propositions we use here will correspond to

measurable sets. We require that the set

{xz : z ∈ X#}

18 CHAPTER 2. SEMIMEASURES

be measurable for any finite sequence x ∈ X∗. Combining sets by union corresponds

to combining propositions by disjunction:
⋃

i Ai means “at least one of the propo-

sitions denoted by Ai is true”. Similarly, set complement corresponds to negation.

We therefore require measurable sets be closed under complement and countable

union4 (and, as a consequence, closed under countable intersection, set difference,

etc).

We will use the following basic sets of sequences:

1. Corresponding to the proposition “the sequence begins with x” we have

Γx = {xz : z ∈ X#}

for a finite sequence x ∈ X∗. These are called cylinder sets.

2. Corresponding to the proposition “the sequence is exactly x” we have

{x}

for a finite sequence x ∈ X∗. We call these singleton sets.

2.3.1 Measurable sets and probability measures

The set of all measurable sets, here denoted Σ, is closed under countable union and

complement. Such sets are called σ-algebras. For later results we will be interested

in sets closed under finite union and complement. Such sets are called algebras.

Definition 2.5. An algebra A ⊆ P(X#) is a set of sets of sequences closed under

finite union and complement i.e. if A, B ∈ A then

A ∪B ∈ A

and if A ∈ A then

X# \ A ∈ A.

4Finite union is justified by the above considerations, but it is harder to see why countable
union should be allowed. It suffices to say that countable union is a mathematical convenience
standardly taken. For example, with countable union and complement we can construct the set
{z} for z ∈ X∞ from the cylinders. Regardless, the results below continue to hold if we restrict
ourselves to finite union. See [Ash72] for further discussion.

2.3. SEMIMEASURES ARE MEASURES OVER X# 19

A σ-algebra Σ ⊆ P(X#) is an algebra closed under countable union, i.e. if Ai ∈ Σ

for i ∈ N then ⋃

i

Ai ∈ Σ.

Note that algebras are closed under set difference and finite intersections, σ-algebras

being additionally closed under countable intersections.

We will fix a σ-algebra, denoted Σ, for all of our measures: the smallest σ-algebra

containing the cylinder sets

{Γx : x ∈ X∗} = {{xz : z ∈ X#} : x ∈ X∗}.

Note that the set {x} for x ∈ X∗ is measurable as

{x} = Γx \
⋃

c∈X

Γxc.

Probability measures assign probabilities to measurable sets.

Definition 2.6. Given a σ-algebra Σ, a probability measure is a function φ : Σ →
[0,∞) such that

φ(X#) = 1

and

φ

(
⋃

i

Ai

)
=

∑

i

φ(Ai)

for any countable sequence of pairwise disjoint measurable sets Ai ∈ Σ.

As a useful consequence of this, if A ⊆ B then

φ(A) ≤ φ(B)

since B = A ∪ (B \ A). If a proposition A is implied by another B it cannot have

greater probability. This implies

0 ≤ φ(A) ≤ 1

for all measurable sets A.

20 CHAPTER 2. SEMIMEASURES

2.3.2 From probability measures to semimeasures and back

Each probability measure corresponds to a unique semimeasure. Given a probability

measure φ over X#, define the function ν : X∗ → [0, 1] by

ν(x) = φ(Γx).

This is a semimeasure. Firstly, ν(ε) = φ(X#) = 1. Secondly,
∑

c ν(xc) ≤ ν(x)

because ⋃

c∈X

Γxc ⊆ Γx

and the sets Γxc are pairwise disjoint.

The remainder of this chapter proves the converse: each semimeasure corresponds

to a unique probability measure. Denote by Σ0 the smallest algebra containing the

cylinder sets Γx. This is a proper subset of the σ-algebra Σ upon which probability

measures are defined. We first give an explicit form for the sets within Σ0. We then

show there is a unique countably additive function φ : Σ0 → [0,∞) such that

φ(Γx) = ν(x) for all x ∈ X∗,

where a countably additive function satisfies

φ

(
⋃

i

Ai

)
=

∑

i

φ(Ai)

whenever
⋃

i Ai ∈ Σ0 for a countable sequence of pairwise disjoint sets Ai ∈ Σ0. By

Theorems 3.1.4 and 3.1.10 of [Dud89], φ uniquely extends to a probability measure

over Σ. This establishes our equivalence.

2.3.3 Explicit form for Σ0 sets

Lemma 2.7. The algebra Σ0 contains exactly the sets of the form

⋃

x∈P

Γx ∪Q

where P, Q ⊆ X∗ are finite.

2.3. SEMIMEASURES ARE MEASURES OVER X# 21

Proof. First note any set of the above form is in Σ0, and that Γx is of the above

form. We need only show sets of the above form are closed under finite union and

complement. Finite union is trivial, so only complement remains.

Since

X# \ Γx =
⋃

y "=x

|y|=|x|

Γy ∪ {y ∈ X∗ : |y| < |x|}

X# \ {x} =
⋃

|y|=|x|+1

Γy ∪ {y ∈ X∗ : |y| ≤ |x| and y .= x}

and

X# \
(

⋃

x∈P

Γx ∪Q

)
=

⋂

x∈P

(
X# \ Γx

)
∩

⋂

x∈Q

(
X# \ {x}

)

to show closure under complement it suffices to show closure under finite intersection.

Since X# is of the correct form we need only show binary intersections:

(
⋃

x∈P

Γx ∪Q

)
∩

(
⋃

y∈R

Γy ∪ S

)
=

(
⋃

x∈P

Γx ∩
⋃

y∈R

Γy

)
∪ T

=
⋃

x∈U

Γx ∪ T

where T ⊆ X∗ is a finite set and

U = {x : x ∈ P and exists y ∈ R where y # x}

∪ {y : y ∈ R and exists x ∈ P where x # y}.

is likewise a finite set.

2.3.4 Canonical presentation for Σ0

Suppose A ∈ Σ0. We define A’s canonical form: a minimal decomposition of A into

cylinder sets.

For a set S ⊆ X∗ denote by min S its minimal nodes, i.e. all s ∈ S where there is

no t ∈ S with t ≺ s.

22 CHAPTER 2. SEMIMEASURES

Definition 2.8. A set A ∈ Σ0 has the canonical form

A =
⋃

x∈C(A)

Γx ∪ S(A)

where

C(A) = min{x ∈ X∗ : Γx ⊆ A}

and S(A) is defined to make the equality hold. Note that all the sets Γx for x ∈ C(A)

and S(A) in the above union are pairwise disjoint.

Another way to characterise C(A) is that whenever Γx ⊆ A for x ∈ X∗ then there

exists a unique x̂ ∈ C(A) with x̂ # x and Γx ⊆ Γx̂. C(A) labels the maximal

cylinder sets contained within A.

By Lemma 2.7 we know for any A ∈ Σ0 there exists finite sets P, Q ⊆ X∗ such that

⋃

x∈C(A)

Γx ∪ S(A) = A =
⋃

x∈P

Γx ∪Q.

By definition of C(A), and as X∗ is well-founded, for every x ∈ P there exists a

unique x̂ ∈ C(A) such that x̂ # x. That is, for any Γx on the right there is a unique

Γx̂ on the left such that Γx ⊆ Γx̂. Thus,

⋃

x∈P

Γx ⊆
⋃

x∈C(A)

Γx,

and so S(A) is a finite subset of X∗.

2.3.5 From semimeasures to countable additive functions

We define a countably additive function φ : Σ0 → [0,∞) from a semimeasure ν using

canonical forms. Given a semimeasure ν define

φ(A) =
∑

y∈C(A)

ν(y) +
∑

y∈S(A)

ν(y↓)

for each set A ∈ Σ0, recalling that

ν(y↓) = ν(y)−
∑

c∈X

ν(yc)

2.3. SEMIMEASURES ARE MEASURES OVER X# 23

which is nonnegative as ν is a semimeasure. Clearly

φ(Γx) = ν(x)

for all x ∈ X∗.

The remaining sections show φ is countably additive i.e. that

φ

(
⋃

i

Ai

)
=

∑

i

φ(Ai)

whenever
⋃

i Ai ∈ Σ0 for a countable sequence of pairwise disjoint sets Ai ∈ Σ0.

2.3.6 Prefix-free and complete subsets of X∗

Prefix-free and complete sets are central to Lemmata 2.10 and 2.11 below, so we

outline a number of results we will require.

A prefix-free and complete (pfc) subset of X∗ is a set P ⊆ X∗ where every sequence

x ∈ X# has exactly one p ∈ P such that either p # x or x # p. Equivalently, it is a

set where all infinite sequences ω ∈ X∞ have exactly one p ∈ P prefixing it p # ω.

For example {00, 01, 1} is a pfc set.

Prefix-free and complete sets P ⊆ X∗ are finite. If one weren’t then there would be

elements of unbounded length in it. Define then

Fi = {ω ∈ X∞ : there is no p ∈ P with |p| ≤ i such that p # ω}.

the set of infinite strings not prefixed by an element of P with length at most i. It

is clear that Fi+1 ⊆ Fi, and because P contains elements of unbounded length we

know Fi .= ∅ for all i ∈ N . But then

⋂

i

Fi

is nonempty, so P cannot be complete.

The primary result we use is the following:

24 CHAPTER 2. SEMIMEASURES

Theorem 2.9. Prefix-free and complete (pfc) sets are inductively defined by the

following rules.

1. {ε} is a pfc set.

2. If P is a pfc set and x ∈ P then

P \ {x} ∪ xX

is a pfc set, where xX = {xc : c ∈ X}.

Proof. It is clear that each rule generates a pfc set, for in rule 2 we see x # ω holds

if and only if xc # ω holds for exactly one xc ∈ xX.

It remains to show the converse. In the following we will partially order pfc sets,

writing P # Q if for all p ∈ P there exists some q ∈ Q such that p # q. We

also require an enumeration of finite sequences. Let f : N → X∗ be an onto func-

tion such that if f(x) # f(y) then x ≤ y. This function enumerates finite se-

quences in an increasing fashion. As an example, f could enumerate B∗ in the order

ε, 0, 1, 00, 01, 10, 11, 000,

Let P be an arbitrary pfc set and define the sequence Pi of pfc sets by P0 = {ε} and

Pi+1 =





Pi \ {f(i)} ∪ f(i)X if f(i) ∈ Pi and there exists p ∈ P with f(i) ≺ p,

Pi otherwise.

It is clear that each set Pi is pfc since we start via rule 1 and either don’t change

the set or apply rule 2. The following observations imply P = Pn for some n:

1. The above sequence is monotonic: for all pi ∈ Pi there is a unique pi+1 ∈ Pi+1

where pi # pi+1.

2. Pi+1 is bounded above by P . To see this note that if x ≺ p for p ∈ P then for

all c ∈ X we have xc # p′ for some p′ ∈ P .

3. Every prefix of an element of P appears in some Pi. Trivial for ε. Otherwise

let x # p for some p ∈ P , and x = x′c for some c ∈ X. We inductively assume

x′ first appears in Pi+1, so f(i) = x′. Then some j > i has f(j) = x′c = x,

and so Pj+1 contains x.

2.3. SEMIMEASURES ARE MEASURES OVER X# 25

4. The sequence Pi is eventually constant, since eventually f(i) is longer than all

of P .

2.3.7 Establishing countable additivity

The following two lemmata will be required.

Lemma 2.10. If

Γx =
⋃

y∈P

Γy ∪Q

for x ∈ X∗ and P, Q ⊆ X∗, where the sets Γy for y ∈ P and Q on the right are

pairwise disjoint, then there exists a pfc set E ⊆ X∗ such that

P = xE = {xe : e ∈ E}

and

Q = xE = {xd : d ∈ X∗, and d ≺ e for some e ∈ E}.

Proof. Let

E = {e ∈ X∗ : xe ∈ P}

be the labels of all the cylinders from P minus their common prefix x. This set is

prefix-free and complete. To see this note that for any ω ∈ X∞ we have xω ∈ Γx.

As
⋃

y∈P Γy is a disjoint cover of the infinite sequences in Γx, there is exactly one Γy

containing xω and so exactly one y ∈ P with y # xω. As a result there is exactly

one e ∈ E such that e # ω, namely the e such that xe = y.

It remains to show that

{xd : d ∈ X∗, and d ≺ e for some e ∈ E}

equals Q. All elements xd of Q must be in the above set, for if e # d for some e ∈ E

then xd ∈ Γxe contradicting disjointness, and by completeness of E if e # d doesn’t

hold for any e then d ≺ e holds for some e. Conversely all elements in this set must

be elements of Q as although xd ∈ Γx it is not contained in any cylinder set for

otherwise e′ # d for some e′ ∈ E which is impossible as E is prefix-free.

26 CHAPTER 2. SEMIMEASURES

Lemma 2.11. For any pfc set E ⊆ X∗ we have

ν(x) =
∑

y∈xE

ν(y) +
∑

y∈xE

ν(y↓)

where

xE = {xd : d ∈ X∗, and d ≺ e for some e ∈ E}.

Proof. We show this by induction over the pfc set E (recall Theorem 2.9).

This is trivial for {ε} as x{ε} = {x} and x{ε} = ∅.

Suppose E = E ′ \ {z} ∪ zX where z ∈ E ′. As

xE = xE ′ \ {xz} ∪ (xz)X

xE = xE′ ∪ {xz}

and as

ν(xz) =
∑

y ∈ (xz)X

ν(y) + ν(xz↓)

by Equation (2.2), we have

∑

y∈xE

ν(y) +
∑

y∈xE

ν(y↓)

=
∑

y∈xE′

ν(y)− ν(xz) +
∑

y ∈ (xz)X

ν(y) + ν(xz↓) +
∑

y∈xE′

ν(y↓)

=
∑

y∈xE′

ν(y) +
∑

y∈xE′

ν(y↓).

Finally, we can prove our desired equivalence between semimeasures and probability

measures. In the following theorem certain identities only hold beacuse unions are

disjoint and set differences are proper. We sometimes skip the details for clarity,

although they can be easily verified from the surrounding context.

2.3. SEMIMEASURES ARE MEASURES OVER X# 27

Theorem 2.12. For every semimeasure ν : X∗ → [0, 1] there is a unique probability

measure φ : Σ → [0, 1] such that

φ(Γx) = ν(x) for all x ∈ X∗.

Conversely, for every probability measure there is a unique semimeasure such that

the above holds.

Proof. The measure to semimeasure direction was established in Section 2.3.2.

Given a semimeasure ν we define the function φ : Σ0 → [0,∞) by

φ(A) =
∑

y∈C(A)

ν(y) +
∑

y∈S(A)

ν(y↓)

for each set A ∈ Σ0, following Section 2.3.5. By the discussion in Section 2.3.2

we need only show countable additivity to establish that φ uniquely extends to the

desired measure.

Suppose, then, that

A =
⋃

i

Ai

where Ai ∈ Σ0 for i ∈ N are pairwise disjoint, and A ∈ Σ0. By Definition 2.8 of

canonical forms we have

⋃

y∈C(A)

Γy ∪ S(A) =
⋃

i

⋃

yi∈C(Ai)

Γyi ∪ S(Ai)

where the sets on either side are pairwise disjoint. By the discussion in Section 2.3.4

any Γyi on the right is a subset of exactly one Γy on the left. Similarly, each element

in S(Ai) lies either in a unique Γyi on the right or within S(A). Therefore, for all

y ∈ C(A)

Γy =
⋃

y′∈By

Γy′ ∪Ry

where

By = {y′ : y′ ∈ C(Ai) for some i and Γy′ ⊆ Γy}

lists of all the cylinders Γyi within Γy and

Ry = {x : x ∈ S(Ai) for some i and x ∈ Γy}

28 CHAPTER 2. SEMIMEASURES

contains all the elements of S(Ai) within Γy.

By lemmata 2.10 and 2.11 this means

ν(y) =
∑

y′∈By

ν(y′) +
∑

x∈Ry

ν(x↓).

But
⋃

y∈C(A) By =
⋃

i C(Ai) so

∑

y∈C(A)

ν(y) =
∑

y∈C(A)




∑

y′∈By

ν(y′) +
∑

x∈Ry

ν(x↓)





=
∑

i

∑

yi∈C(Ai)

ν(yi) +
∑

y∈C(A)

∑

x∈Ry

ν(x↓).

Since

S(A) =

(
⋃

i

S(Ai)

)
\




⋃

y∈C(A)

Ry





we have

∑

y∈C(A)

ν(y) +
∑

y∈S(A)

ν(y↓) =
∑

i

∑

yi∈C(Ai)

ν(yi) +
∑

i

∑

yi∈S(Ai)

ν(yi↓)

and so

φ(A) =
∑

i

φ(Ai).

Chapter 3

Computability and prediction

Computability [Odi89] is a necessary property of those systems we can build1 [Gan80]

and perhaps even reality itself [Fre90]. This motivates interest both in predicting

computable systems and computing predictions. These two approaches are com-

plementary: one applies computability to that which is predicted, the other to

that which predicts. This chapter describes these two approaches and proves them

equivalent. This equivalence will allow us to construct a universal semimeasure in

Chapter 4.

The key definitions of this chapter are processes (Definition 3.6 in Section 3.2) and

enumerable semimeasures (Definition 3.13 in Section 3.3). The key result is their

equivalence (Theorem 3.29 in Section 3.4).

Processes are computable systems (Section 3.1 briefly describes the computability

theory we use). As a process’s output is completely determined by its input, we can

derive predictions about a process’s output from knowledge about its input. In other

words, from a semimeasure over a process’s input we uniquely derive a semimeasure

over its output. There is reason to focus on the output semimeasure derived by using

the uniform semimeasure λ(p) = 2−|p| over the input. This semimeasure, which we

will call the process’s semimeasure, is the knowledge we have of the process’s output

when it is fed unbounded but unknown bits (Section 3.2.3).

A semimeasure is enumerable when it can be computed from below. Enumerable

semimeasures are interesting because they are exactly the semimeasures of processes

(Section 3.4). That is, any enumerable semimeasure can be seen as the knowledge

1We have yet to build anything uncomputable.

29

30 CHAPTER 3. COMPUTABILITY AND PREDICTION

we have about the output of some process that is fed completely unknown but

unbounded input (Section 3.2.3). Alternatively, we can think of the process being

fed a completely random input stream, the semimeasure giving the probability for

each possible output. We can effectively convert between these two forms: process

and enumerable semimeasure.

One interpretation of this equivalence (see Section 3.4.6) is that partial knowledge

about a sequence (the original semimeasure) can be extracted to form complete

knowledge of a process leaving behind complete ignorance of another sequence (the

uniform semimeasure).

3.1 Computability of sets

Our introduction to computability will be brief, see [Odi89] for further details. The

key definition is that of a computably enumerable set.

The most basic notion of computability is that of computable functions between

countable sets. A function f : A → B is computable if there is an algorithm which

given an a ∈ A returns f(a) ∈ B in finite time. Informally one can think of an

algorithm as a sequence of instructions that can be executed in finite time, such as a

computer program. Algorithms can be formally defined in many essentially equiva-

lent ways: Turing machines, register machines, lambda calculus terms, etc. We will

describe algorithms using informal pseudocode, leaving implicit their translation

into formal models.

A partial function f : A
o→ B is one where f(a) need not be defined for all a ∈ A,

although it has a unique value when it is. Computability is typically extended to

cover computable partial functions (or partial computable functions). These are

implemented by algorithms that which given a return f(a) if it is defined otherwise

returning nothing. This extension is important because, in general, algorithms may

fail to halt.

Computability can be abstracted from functions to sets. A subset S ⊆ A of some

fixed countable set A is computable if there is a computable function χS : A → B
such that χS(a) = 1 if and only if a ∈ S. In other notation, if χ−1

S (1) = S. This

means we have an algorithm which can test whether a ∈ S or not in finite time.

A subset S ⊆ A is computably enumerable if there is a computable partial

3.2. PROCESSES: COMPUTABLE SYSTEMS 31

function f : A
o→ B such that f(a) = 1 if and only if a ∈ S. This means we have an

algorithm that on input of a ∈ A

1. Returns 1 if a ∈ S,

2. Returns 0 or nothing (i.e. f(a) is undefined) if a .∈ S.

With this we can test whether a ∈ S, but if a .∈ S the algorithm may fail to

terminate. The option of failing to terminate is useful if S is a set of the form

S = {a ∈ A : there exists c ∈ C such that 〈a, c〉 ∈ T}

for some computable set T . That is, if the algorithm makes a potentially infinite

search which always succeeds if a ∈ A.

Equivalently, a subset S ⊆ A is computably enumerable if there exists an enumer-

ation of S i.e. an function e : N → A such that e(N) = S. This function lists all

elements of S, possibly with repetition. Given an enumeration of S we have

S = {a ∈ A : there exists n ∈ N such that e(n) = a}

so S is computably enumerable. Conversely, we can form an enumeration of S from

a partial function f : A
o→ B such that f−1(1) = S by, roughly speaking, evaluating

f on all members of a ∈ A in parallel outputting elements a ∈ A whenever we

compute f(a) = 1.

We will need to define computable functions between uncountable sets, such as

monotone functions F : B# → X# and semimeasures ν : X∗ → [0, 1]. Computability

of these uncountable objects can be reduced to the computability of certain count-

able subsets derived from the object. See Definitions 3.6 and 3.13 for examples of

this.

3.2 Processes: computable systems

A system is anything with input and output streams. A vending machine is a

system which inputs money and directions and outputs things. A computer is a

system which inputs data and outputs results. With Y denoting the possible inputs

32 CHAPTER 3. COMPUTABILITY AND PREDICTION

a system could receive at any given instant, and X the set of possible outputs, a

system’s behaviour is a function M : Y # → X# recording the sequence F (y) the

system outputs whenever2 it is input the sequence y ∈ Y #.

A computable system is a system with computable behaviour. A process [Cal02] is

the behaviour of a computable system. We assume processes input bits3 i.e. that

Y = B = {0, 1}. Processes can be thought of as computers which input data and

output results.

Section 3.2.1 formally defines processes. Section 3.2.2 motivates the formal definition

by showing processes are equivalent to interactive algorithms. Section 3.2.3 defines

a process’s semimeasure.

3.2.1 Defining processes

We introduce processes by way of example.

Example 3.1. Consider a system which inputs bits from B = {0, 1} and outputs

symbols from X = {+,−}. Every pair of bits read encodes a particular action:

output a character, do nothing, or halt (see Table 3.1). The box keeps on reading

input bits until it reads the halt code. If it tries to read a bit and there is none

waiting it pauses until there is.

Code Action
00 Output +
11 Output −
01 Halt execution
10 Do nothing

Table 3.1: Codes for process M1

Define a function M1 : B# → X# capturing the behaviour of this system: M1(p)

is the output of the system when given p ∈ B# as input (see Table 3.2 for sample

values).

This function has two interesting properties:

2We assume the output is determined completely by the input.
3Although all results generalise to arbitrary finite Y , for our purposes such generalisation adds

unnecessary complexity.

3.2. PROCESSES: COMPUTABLE SYSTEMS 33

p M(p)
0 ε
00 +
0011 +−
0010110111 +−
000000 . . . + + + · · ·
010000 . . . ε

Table 3.2: Sample values of M1

1. Monotonicity. If p # q then M1(p) # M1(q). This corresponds to temporal

consistency: adding further inputs cannot change previous outputs.

2. Continuity. If ω ∈ B∞ then

M1(ω) = sup{M1(p) : p ≺ ω}

where sup S denotes the shortest sequence extending every element of S ⊆ X#.

This means every symbol in the output is output at some finite time.

In general the behaviour of all systems satisfy monotonicity and continuity.

Definition 3.2. A monotone function M is a function M : B# → X# such that

for any p1, p2 ∈ B# if p1 # p2 then

M(p1) # M(p2).

Definition 3.3. A monotone function M : B# → X# is continuous if for all ω ∈
B∞ we have

M(ω) = sup{M(p) : p ≺ ω}.

Example 3.4. Consider another system. On input of i zeros followed by a one (i.e.

0i1) the system simulates the ith program4. If the program halts, the system outputs

+ then reads in another program. Otherwise the system loops forever outputting

34 CHAPTER 3. COMPUTABILITY AND PREDICTION

nothing more. For instance, suppose the 2nd program halts but the 3rd does not.

Then the system outputs + when input either 0010001 or 0010001001.

The function M2 : B# → X#, where M2(p) is the output of this system given input

p, is monotone and continuous as in Example 3.1 above. It satisfies two further

properties:

1. If we want to know whether M2(p) begins with a string x ∈ X∗ we can write

an algorithm which will output 1 if and only if it does: simulate the above

process and output 1 if the simulated output begins with x. That is, the set

GM2 = {〈p, x〉 ∈ B∗ ×X∗ : x # M2(p)}

is computably enumerable (see Section 3.1). This set is not computable since

+ # M2(0i1) holds if and only if the ith program halts.

2. The set

{〈p, x〉 ∈ B∗ ×X∗ : x = M2(p)}

is not even computably enumerable. We know that either M2(0i1) = + or

M2(0i1) = ε holds, the first if the ith program halts, the second if it doesn’t.

Thus, were the above set computably enumerable we could solve the halting

problem.

However, the set

HM2 = {〈p, x〉 ∈ B∗ ×X∗ : x = M2(p) and ∃p′ 3 p where M2(p
′) 3 M2(p)}

is computably enumerable. Suppose we are trying to decide if x = M2(p). If

there is a p′ 3 p such that M2(p′) 3 M2(p) then all the programs encoded in

p must halt. Therefore any algorithm to decide whether x = M2(p) can wait

until all the programs in p halt before checking whether the simulated process

outputs x. This avoids the problem with the previous set.

Note that M1 in Example 3.1 also satisfies these two properties, although in this

case GM1 and HM1 are also computable. See the proof of Theorem 3.7 for another

example illustrating the above sets HM2 and GM2 .

4See [Odi89] for proof that we can label programs with numbers.

3.2. PROCESSES: COMPUTABLE SYSTEMS 35

In general all computable systems satisfy the above properties. This leads to the

definition of a process.

Definition 3.5. A string p ∈ B∗ is a non-terminal string of the monotone function

M if there exists a string p′ 3 p such that

M(p′) 3 M(p).

Note that if p is a non-terminal string then M(p) is a finite string.

Definition 3.6. A process M is a continuous monotone function M : B# → X#

where the following sets are computably enumerable:

1. The set of finite strings which prefix the output of finite programs

GM = {〈p, x〉 ∈ B∗ ×X∗ : x # M(p)}.

2. The output of non-terminal strings

HM = {〈p, M(p)〉 ∈ B∗ ×X∗ : p is a non-terminal string of M}.

3.2.2 Processes are equivalent to interactive algorithms

This section offers further motivation for the definition of a process by showing

processes are exactly the behaviours of interactive algorithms.

Let an interactive algorithm5 be an imperative model of computation expanded

with two instructions:

1. b ← Input(). This inputs a bit b ∈ B.

2. Output(c). This outputs a symbol c ∈ X.

36 CHAPTER 3. COMPUTABILITY AND PREDICTION

For example the pseudocode in Algorithm 1 is an interactive algorithm which outputs

a ‘+’ whenever a zero is read. By an analog of the Church-Turing thesis [Odi89]

any model of computation will do. For instance, monotone Turing machines [Hut05]

[Sch02] implement exactly interactive algorithms. We show interactive algorithms

and processes are equivalent: the behaviour of an interactive algorithm is a process

and any process can be implemented by an interactive algorithm. Following Section

3.1 we are content to describe algorithms with informal pseudocode.

Algorithm 1 Example interactive algorithm
1: loop
2: b ← Input().
3: if b = 0 then
4: Output(+).
5: end if
6: end loop

Theorem 3.7. For a function M : B# → X# the following are equivalent:

1. M can be implemented by an interactive algorithm.

2. M is a process.

Proof. Recall Definition 3.6: a process is a continuous monotone function M : B# →
X# such that the sets

1. GM = {〈p, x〉 ∈ B∗ ×X∗ : x # M(p)}

2. HM = {〈p, x〉 ∈ B∗ ×X∗ : x = M(p) and ∃p′ 3 p where M(p′) 3 M(p)}

are computably enumerable.

Suppose M can be implemented by an interactive algorithm A. We can determine

whether x # M(p) by running A with p as its input, outputting 1 if A eventually

outputs x. So GM is computably enumerable. We can determine x = M(p) for

non-terminal p by running A on input p, waiting for it to request more than |p|
input bits. If it does so, we output 1 if and only if the output so far is exactly x. So

HM is computably enumerable. Continuity and monotonicity are trivial.

Conversely, suppose M is a process. Algorithm 2, an interactive algorithm, imple-

ments M . To see this let D : B# → X# be the behaviour of Algorithm 2.

5Not to be confused with the interactive algorithms of [Gur05].

3.2. PROCESSES: COMPUTABLE SYSTEMS 37

Algorithm 2 Implementation of M
1: p0 ← ε, x0 ← ε.
2: loop
3: Enumerate GM and HM simultaneously, yielding an element 〈p, x〉 of one.
4: if p0 = p and x0 # x then
5: Let t ∈ X∗ be the symbols in x but not x0 i.e. t such that x0t = x.
6: Output t.
7: x0 ← x.
8: if 〈p, x〉 ∈ HM then
9: b ← Input().

10: Set p0 ← p0b.
11: end if
12: end if
13: end loop

Fix a sequence of bits p̂ ∈ B∗ to be input to Algorithm 2. In the following p̂ will

always denote this fixed sequence, p0 will denote the current value of the variable

p0, and p ∈ B∗ will be an arbitrary binary string.

First note that both x0 # M(p0) and x0 # D(p0) hold for all values the variables x0

and p0 take. Also, D(p0) = M(p0) holds if step 9 is reached.

Fix a string p ∈ B∗. If at some point in time the variable p0 equals p, then D(p) =

M(p). To see this we will show x # M(p) implies x # D(p) for all x.

Suppose x # M(p). The pair 〈p, x〉 will eventually be enumerated6 in step 3 whilst

the variable p0 equals p unless step 9 occurs first and changes p0. If step 9 occurs

first then we have x # M(p) = D(p) as by previous observation M(p0) = D(p0) if

step 9 is reached. Otherwise, when the pair 〈p, x〉 is enumerated in step 3 we know

the variable p0 equals p, and that either x0 # x or not. If x0 # x then as step 6

ensures that x # D(p0) we have x # D(p0) = D(p). If not since x0 # M(p0) always

holds, and as x # M(p) = M(p0), we have x ≺ x0. Thus since x0 # D(p0) always

holds, we have x ≺ x0 # D(p0) = D(p). In all cases x # D(p).

If 〈p, x〉 ∈ HM for some x we say p is nonterminal. For all p ∈ B∗ we inductively

show

If p # p̂ and all proper prefixes p′ ≺ p of p are nonterminal,

then at some point in time the variable p0 equals p.

6Without loss of generality, we assume every element of GM and HM is enumerated infinitely
often in step 3 (this is easy to ensure).

38 CHAPTER 3. COMPUTABILITY AND PREDICTION

This is trivially true for p = ε. Suppose that the statement is true for p, that pb # p̂,

and that all proper prefixes p′ ≺ pb of pb are nonterminal (if either of the latter two

conditions are false the statement is vacuously true). By inductive hypothesis at

some point the variable p0 equals p, and 〈p, x〉 ∈ HM for some x. Eventually step 3

will enumerate 〈p, x〉 from HM , and so b will be input in step 10, and the variable

p0 will be set to pb.

Finally, note there is a greatest p # p̂ such that all proper prefixes p′ ≺ p of p are

nonterminal. This is because this holds for ε and the elements are bounded above

by p̂. Call the greatest such string p∗.

By the above discussion we have D(p∗) = M(p∗) since the variable p0 takes the value

p∗ at some point. If p∗ = p̂ then D(p̂) = M(p̂) holds trivially. Otherwise the greatest

element p∗ is not nonterminal, so by definition of HM we know M(p̂) = M(p∗)

since p̂ 3 p∗ and M is monotone. As p∗ is not nonterminal we know step 9 is

never executed after the variable p0 is set to p∗, and so D(p̂) = D(p∗). Thus,

D(p̂) = D(p∗) = M(p∗) = M(p̂).

Since p̂ was arbitrary we know D = M , so Algorithm 2 implements M .

3.2.3 The semimeasure generated by a process

As mentioned in this chapter’s introduction, a semimeasure over the input of a pro-

cess uniquely determines a semimeasure over the output of the process. Definition

3.8 and Lemma 3.9 below define the probability measure equivalent to this semimea-

sure, making use of the equivalence between semimeasures and probability measures

established in Theorem 2.12. After giving justification for the use of the uniform

semimeasure λ, Definition 3.10 defines a process’s semimeasure. This definition is

not suitable for computation, so Lemma 3.11 gives an explicit form.

Conventions

Lemmata 3.9, 3.11, and later results will follow [Knu92] in using the notation

∑

x

f(x) [P (x)] =
∑

x: P (x)

f(x)

3.2. PROCESSES: COMPUTABLE SYSTEMS 39

and analogously ⋃

x

f(x) [P (x)] =
⋃

x: P (x)

f(x).

This notation allows us to manipulate complex predicates inline rather than in

subscript.

We will use probability measures and semimeasures interchangeably by the equiva-

lence proved in Section 2.3.2, denoting both by the same symbol where this causes

no confusion.

The image measure φM−1 of a measure φ

If the probability measure φ over B# describes our knowledge of the input sequence

of a process M , then the image measure φM−1 over X# describes our knowledge of

the output sequence.

Definition 3.8. Given a process M : B# → X# and a probability measure φ over

B# the image measure φM−1 over X# is defined by

(φM−1)(A) = φ(M−1(A)) = φ({p ∈ B# : M(p) ∈ A})

for all measurable sets A ⊆ B#.

This is the only possible definition as M ’s output lies within A exactly when M(p) ∈
A. The probability of this is φ({p ∈ B# : M(p) ∈ A}).

Lemma 3.9. For any process M and probability measure φ, the image measure

φM−1 is a probability measure.

Proof. Note that

M−1(X#) = B#

and for a countable sequence Ai ⊆ X# of pairwise disjoint measurable sets

M−1

(
⋃

i

Ai

)
=

⋃

i

M−1(Ai)

where the sets on the right are pairwise disjoint. Thus, by the Definition 2.6 of

probability measures it suffices to show that M−1(A) is a measurable set whenever

40 CHAPTER 3. COMPUTABILITY AND PREDICTION

A is. Since we also have

M−1(X# \ A) = B# \M−1(A)

by the Definition 2.5 of σ-algebras it suffices to show that M−1(Γx) is measurable

for all x ∈ X∗, where Γx = {xz : z ∈ X#}.

First note that

M−1(Γx) = {p ∈ B# : x # M(p)}.

Suppose x # M(p) for an infinite sequence p ∈ B∞. As x is finite, by continuity of M

there must exist a finite prefix pf ≺ p of p with x # M(pf). Thus, by monotonicity

of M

{p ∈ B# : x # M(p)} =
⋃

pf∈B∗
{p ∈ B# : pf # p}[x # M(pf)].

The right hand set is measurable as it is a countable union of measurable sets.

A process’s semimeasure

This thesis focuses on the image measure λM−1 of a process M , where λ is the

probability measure equivalent to the uniform semimeasure

λ(p) = 2−|p| for all p ∈ B∗.

This is because our main goal is to construct a universal semimeasure in Chapter 4.

Given an enumerable semimeasure ν we will want to find a process which has ν as

its output semimeasure when fed input according to λ. See Sections 4.2.2 and 4.2.4.

The probability measure λ corresponds to knowing only that the sequence is un-

bounded, nothing more. It is the knowledge that M is fed an unbounded sequence

of completely unknown bits. Or, more controversially, the knowledge that M is fed

“randomly generated” bits (e.g. from a quantum mechanical noise source). This will

have particular significance in Section 3.4.6. To see this, we use the group invariance

method of [Jay68] (see especially p38 of [Jay03]).

Suppose we discover that the second bit of the sequence has been inverted e.g. if the

sequence previously began with 001010 it now begins with 011010 and vice versa.

Letting λ denote the semimeasure corresponding to the original state of knowledge

3.2. PROCESSES: COMPUTABLE SYSTEMS 41

and λ′ denote that corresponding to the new state we have

λ(001010) = λ′(011010),

λ(011010) = λ′(001010).

Although we know something extra about how the sequence is generated if we know

the second bit is flipped, we do not know anything extra about the sequence itself.

As the same knowledge corresponds to the same probabilities we have

λ(001010) = λ′(001010),

λ(011010) = λ′(011010).

Combining both sets of equations implies

λ(001010) = λ(011010).

Generalising the above, we find that

λ(p) = λ(q)

for all sequences p, q ∈ B∗ of the same length |p| = |q|. So λ(p) = f(|p|) for some

f : N → [0, 1]. Since we know the sequence is unbounded we have λ(p↓) = 0 for all

p ∈ B∗ and thus require

f(|p|) = λ(p) = λ(p↓) +
∑

b∈B
λ(pb) = 2f(|p|+ 1)

Noting that f(0) = 1, the only solution to this identity is f(n) = 2−n giving our

result.

The above motivates the definition of a process’s semimeasure µM(x).

Definition 3.10. Given a process M : B# → X#, its semimeasure µM is the unique

semimeasure equivalent to the image measure λM−1. That is,

µM(x) = λM−1(Γx)

for all x ∈ X∗.

42 CHAPTER 3. COMPUTABILITY AND PREDICTION

Practical form for a process’s semimeasure

Definition 3.10 is not suitable for computational purposes so Lemma 3.11 below

gives an explicit form.

Lemma 3.11. If M is a process then

µM(x) =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : x # M(p)}]

for any finite sequence x ∈ X∗.

Proof. By definition

µM(x) = λM−1(Γx).

Suppose p ∈ M−1(Γx) is an infinite sequence. We have x # M(p). As x is finite, by

continuity of M there must exist a finite prefix pf ≺ p of p with x # M(pf). But

then by monotonicity of M we have

p ∈ Γpf
⊆ M−1(Γx).

So every sequence is contained in a cylinder set, and as a result

M−1(Γx) =
⋃

p∈B∗
Γp[p ∈ min{p ∈ B∗ : Γp ⊆ M−1(Γx)}].

Furthermore all the above sets are pairwise disjoint since if neither p # q nor q # p

then Γp ∩ Γq = ∅. We then have

λM−1(Γx) =
∑

p

λ(Γp)[p ∈ min{p ∈ B∗ : Γp ⊆ M−1(Γx)}]

=
∑

p

2−|p|[p ∈ min{p ∈ B∗ : x # M(p)}].

The first step since λ is a measure, the last by definition of λ and since M is

monotone.

3.3. ENUMERABLE SEMIMEASURES 43

3.3 Enumerable semimeasures

There are a number of different ways to make semimeasures computable. One

natural approach is to call a semimeasure ν computable if we can compute the

binary expansion of ν(x) to arbitrary precision for any x. By this we mean the

function

f : X∗ × N → B∗

is computable in the sense of Section 3.1, where f(x, n) is the first n bits of the

value of ν(x) i.e. if ν(x) = 0.b1b2 . . . bi . . . in binary (bi ∈ B; this is always possible

since ν(x) ≤ 1) then f(x, n) = b1 . . . bn.

Since the rational numbers Q are countable, we could instead ask for a function

g : X∗ ×Q → Q

which computes rationals arbitrarily close to ν(x) i.e. such that |g(x, ε)− ν(x)| < ε

holds for all x ∈ X∗ and ε ∈ Q.

Both definitions above are equivalent to the following.

Definition 3.12. A semimeasure ν is computable if the sets

{〈α, x〉 ∈ Q×X∗ : α < ν(x)}

and

{〈α, x〉 ∈ Q×X∗ : ν(x) < α}

are computably enumerable.

This definition, although natural, is too strong: a process’s semimeasure need not

be computable. For instance, the semimeasure of M2 from Example 3.4 above is not

computable. To see this note that

µM2(+) =
∑

i

2−(i+1)[program i halts].

If we could compute µM2(+) to arbitrary precision we could solve the halting prob-

lem.

A weaker form of computability is required. A semimeasure ν is enumerable, or

44 CHAPTER 3. COMPUTABILITY AND PREDICTION

semicomputable from below, if there exists a function h : X∗ × N → Q such that

ν(x) = lim
n→∞

h(x, n)

and where h is nondecreasing i.e. h(x, n) ≤ h(x, m) if n ≤ m. This means we can

approximate ν’s value arbitrarily closely from below, although unlike computable

semimeasures we can never know how close this approximation is. This is equivalent

to the following.

Definition 3.13. A semimeasure ν is enumerable if the set

{〈α, x〉 ∈ Q×X∗ : α < ν(x)}

is computably enumerable.

It’s important that the inequality is strict in this definition. Construct a process

Mp that on input p0i1 runs the program p for i steps outputting ε if it halts in that

time or p otherwise (we assume the programs are encoded in a prefix-free fashion;

see Section 4.2.4). As a result 2−|p| ≤ µM(p) holds iff p never halts. If we had an

algorithm enumerating

{〈α, x〉 ∈ Q×X∗ : α ≤ µM(x)}

would we be able to solve the halting problem, an impossibility. So for some pro-

cesses the above set is not computably enumerable. As the rest of this chapter will

demonstrate, with strict inequality this problem dissolves.

3.4 Processes and semimeasures are equivalent

Enumerable semimeasures are exactly those generated as the output semimeasure of

a process. Although it is easy to show the semimeasure of a process is enumerable,

the converse is not as simple.

To prove the converse we first establish a method for building processes. A process

satisfies a request r = 〈p, x〉 ∈ B∗×X∗ if on input p its output begins with the string

x. A sequence of requests (request sequence) defines a process: the least process

which satisfies all its requests. The processes generated by proper prefixes of an

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 45

infinite request sequence are approximations to the process generated by the entire

sequence. We will build our process by layering request upon request, forming a

sequence of processes approximating the final process in the limit.

We next develop a method for building processes with particular semimeasures.

Paralleling the above, a semimeasure ρ satisfies a pair 〈α, x〉 ∈ Q×X∗ if α < ρ(x)

holds. A sequence of such pairs defines the least semimeasure satisfying all pairs in

the sequence. The key idea behind our proof is that given a computable sequence

of such pairs7, we can construct a process whose semimeasure is the least semi-

measure satisfying those pairs, subject to consistency constraints. An enumerable

semimeasure ν is exactly a semimeasure for which the set of all pairs it satisfies can

be enumerated. The least semimeasure satisfying all of these enumerated pairs is ν

itself. This allows us to build a process implementing any enumerable semimeasure,

completing the equivalence.

3.4.1 A process’s semimeasure is enumerable

Lemma 3.14. For any process M the semimeasure µM is enumerable.

Proof. We show that the set

{〈α, x〉 ∈ Q×X∗ : α < ν(x)}

is computably enumerable. Given a pair 〈α, y〉, Algorithm 3 will return 1 if and

only if the pair is in the set. It computes an increasing approximation S of µM(y),

effectively by simulating M on all possible inputs p.

As M is a process the following sets are computably enumerable:

1. GM = {〈p, x〉 ∈ B∗ ×X∗ : x # M(p)},

2. HM = {〈p, M(p)〉 ∈ B∗ ×X∗ : p is a non-terminal string of M}.

A string p is minimal iff p ∈ min{p ∈ B∗ : y # M(p)}. A string p is added to S if

and only if the conditional in step 5 succeeds and S ← S + 2−|p|.

7Technically we will require α to be a dyadic rational, i.e. equal to k2−d for k, d ∈ N. These are
numbers which can be written with a finite number of binary digits, e.g. 21 · 2−3 = 10.101 in base
2. This is no problem as any real can be approximated arbitrarily closely by a dyadic rational.

46 CHAPTER 3. COMPUTABILITY AND PREDICTION

Algorithm 3
1: S ← 0, current lower bound of µM(y).
2: P ← {ε}, current set of programs.
3: loop
4: Enumerate GM and HM simultaneously, yielding an element 〈x, p〉 of one.
5: if p ∈ P and y # x then
6: S ← S + 2−|p|

7: P ← P \ {p}
8: end if
9: if p ∈ P and 〈x, p〉 ∈ HM then

10: P ← P ∪ {p0, p1} \ {p}
11: end if
12: if α < S then
13: Halt, returning 1.
14: end if
15: end loop

Suppose p is minimal. Every proper prefix p′ ≺ p has M(p′) ≺ y and thus will not

be removed from P in step 7. As every proper prefix of p is non-terminal, they are

in HM and will be successively generated and removed at step 10 starting from the

prefix ε. Eventually the last proper prefix will be removed and p will be added.

Following this p will be removed in step 7 and added to S.

Suppose p is not minimal. If y .# M(p) then p will not be added to S (see step 5).

Suppose y # M(p). Then there is a proper prefix p′ ≺ p which is minimal. Since

elements of P can be generated only by extending previous elements (see step 10),

p′ will be generated before p. However, since p′ is minimal it will be added to S then

removed from P . This means p will not be subsequently generated, and will not be

added to S.

By the above, exactly the elements of the set

min{p ∈ B∗ : y # M(p)}

will be added to S. By Lemma 3.11 this shows the sum S converges to:

∑

p

2−|p| [p ∈ min{p ∈ B∗ : y # M(p)}] = µM(y).

Since α < µM(y) there will be a finite number of terms such that Sn < α where Sn

denotes the value of variable S after n terms have been added to it. At this point

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 47

the machine will return 1 in step 13. Conversely, if µM(y) ≤ α then Sn ≤ α always

holds, so Algorithm 3 will not terminate on input 〈y, α〉.

3.4.2 Building processes

We first define valid request sequences r and the monotone functions M[r] generated

by them. The definition of M[r] is implicit so we give two different explicit charac-

tisations. These will pose useful in later proofs. We show if the request sequence r

is computable then M[r] is a process, and that this method for defining processes is

continuous in r. This property will allow us to build processes for any enumerable

semimeasure in the next section. Finally, we prove an explicit characterisation for

µM[r](x↓) and explain why we didn’t do so earlier.

The monotone function M[r] generated by a valid request sequence r

Not all request sequences can be satisfied. The request that ∆∆ is output on input

0 and the request that ΞΞ is output on input 00 cannot both be satisfied. We also

wish to impose an ordering on requests: if we request that x is output on input p

we cannot later have a request regarding a proper prefix of p. This ordering will

mean as soon as we have a request involving p the output for all proper prefixes of

p is fixed. We will see this is required for constructing processes.

This leads to the definition of a valid request sequence.

Definition 3.15. Let r ∈ (B∗ × X∗)# be a request sequence, and let ri = 〈pi, xi〉
denote the ith element of r. This is a valid request sequence if for all i, j ∈ N:

1. If i < j and pi # pj then xi # xj.

2. There is no i < j with pi 3 pj.

Recall that a monotone function F : B# → X# is a function preserving prefixes: if

p # q then F (p) # F (q). When recording the behaviour of a system this corresponds

to temporal consistency: adding further inputs cannot change previous outputs.

Processes are computable, continuous, monotone functions, but it is simpler to deal

48 CHAPTER 3. COMPUTABILITY AND PREDICTION

with continuous monotone functions in general until we introduce computability.

We will turn out to get continuity for free, so we simplify matters by looking at

monotone functions in general.

Definition 3.16. Let r ∈ (B∗ × X∗)# be a request sequence, and let ri = 〈pi, xi〉
denote the ith element of r. A monotone function F : B# → X# satisfies r if for

every i

xi # F (pi).

Monotone functions can be partially ordered: F # G iff F (p) # G(p) for all p ∈ B#.

The set of all monotone functions satisfying a request sequence r has a least element

under this order. This function outputs the least possible to satisfy the requests (as

will be seen in Lemma 3.18). We will

Definition 3.17. Given a valid request sequence r, the monotone function gener-

ated by r

M[r] : B# → X#

is the least monotone function which satisfies r i.e. M[r] satisfies r, and given any

F which satisfies r we have

M[r](p) # F (p) for all p ∈ B#.

Note that M[r], if it exists, is unique. If we had another monotone function F min-

imally satisfying r then we would have both M[r](p) # F (p) and F (p) # M[r](p)

for all p. This implies F (p) = M[r](p) and thus F = M[r].

Two explicit forms for M[r]

Definition 3.17 of M[r] is implicit. We give two explicit forms establishing existence

as a corollary. The first shows M[r] outputs the least necessary to satisfy all the

requests. The second gives an inductive definition of M[r] in terms of r, each step

making the smallest change necessary to satisfy each new request. This latter form

will be especially useful for proving properties of M[r].

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 49

Recall that the least upper bound of a subset S ⊆ P of a partially ordered set,

denoted sup S if it exists, satisfies s # sup S for all s ∈ S (is an upper bound of

S), and for any other upper bound u satisfies sup S # u (is the least upper bound).

In the partial order X# of sequences sup S is the shortest sequence for which every

s ∈ S is a prefix.

Lemma 3.18. The monotone function M[r] generated by a valid request sequence

r exists and

M[r](p) = sup{yi : ri = 〈qi, yi〉 and qi # p for some i}

where ri is the ith request in r.

Proof. We first show the expression is well defined by showing the set

{yi : ri = 〈qi, yi〉 and qi # p for some i}

is a linear order under # (as X# is a complete partial order any linearly ordered

subset has a least upper bound). Take any two distinct elements yi and yj of the

above set, supposing without loss of generality that i < j. Since qi, qj # p we must

have either qi # qj or vice versa. As r is a valid request sequence we have qi # qj

(second condition of Definition 3.15), therefore yi # yj (first condition of Definition

3.15), and so the above set is a linear order.

We now show

F (p) = sup{yi : ri = 〈qi, yi〉 and qi # p for some i}

is monotone, satisfies r, and is least.

F is monotone since if p1 # p2 then

{yi : ri = 〈qi, yi〉 and qi # p1 for some i} ⊆ {yi : ri = 〈qi, yi〉 and qi # p2 for some i}

so an upper bound of the RHS is an upper bound of the LHS i.e. F (p1) # F (p2).

F satisfies r as for any ri = 〈qi, yi〉 we have yi # F (qi) by definition.

Finally, suppose G is another monotone function satisfying r. Fix an input p ∈ B#.

50 CHAPTER 3. COMPUTABILITY AND PREDICTION

For any request ri = 〈qi, yi〉 where qi # p we have

yi # G(qi) # G(p)

because G satisfies r and is monotone. But then

F (p) = sup{yi : ri = 〈qi, yi〉 and qi # p for some i} # G(p)

since G(p) is an upper bound of this set. So F is least.

Therefore F (p) = M[r](p) for all p.

We can visualise a monotone function F : B# → X# as an infinite binary tree

labelled with sequences over X. For example, the least such function, M[ε](p) = ε,

is

ε

!!!!!!!!!!!!

""""""""""""

ε

##
##

##

$$
$$

$$
ε

##
##

##

$$
$$

$$

ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

&

...
...

...
...

...
...

...
...

For finite request sequences r, the only difference between M[r] and M[r〈p, x〉] is

the subtree p B# has had its label changed to x. For instance, M[〈0, +〉] is

ε

'''''''''''''

""""""""""""

+

((
((

((

))
))

))
ε

**
**

**
*

++
++

++
+

+

,,
,,
,

--
--

- +

,,
,,
,

--
--

- ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

&

...
...

...
...

...
...

...
...

As a side note, if r〈p, x〉 is a valid sequence then the subtree p B# has a constant

value y ∈ X∗ in M[r] too, and y # x (this follows from Definition 3.15). That is,

we only change constant-labelled subtrees, and we only add to their labels.

These observations are proved in general below.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 51

Lemma 3.19. The monotone function M[r] generated by a valid request sequence

r satisfies the identities:

1. M[ε](p) = ε for all p ∈ B#.

2. If r = r′〈q, y〉 for 〈q, y〉 ∈ B∗ ×X∗, then

M[r](p) =





y if q # p,

M[r′](p) otherwise.

3. For any request sequence r,

M[r](p) = sup{M[r′](p) : r′ is finite and r′ # r}.

Proof. Invoking Lemma 3.18 we need only show that

sup{yi : ri = 〈qi, yi〉 and qi # p for some i}

satisfies these three identities.

For r = ε the RHS is the empty set, and sup ∅ = ε.

For a finite valid sequence r .= ε we have

r = r′〈o, z〉

where o ∈ B∗, z ∈ X∗, and r′ is itself a valid sequence. Let

F (p) =





z if o # p,

M[r′](p) otherwise.

Fix an arbitrary p ∈ B#. Now either o # p or not.

Suppose o .# p. Then,

{yi : ri = 〈qi, yi〉 and qi # p for some i}

= {yi : r′i = 〈qi, yi〉 and qi # p for some i}

52 CHAPTER 3. COMPUTABILITY AND PREDICTION

since 〈o, z〉, the only request in r but not r′, is excluded by the condition qi # p. So,

F (p) = M[r′](p) = M[r](p)

where the first equality is by definition of F , the second by the above equality of

sets.

Suppose o # p. For any request r′i = 〈qi, yi〉 in r′ with qi # p we have qi # o as o and

qi are comparable (both are prefixes of p) and since r is a valid sequence we cannot

have qi 3 o (condition 2 of Definition 3.15). By condition 1 of Definition 3.15 this

means yi # z. Therefore

sup{yi : r′i = 〈qi, yi〉 and qi # p for some i} # z.

By this, and since 〈o, z〉 is the only request of r not in r′, we have

sup{yi : ri = 〈qi, yi〉 and qi # p for some i} = z = F (p)

establishing the second identity.

For the final identity take a finite or infinite valid request sequence r. For any finite

prefix r′ of r we have

M[r′](p) = sup{yi : ri = 〈qi, yi〉 and qi # p for some i ≤ |r′|}

Therefore

sup{M[r′](p) : r′ is finite and r′ # r}

= sup{yi : ri = 〈qi, yi〉 and qi # p for some i}

= M[r](p).

Computable request sequences generate processes

We show computable request sequences generate processes. The below construction

actually works for invalid request sequences too, although the process generated will

not equal the (undefined) M[r]. This property will be used by Section 3.4.3 to show

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 53

the set of all processes is computably enumerable.

Lemma 3.20. If the valid request sequence r is computable then M[r] is a process.

Proof. It’s clear from the third identity of Lemma 3.19 that M[r] is continuous. It

remains to show that the sets

{〈p, x〉 ∈ B∗ ×X∗ : x #M[r](p)}

and

{〈p, M(p)〉 ∈ B∗ ×X∗ : p is a non-terminal string of M[r]}

are computably enumerable.

Algorithm 4 given p ∈ B∗ and x ∈ X∗ returns 1 if and only if x #M[r](p), proving

the first set computably enumerable.

Algorithm 4
1: i ← 1.
2: loop
3: Compute ri = 〈qi, yi〉, the ith request in r.
4: if qi # p and x # yi then
5: Return 1.
6: end if
7: i ← i + 1.
8: end loop

To see this, by Lemma 3.18 we know

M[r](p) = sup{yi : whenever ri = 〈qi, yi〉 and qi # p}.

Because x is finite and the set of prefixes of M[r](p) form a linear order we have

x # M[r](p) if any only if x # yi for some ri = 〈qi, yi〉 with qi # p. Our algorithm

halts in exactly this case.

Algorithm 5 given p ∈ B∗ and x ∈ X∗ where p is nonterminal returns 1 if and only

if x = M[r](p), proving the second set computably enumerable.

To prove correctness it suffices to show

out = sup{yi : whenever ri = 〈qi, yi〉 and qi # p}

54 CHAPTER 3. COMPUTABILITY AND PREDICTION

Algorithm 5
1: i ← 1.
2: out ← ε.
3: loop
4: Compute ri = 〈qi, yi〉, the ith request in r.
5: if qi # p then
6: out ← yi

7: else if p ≺ qi then
8: Return 1 if x = out, 0 otherwise.
9: end if

10: i ← i + 1.
11: end loop

whenever p ≺ qi. We know p ≺ qi necessarily holds for some i as p is nonterminal.

The variable out is nondecreasing, that if out has value o we only change it to value

o′ if o # o′. Suppose qj # p and qi # p where j < i. Since r is a valid request

sequence we cannot have qj 3 qi so qj # qi. But then yj # yi, so step 6 never

decreases out.

If p ≺ qi holds then whenever qj # p we have j < i. This holds because otherwise

qi 3 qj which contradicts r’s validity as i < j. (We cannot have i = j because qi

and qj have different values.) This means there are a finite number of elements in

the set

{yi : whenever ri = 〈qi, yi〉 and qi # p}

all of which are processed before statement 8 occurs. At this point out holds the

value of the largest element, as it is nondecreasing, which is exactly

sup{yi : whenever ri = 〈qi, yi〉 and qi # p}

proving correctness.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 55

Continuity of generated processes’ semimeasures

We show the function r 5→ µM[r] is continuous in r. This allows us define an infinite

request sequence r where µM[ri] tends to some limit for increasing finite prefixes

ri ≺ r and have µM[r] equal that limit.

Lemma 3.21. If ri ∈ (B∗×X∗)∗ is a sequence of valid finite request sequences with

ri # ri+1 for all i, then

µM[r](x) = lim
i→∞

µM[ri](x)

for all x ∈ X∗, where

r = sup{ri : i ∈ N}.

Proof.

lim
i→∞

µM[ri](x)
(1)
= lim

i→∞
λ{p ∈ B# : x #M[ri](p)}

(2)
= λ

⋃

i

{p ∈ B# : x #M[ri](p)}

(3)
= λ{p ∈ B# : x #M[rj](p) for some j ∈ N}
(4)
= λ{p ∈ B# : x # sup{M[rj](p) : j ∈ N}}
(5)
= λ{p ∈ B# : x # sup{M[r′](p) : r′ is finite and r′ # r}}
(6)
= λ{p ∈ B# : x #M[r](p)}
(7)
= µM[r](x).

Steps 1 and 7 hold by definition of M[ri] and M[r]. We have

{p ∈ B# : x #M[ri](p)} ⊆ {p ∈ B# : x #M[ri+1](p)}

because M[ri](p) #M[ri+1](p) since ri # ri+1. This implies step 2 as λ is a measure.

Step 3 also holds by the above subset relation. Note that

x # sup{M[rj](p) : j ∈ N} implies x #M[rj](p) for some j ∈ N

as x is finite and the set of prefixes of sup{M[rj](p) : j ∈ N} form a linear order.

The converse holds by definition of sup. This implies step 4. For step 5 note that

56 CHAPTER 3. COMPUTABILITY AND PREDICTION

for any finite r′ # r there exists an rj such that r′ # rj. This means that although

{M[rj](p) : j ∈ N} ⊆ {M[r′](p) : r′ is finite and r′ # r}

any upper bound for the left hand side must be an upper bound for the right hand

side, so their least upper bounds are equal. Finally, step 6 holds by Lemma 3.19.

Explicit form for µM[r](x↓)

The following lemma and proof is similar to Lemma 3.11. The motivation is again

computational, this lemma being applied in the following sections. We follow with

a counterexample showing why this couldn’t be proved with Lemma 3.11.

Lemma 3.22. If r ∈ (B∗ ×X∗)∗ is a valid finite request sequence then

µM[r](x↓) =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : x = M[r](p′) for all p′ 6 p}]

for all x ∈ X∗.

Proof. We have

µM[r](x↓) = µM[r](x)−
∑

c∈X

µM[r](xc)

= λ

(
{p ∈ B# : x #M[r](p)} \

⋃

c∈X

{p ∈ B# : xc #M[r](p)}
)

= λ({p ∈ B# : x = M[r](p)})

= λ(M[r]−1({x})).

The first step by Equation 2.1 defining ν(x↓) for a semimeasure. The second by

Definition 3.10 of a process’s semimeasure, and as λ is a measure.

Suppose, now, we have an infinite sequence p ∈ B∞ with M[r](p) = x. Since r is

finite in length, the maximum request program length

lr = max{|qi| : ri = 〈qi, yi〉 for some i}

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 57

is finite. It is clear by, e.g. induction on identities 1 and 2 of Lemma 3.19, that if

lr ≤ |q| then M[r](q′) = M[r](q) for all q′ 6 q. But then we must have M[r](q′) = x

for all q′ 6 p1:lr . Thus

p ∈ Γp1:lr
⊆M[r]−1({x}).

As a result

M[r]−1({x}) =
⋃

p∈B∗
Γp[p ∈ min{p ∈ B∗ : Γp ⊆M[r]−1({x})}] ∪ T

where T ⊆ X∗ since every infinite string is contained in a cylinder set (see Section

2.3.4 for a similar equality). All the above sets are pairwise disjoint since if neither

p # q nor q # p then Γp ∩ Γq = ∅, and T is disjoint from the rest by its definition.

We then have

λ(M[r]−1({x})) =
∑

p

λ(Γp)[p ∈ min{p ∈ B∗ : Γp ⊆M[r]−1({x})}] + λ(T)

=
∑

p

2−|p|[p ∈ min{p ∈ B∗ : x = M[r](p′) for all p′ 6 p}] + λ(T)

=
∑

p

2−|p|[p ∈ min{p ∈ B∗ : x = M[r](p′) for all p′ 6 p}].

The first step since λ is a measure, the second by definition of λ, the last since

λ({x}) = 0 for finite strings x ∈ X∗.

The above lemma does not work for all semimeasures, which is why it was not proved

along with Lemma 3.11. It doesn’t even work for all enumerable semimeasures,

which is why the request sequence must be finite. The following counterexample is

adapted from [Pol04].

Example 3.23. Suppose we have a process which reads in 2 bits and outputs 1 if

they equal 01. Otherwise it reads in 3 bits, outputting 1 if they equal 001. This

repeats with the nth step reading n bits and outputting 1 if they equal 0n1, reading

a further n + 1 bits if they aren’t. Define Ai ⊆ B# to be the set of input sequences

after which the process does not output 1 within i steps i.e. the set of inputs where

the process has output nothing after i steps. We have

Ai = B# \
i⋃

n=1

⋃

y∈Bkn

Γy0n1

58 CHAPTER 3. COMPUTABILITY AND PREDICTION

where k1 = 0 and kn+1 = kn + (n + 1), so the set Ai is measurable. Since Ai+1 ⊆ Ai

we can show

λ(A) =
∞∏

k=2

(1− 2−k) = exp

[∞∑

k=2

ln(1− 2−k)

]

where A =
⋂

i Ai. From ln(u) ≥ (u−1)/u we have
∑

k ln(1−2−k) ≥ −
∑

k 1/(2k−1).

As
∑

k≥2 1/(2k − 1) < ln 2 we have

1/2 < λ(A).

This description can be formalised into a process, so by the proof of Theorem 3.29

below there is an infinite request sequence r∞ constructing it. By this and the proof

of Lemma 3.22 above we have

µM[r∞](ε↓) = λ(A) > 1/2

But, since the process can always be made to output 1, there is no p ∈ B∗ with

Γp ⊆ A. So

µM[r∞](ε↓) .= 0 =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : x = M[r](p′) for all p′ 6 p}].

3.4.3 Enumerating processes

It is an elementary result that the computable functions can be enumerated [Odi89]:

fixing countable domain Y and codomain X there is a computable function

u : N× Y → X

where for every computable function f : Y → X has an index i such that

u(i, y) = f(y) for all y ∈ Y .

Or, defining ui(y) = u(i, y), we say there is a computable sequence ui : Y → X of

all computable functions. We extend this result to processes. This will allow us to

define universal processes in Chapter 4.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 59

We first establish a converse to Lemma 3.20 above.

Lemma 3.24. Given a process M there exists a computable valid request sequence

r such that

M = M[r].

Proof. Algorithm 6 computes a monotone sequence ri of request sequences. We

show this defines an infinite computable request sequence

r = sup{ri : i ∈ N}

such that M = M[r]. Without loss of generality, we assume our enumerations of

GM and HM enumerates each element infinitely often.

Algorithm 6 Computing the request sequence generating M
1: i ← 0.
2: P0 = ∅. Pi is the current set of programs we have determined the full output

for.
3: r0 = ε. ri is the current request sequence.
4: loop
5: Enumerate GM and HM simultaneously, yielding an element 〈pi, xi〉 of one.
6: if pi ∈ min(B∗ \ Pi) then
7: if there is no request 〈pi, y〉 in ri with xi ≺ y then
8: ri+1 = ri〈pi, xi〉.
9: else

10: ri+1 = ri.
11: end if
12: if 〈pi, xi〉 ∈ HM then
13: Pi+1 = Pi ∪ {pi}.
14: else
15: Pi+1 = Pi.
16: end if
17: end if
18: end loop

Because Pi is closed under prefixes (steps 2, 6 and 13), if step 6 lets a string pi pass

it will never let a proper prefix pj ≺ pi pass later. This, combined with the condition

in step 7, means the request sequence ri is always valid. So r = sup{ri : i ∈ N} is

valid. This means both M[ri+1] and M[r] are well defined.

Because ri is increasing in i, by definition of r, and as we only add requests that M

60 CHAPTER 3. COMPUTABILITY AND PREDICTION

satisfies to r, we have

M[ri](p) #M[ri+1](p) #M[r](p) # M(p)

for all p ∈ B∗ and i ∈ N.

Observe two facts:

1. If p ∈ min(B∗ \ Pi) for some i then M[r](p) = M(p).

To see this, suppose p ∈ min(B∗\Pi). Only step 13 can remove p from this set.

If this occurs by step 12 we know that M(pj) = xj where pj = p for some j > i.

By steps 7 and 8 we know xj #M[rj+1](pj) #M[r](pj). So M[r](p) = M(p).

Otherwise for any x # M(p) we will eventually enumerate 〈p, x〉 in step 5.

Then by steps 6 and 7 we will have x #M[r](p). So M(p) = M[r](p).

2. If p is nonterminal, i.e. if 〈p, M(p)〉 ∈ HM , then p ∈ Pi for some i.

To see this, note that if ε is nonterminal then eventually 〈ε, M(ε)〉 is enumer-

ated from HM whilst Pi = ∅. This means ε ∈ Pi+1. Otherwise if p .= ε is

nonterminal let p′ be defined by p′b = p for b ∈ B. One can see that p′ is non-

terminal, so by inductive hypothesis p′ ∈ Pi for some i. Eventually 〈p, M(p)〉
is enumerated from HM , at which point step 13 adds p into Pj.

We know that ε ∈ min(B∗ \ P0), so by fact 1 above we have M[r](ε) = M(ε).

Let p ∈ B∗ by an arbitrary string not equal to ε.

If p is nonterminal let p′ be defined by p′b = p for b ∈ B. We see p′ is nonterminal, so

p′ ∈ Pi for some i by fact 2, and thus p = p′b ∈ min(B∗ \Pi). Thus M[r](p) = M(p)

by fact 1.

Otherwise p is terminal. Let p∗ # p be the smallest terminal prefix of p. We

have M(p∗) = M(p) as p∗ is terminal. One can also see that M[r](p∗) = M[r](p)

as terminal strings are never added to the set Pi. So we need only establish that

M[r](p∗) = M(p∗). If p∗ = ε then M(p∗) = M[r](p∗) by previous result. Otherwise

p′ defined by p′b = p∗ for b ∈ B is nonterminal. By facts 1 and 2 we then know

p′ ∈ Pi for some i. This means p∗ = p′b ∈ min(B∗ \ Pi), and so M[r](p∗) = M(p∗)

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 61

Theorem 3.25. There is a computable sequence Mi : B# → X# for i ∈ N of all

processes. That is, Mi is a process for all i, every process M is equal to Mi for some

i, and we can compute Mi from i.

Proof. It is easy to computably enumerate the finite computable request sequences

as all finite sequences are computable, and as (B∗ ×X∗)∗ is countable. To enumer-

ate the infinite computable request sequence simply note that an infinite request

sequence is simply a computable function

f : N → B∗ ×X∗

and all such functions can be enumerated. By combining these enumerations we get

an enumeration

e : N → (B∗ ×X∗)#

of all computable request sequences. This includes invalid request sequences too.

Define Mi to be the process generated by Algorithms 4 and 5 from the proof of

Lemma 3.20, where we define the computable request sequence r to be e(i). Note

that this is a process even if e(i) is an invalid request sequence.

Finally, note that by Lemma 3.24 above, for every process M there is a computable

request sequence r such that M[r] = M . Since e is an enumeration of all such

sequences, we have e(i) = r for some i. Thus M = Mi for some i.

3.4.4 Approximating semimeasures with processes

Our plan is to take an enumerable semimeasure ν and construct a computable

sequence of request sequences ri such that

lim
i→∞

µM[ri](x) = ν(x) for all x ∈ B#.

By Lemma 3.21 we will have

µM[r](x) = ν(x) for all x ∈ B∗

where r = sup{ri : i ∈ N}. The request sequence r is computable, since the sequence

ri is computable, so M[r] defines a process by Lemma 3.20. Thus any enumerable

semimeasure is effectively equal to some process’s semimeasure.

62 CHAPTER 3. COMPUTABILITY AND PREDICTION

Appending a request to increase the semimeasure

Suppose we are approximating an enumerable semimeasure ν from below. That is,

we are constructing a sequence of semimeasures νi below ν

νi(x) ≤ ν(x)

with νi(x) ≤ νi+1(x) for all i and x. That ν is enumerable means we occasionally

discovers facts such as 0.25 ≤ ν(∆∆Ξ) and wish to define a νi+1 capturing this

i.e. where 0.25 ≤ νi+1(∆∆Ξ) and νi(x) ≤ νi+1(x) for all x. This sort of thing is

necessary for the sequence νi to tend to ν.

We must ensure νi+1 is the least semimeasure capturing what we know, as because

we can never decrease the semimeasure we must never have ν(x) < νi+1(x) for any

x. However, we cannot simply define

νi+1(x) =





0.25 if x = ∆∆Ξ,

νi(x) otherwise

because this needn’t be a semimeasure (although we can assume that νi(x) ≤ 0.25).

Let’s be concrete: suppose the semimeasure ν1 is defined as follows

x ε ∆ ∆∆ ∆∆Ξ ∆Ξ otherwise

ν1(x) 1 0.5 0 0 0.25 0

If we define ν2 as above we would have ν2(∆∆) < ν2(∆∆Ξ), an inconsistency.

Instead, we define ν2 to be the least semimeasure such that ν1(x) ≤ ν2(x) and

ν2(∆∆Ξ) = 0.25. This semimeasure can be seen to be

x ε ∆ ∆∆ ∆∆Ξ ∆Ξ otherwise

ν2(x) 1 0.5 0.25 0.25 0.25 0

As this is least we know ν2(x) ≤ ν(x), so we can continue the sequence defining ν3

as soon as we discover another fact about ν.

Since we wish to represent enumerable semimeasure by processes, all of our ap-

proximating semimeasures νi must be generated by processes M[ri] with ri # ri+1.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 63

Suppose ν1 is generated by the process

ε

..............

""""""""""""

∆

((
((

((

//
//

//
/ ε

**
**

**
*

++
++

++
+

∆

,,
,,
,

--
--

- ∆Ξ

00
00
00

11
11

11
ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

&

...
...

...
...

...
...

...
...

which is defined by the request sequence

〈0, ∆〉〈01, ∆Ξ〉.

We wish to add a request 〈p, ∆∆Ξ〉 for some p ∈ B∗ to construct a process generating

the least semimeasure ν2. From Definition 3.15 and 3.19 one can see the value of the

process must be constant on the subtree p B# for this to be a valid request sequence.

We cannot, however, pick any such constant p. For example, if we use p = 10 we

get

ε

..............

2222222222222222

∆

((
((

((

//
//

//
/ ε

33
33

33
33

++
++

++
+

∆

,,
,,
,

--
--

- ∆Ξ

00
00
00

11
11

11
∆∆Ξ

44
44

44

55
55

55
ε

%%
%%
%

&&
&&

&

...
...

...
...

...
...

...
...

which has semimeasure

ε ∆ ∆∆ ∆Ξ ∆∆Ξ otherwise

1 0.75 0.25 0.25 0.25 0

This semimeasure assigns ∆∆Ξ the correct probability but assigns ∆ too much.

This occurs because there are nodes which have labels closer to ∆∆Ξ than node

01: node 00 has label ∆ compared to node 10’s ε. To increase the semimeasure

64 CHAPTER 3. COMPUTABILITY AND PREDICTION

minimally we must pick such a node. Using p = 00 gives us

ε

..............

""""""""""""

∆

6666666

//
//

//
/ ε

**
**

**
*

++
++

++
+

∆∆Ξ

44
44

44

55
55

55
∆Ξ

00
00
00

11
11

11
ε

%%
%%
%

&&
&&

& ε

%%
%%
%

&&
&&

&

...
...

...
...

...
...

...
...

which can be verified to have semimeasure ν2.

Lemma 3.26 below proves the method used above works in general: if we increase

the value of a constant node p to x, where node p has output closest to x, then we

minimally increase the process’s semimeasure’s value at x by 2−|p|. This is our basic

tool for increasing the measure assigned to a particular sequence. Later results will

allow us to increase the semimeasure by arbitrary8 amounts (Lemma 3.27), where

possible (Lemma 3.28), allowing us to approximate any enumerable semimeasure by

a process (Theorem 3.29).

Let a finite process be one generated by a finite request sequence. A program

q ∈ B∗ is constant in a process M if M(q′) = M(q) for all q′ ∈ B# with q′ 6 q.

This means all successors of q have the same output on M as q.

Lemma 3.26. Given a finite process M[r], a string y ∈ X∗, a program q ∈ B∗

constant in M[r] with M[r](q) ≺ y, and if there is no p constant with M[r](q) ≺
M[r](p) ≺ y, then µM[r〈q,y〉] is the least semimeasure satisfying

1. µM[r](x) ≤ µM[r〈q,y〉](x) for all x ∈ X∗,

2. µM[r](y) + 2−|q| ≤ µM[r〈q,y〉](y),

i.e. for any semimeasure ν, if µM[r](x) ≤ ν(x) for all x, and if µM[r](y)+2−|q| ≤ ν(y),

then µM[r〈q,y〉](x) ≤ ν(x) for all x. Furthermore, we have equality:

µM[r〈q,y〉](y) = µM[r](y) + 2−|q|.

8Actually, only by dyadic amounts, but this is no problem since a sequence of dyadic rationals
can have any real as its limit.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 65

Proof. Since r # r〈q, y〉, and becauseM[r] is least by definition, we haveM[r](p) #
M[r〈q, y〉](p) for all p ∈ B#. But then

{p ∈ B# : x #M[r](p)} ⊆ {p ∈ B# : x #M[r〈q, y〉](p)}

so by Definition 3.10 of a process’s semimeasure:

µM[r](x) ≤ µM[r〈q,y〉](x) for all x ∈ X∗.

By Lemma 3.19 we have

M[r〈q, y〉](p) =





y if q # p,

M[r](p) otherwise.
(3.1)

It follows that

µM[r〈q,y〉](y) =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : y #M[r〈q, y〉](p)}]

=
∑

p

2−|p| [p ∈ min{p ∈ B∗ : y #M[r](p)}] + 2−|q|

= µM[r](y) + 2−|q|

by Lemma 3.11 and since q is the only additional minimal program whose output

starts with y.

It remains to show µM[r〈q,y〉] is the least such semimeasure. Suppose ν is a semimea-

sure where µM[r](x) ≤ ν(x) for all x and where µM[r](y) + 2−|q| ≤ ν(y). We prove

µM[r〈q,y〉](x) ≤ ν(x) by cases. Let yold = M[r](q) and recall that y = M[r〈q, y〉](q).

1. Not yold ≺ x # y. By Equation 3.1 above, M[r](p) only differs fromM[r〈q, y〉](p)

when q # p. In this case M[r](p) = yold and M[r〈q, y〉](p) = y. Consider the

sets

{p ∈ B# : x #M[r〈q, y〉](p)} and {p ∈ B# : x #M[r](p)}.

Because M[r](p) # M[r〈q, y〉](p), the only case where the inequality x #

66 CHAPTER 3. COMPUTABILITY AND PREDICTION

M[r〈q, y〉](p) can hold without x #M[r](p) also holding is if

M[r](p) ≺ x #M[r〈q, y〉](p).

But this means yold ≺ x # y. Since x is not between these values, by hypoth-

esis, the sets are equal and so µM[r](x) = µM[r〈q,y〉](x) by definition. It follows

that

µM[r〈q,y〉](x) = µM[r](x) ≤ ν(x).

2. yold ≺ x # y. We prove coherence by induction over all such x. For x = y we

have

µM[r〈q,y〉](y) = µM[r](y) + 2−|q| ≤ ν(y)

by hypothesis. Assume this holds for all z such that x ≺ z # y. Then,

µM[r〈q,y〉](x) = µM[r〈q,y〉](x↓) +
∑

c∈X

µM[r〈q,y〉](xc)

≤ µM[r〈q,y〉](x↓) +
∑

c∈X

ν(xc)

=
∑

p

2−|p| [p ∈ min{p ∈ B∗ : x = M[r](p′) for all p′ 6 p}]

+
∑

c∈X

ν(xc)

= 0 +
∑

c∈X

ν(xc)

≤ ν(x).

The second step is by inductive hypothesis, the third step follows from Lemma

3.22, the fourth because by hypothesis there is no p constant in M[r] with

yold #M[r](p) = x ≺ y.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 67

Increasing a semimeasure by an arbitrary amount

Suppose we wish to allocate α = 0.5 extra measure to the sequence y = ∆∆Ξ in the

finite process M[r]

ε

77777777777777777

""""""""""""

∆

888888888

99
99

99
99

9 ε

::
::

::
:

;;
;;

;;
;

∆Ξ

<<
<<
<<

==
==

==
∆

00
00
0

--
--

- ε

>>
>>
>>

??
??

??
ε

>>
>>
>>

??
??

??

∆Ξ
...

∆Ξ
...

∆Ξ
...

∆
...

ε
...

ε
...

ε
...

ε
...

We cannot simply apply Lemma 3.26 because there is no single program we can

allocate with measure 0.5. We will show how Lemma 3.27 below constructs the

process satisfying this allocation.

The precondition of Lemma 3.27 below is that we have sufficient free space to allocate

the requested measure. That is,

α ≤
∑

x ≺ y

µM[r](x↓)

=
∑

x ≺ y

∑

p

2−|p| [p ∈ min{p : x = M[r](p′) for all p′ 6 p}].

Notice the summation is over all minimal free programs Lemma 3.26 could be in-

voked with (although, importantly, we would have to use the programs with longer

output first). In our example this evaluates to

0.5 ≤ 2−|011| + 2−|1| = 0.75.

The minimal programs 011 and 1 form the set F0 of minimal free programs at round

0 (see the proof below). In each diagram the elements of Fi will be underlined (note

that F0 is underlined in the previous diagram).

The algorithm first selects the program 011 as it is the minimal free program with

68 CHAPTER 3. COMPUTABILITY AND PREDICTION

greatest output. Allocating this to ∆∆Ξ gives us M[r1]

ε

@@@@@@@@@@@@@@@@@@@@

""""""""""""

∆

888888888

99
99

99
99

9 ε

::
::

::
:

;;
;;

;;
;

∆Ξ

<<
<<

<

==
==

= ∆

00
00
0

55
55

5 ε

AA
AA
A

BB
BB

B ε

AA
AA
A

BB
BB

B

∆Ξ
...

∆Ξ
...

∆Ξ
...

∆∆Ξ
...

ε
...

ε
...

ε
...

ε
...

This process has 1/8 = 0.125 extra measure allocated to ∆∆Ξ, there is 3/8 remain-

ing.

The algorithm next selects the program 1. Since 3/8 < 1/2 = 2−|1| the algorithm

allocates not 1 but some children of 1 to ∆∆Ξ, namely 100, 101 and 110. After

three invocations of Lemma 3.26 this gives us M[r2]

ε

@@@@@@@@@@@@@@@@@@@@

CCCCCCCCCCCCCCCCCCCCC

∆

888888888

99
99

99
99

9 ε

DDDDDDDDDDD

EEEEEEEEEEE

∆Ξ

<<
<<

<

==
==

= ∆

00
00
0

55
55

5 ε

FF
FF
FF

GG
GG

GG
ε

FF
FF
FF

BB
BB

B

∆Ξ
...

∆Ξ
...

∆Ξ
...

∆∆Ξ
...

∆∆Ξ
...

∆∆Ξ
...

∆∆Ξ
...

ε
...

As this now has 0.5 more measure assigned to ∆∆Ξ than the initial process we are

complete: this is the process output by the lemma.

Recall that a dyadic rational α is one equal to k2−d for some k, d ∈ N. These

are exactly the rationals which can be written with a finite number of binary digits.

Also, a finite process is one generated by a finite request sequence.

Lemma 3.27. Given a finite process M[r], a string y ∈ X∗, and a positive dyadic

rational α such that

α ≤
∑

x ≺ y

µM[r](x↓),

there effectively exists a finite request sequence r′ 6 r such that µM[r′] is the least

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 69

semimeasure satisfying

1. µM[r](x) ≤ µM[r′](x) for all x ∈ X∗,

2. µM[r](y) + α ≤ µM[r′](y).

Furthermore, we have equality:

µM[r′](y) = µM[r](y) + α.

Proof. Algorithm 7 computes r′ from r: when the algorithm terminates r′ is defined

to be ri. It remains to prove the algorithm correct.

Algorithm 7 Allocate α extra measure to y in M[r]
1: i ← 0.
2: α0 = α.
3: r0 = r.
4: repeat
5: Select a node qi such that

qi ∈
⋃

x≺y

min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p}

and where M[ri](qi) is maximal in the set (i.e. for all other p’s in the set,
M[ri](p) #M[ri](qi)).

6: if 2−|qi| < αi then
7: Define ri+1 from ri using Lemma 3.26 to change qi’s output to y.
8: αi+1 = αi − 2−|qi|.
9: else

10: Let ki, di be natural numbers such that

ki 2−di = αi

11: Repeatedly using Lemma 3.26 change the output of the ki strings

{qib : b ∈ Bdi−|qi| and b < ki interpreting b as a binary number}

to y in M[ri] forming ri+1.
12: αi+1 = 0.
13: end if
14: i ← i + 1.
15: until αi = 0

70 CHAPTER 3. COMPUTABILITY AND PREDICTION

Let

Fi =
⋃

x≺y

min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p}

be the set of “free nodes” available to us at each step.

We first show we can finitely compute the (finite) set Fi for any i. This will mean

step 5 succeeds so long as Fi is nonempty (which we also show). With this it is

clear each step of the algorithm is finitely computable, so long as the applications

of Lemma 3.26 in steps 7 and 11 are valid. We then establish the invariants

1. µM[ri](y) = µM[r](y) + (α− αi).

2. For any semimeasure ν, if µM[r](x) ≤ ν(x) for all x, and if µM[r](y)+(α−αi) ≤
ν(y), then µM[ri](x) ≤ ν(x) for all x.

3. If 2−|qi| < αi then

Fi+1 = Fi \ {qi}.

4. αi ≤
∑

x ≺ y µM[ri](x↓).

for each value of i visited by the algorithm, whilst simultaneously showing each

application of Lemma 3.26 in steps 7 and 11 is valid.

As the algorithm halts when αi = 0, the first two invariants show r′ = ri satisfies

the required conditions of the lemma. By Lemma 3.22 we have

µM[ri](x↓) =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p}].

This, by the last invariant and by definition of Fi, means Fi is nonempty whenever

αi > 0, which means step 5 always succeeds in finding a qi. This also shows the

algorithm goes down the else branch of the if statement as soon as Fi has only one

remaining member, after which it halts. As F0 is a finite set (we show this below),

the third invariant shows the algorithm terminates as Fi continuously decreases in

size.

First observe that M[ri](p) is finitely computable as ri is finite: by Lemma 3.18

M[ri](p) = sup{yi
j : ri

j = 〈qi
j, y

i
j〉 for some j and qi

j # p}

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 71

and the set on the right is finitely computable from ri. If a program p has a proper

prefix p′ ≺ p with the same output M[ri](p′) = M[ri](p) it cannot be in

Fi =
⋃

x≺y

min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p}

since it will not be minimal. From Lemma 3.19 it can be seen that M[ri](p′) .=
M[ri](p) for all proper prefixes p′ ≺ p only if 〈p,M[ri](p)〉 is a request in ri. Thus,

computing the set Fi involves a finite search within ri, so it is finitely computable.

This means Fi is itself a finite set.

We establish the invariants by cases: either 2−|qi| < αi or not. All invariants but

the third trivially hold for i = 0, so we will inductively prove then for i + 1 from i.

(The third invariant is not established by inductive proof.)

Suppose 2−|qi| < αi. Note that the criteria used to select qi from Fi exactly matches

the preconditions for Lemma 3.26 in step 7.

1. We have

µM[ri+1](y) = µM[ri](y) + 2−|qi|

= µM[r](y) + (α− αi) + 2−|qi|

= µM[r](y) + (α− αi+1)

where the first step follows from the Lemma 3.26 application in step 7, the

second by inductive hypothesis, and the last by definition of αi+1 in step 8.

2. Suppose ν satisfies µM[r](x) ≤ ν(x) for all x and µM[r](y) + (α−αi+1) ≤ ν(y).

Since

(α− αi) + 2−|qi| = (α− αi+1)

we have µM[r](y)+(α−αi) ≤ ν(y) so by inductive hypothesis µM[ri](x) ≤ ν(x)

for all x. We also have

µM[ri](y) + 2−|qi| = µM[ri+1](y)

= µM[r](y) + (α− αi+1)

≤ ν(y)

where the first step follows by construction of ri+1, the second by the pre-

72 CHAPTER 3. COMPUTABILITY AND PREDICTION

vious invariant, and the last by hypothesis. Thus by Lemma 3.26 we have

µM[ri+1](x) ≤ ν(x) for all x, since µM[ri+1](x) is the least such measure.

3. By the construction using Lemma 3.26 in step 7, and by Lemma 3.19 we have

M[ri+1](p) =





y if qi # p,

M[ri](p) otherwise.

As a result,

Fi+1 =
⋃

x≺y

min{p ∈ B∗ : x = M[ri+1](p′) for all p′ 6 p}

=
⋃

x≺y

min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p} \ {qi}

= Fi \ {qi}.

To see this note that qi is in Fi but not Fi+1, by choice of qi and by the above

expression for M[ri+1]. Any proper extension of qi is in neither set as it cannot

be minimal. Otherwise p satisfies qi .# p and so M[ri+1](p) = M[ri](p). As a

result Fi and Fi+1 are equal but for qi, establishing the central equality.

4. We have:

∑

x ≺ y

µM[ri](x↓) =
∑

x ≺ y

∑

p

2−|p| [p ∈ min{p ∈ B∗ : x = M[ri](p′) for all p′ 6 p}]

=
∑

p∈Fi

2−|p|

=
∑

p∈Fi+1

2−|p| + 2−|qi|

=
∑

x ≺ y

µM[ri+1](x↓) + 2−|qi|

The first step by Lemma 3.22, the second by definition of Fi, the third by the

previous invariant, and the last by Lemma 3.22 and the definition of Fi+1.

As αi+1 = αi − 2−|qi|, and as

αi ≤
∑

x ≺ y

µM[ri](x↓)

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 73

by inductive hypothesis, we have

αi+1 ≤
∑

x ≺ y

µM[ri+1](x↓).

Suppose αi ≤ 2−|qi|. It can be shown that if we can apply Lemma 3.26 to a single

string q in a process M[r] we can instead apply it repeatedly to a set of strings

{qs : s ∈ S}

where S is a prefix free subsets of B∗, constructing a M[rS] such that µM[rS] is the

least semimeasure satisfying

1. µM[r](x) ≤ µM[rS](x) for all x ∈ X∗,

2. µM[r](y) + 2−|q|
∑

s∈S 2−|s| ≤ µM[rS](y),

with r # rS, and where we have equality in the second statment. The central idea

is to show that

M[rS](p) =





y if qs # p for some s ∈ S,

M[r](p) otherwise,

where r∅ = r and rS is defined from rS\s by applying Lemma 3.26 to M[rS\s] and

the string qs for s ∈ S.

The proof that the first two invariants hold is then a simple extension of the proof

for 2−|qi| < αi using this result with q = qi and

S = {s : s ∈ Bdi−|qi| and s < ki interpreting s as a binary number}

instead of Lemma 3.26. This works because

αi − αi+1 = αi

= ki 2−di

= 2−|qi|
∑

s∈S

2−|s|.

Note invariants 3 and 4 are trivial in this case because αi ≤ 2−|qi| and αi+1 = 0.

74 CHAPTER 3. COMPUTABILITY AND PREDICTION

Increasing a semimeasure to meet any semimeasure above it

The following lemma shows we can apply Lemma 3.27 whenever µM[r](x) ≤ ν(x)

for all x and µM[r](y)+α ≤ ν(y). This means we can always bring µM[r] up to meet

any upper bound.

Lemma 3.28. Given a finite process M and a semimeasure ν, if for all x ∈ X∗

µM(x) ≤ ν(x)

then for all x ∈ X∗

ν(x)− µM(x) ≤
∑

y ≺ x

µM(y↓).

Proof.

ν(x)− µM(x) ≤ 1−
|x|∑

i=1

∑

c ,=xi

ν(x1:i−1c)− µM(x)

≤ 1−
|x|∑

i=1

∑

c ,=xi

µM(x1:i−1c)− µM(x)

=
|x|∑

i=1

µM(x1:i−1↓)

=
∑

y ≺ x

µM(y↓).

For any semimeasure ρ and any x by inductive application of

ρ(x1:i) = ρ(x1:i−1)− ρ(x1:i−1↓)−
∑

c ,=xi

ρ(x1:i−1c)

(by Equation 2.1 restating semimeasure coherence) we have

ρ(x) = 1−
|x|∑

i=1

ρ(x1:i−1↓)−
|x|∑

i=1

∑

c ,=xi

ρ(x1:i−1c)

as ρ(ε) = 1 and x1:0 = ε. The first and third steps apply this identity. The second

applies the inequality µM(x) ≤ ν(x). The last equality holds as the strings x1:i−1

for i ≤ |x| are all the strict prefixes of x.

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 75

3.4.5 Enumerable semimeasures are those generated by pro-

cesses

We are finally ready to prove the desired result: enumerable semimeasures are ex-

actly those generated by processes.

Theorem 3.29. For any enumerable semimeasure ν there effectively exists a process

M where

ν(x) = µM(x) for all x ∈ X∗.

Conversely, for any process M the semimeasure µM(x) is enumerable.

Proof. The converse is exactly Lemma 3.14 above.

Algorithm 8 computes a sequence ri of finite request sequences such that

lim
i→∞

µM[ri](x) = ν(x) for all x ∈ B∗.

By Lemma 3.21 we will have

µM[r](x) = ν(x) for all x ∈ B∗

where r = sup{ri : i ∈ N}. The request sequence r is computable since the sequence

ri is computable, so M[r] defines a process by Lemma 3.20. Defining M = M[r]

completes the theorem.

We first show we can compute µM[ri](yi), and that we always satisfy the precondi-

tions of Lemma 3.27 in step 7. This shows the algorithm is well-defined. We end by

showing µM[ri](x) tends to ν(x).

First, observe that M[r](p) is finitely computable when r is finite: by Lemma 3.18

M[r](p) = sup{yi : ri = 〈qi, yi〉 for some i and qi # p}

and the set on the right is finitely computable from r. By Lemma 3.11 we have

µM[r](y) =
∑

p

2−|p| [p ∈ min{p ∈ B∗ : y #M[r](p)}].

If a program p has a proper prefix p′ ≺ p with the same output M[r](p′) = M[r](p)

it cannot be in the above minimal set. From Lemma 3.19 it can be seen that

76 CHAPTER 3. COMPUTABILITY AND PREDICTION

Algorithm 8 Compute a sequence ri such that limi→∞ µM[ri] = ν

1: i ← 0.
2: r0 = ε.
3: loop
4: Take a dyadic rational αi and a string yi from the enumeration of

{〈α, y〉 ∈ Q×X∗ : α < ν(y)}.

5: Compute the value of µM[ri](yi).
6: if µM[ri](yi) < αi then
7: Use Lemma 3.27 to allocate αi − µM[ri](yi) extra measure to yi, defining

the request sequence ri+1 from ri.
8: else
9: ri+1 = ri.

10: end if
11: i ← i + 1.
12: end loop

M[r](p′) .= M[r](p) for all proper prefixes p′ ≺ p only if 〈p,M[r](p)〉 is a request in

r. Thus finding the set

min{p ∈ B∗ : y #M[r](p)} ⊆ {p ∈ B∗ : M[r](p) .= M[r](p′) for all p′ ≺ p}

involves a finite search through r. So µM[r](x) is finitely computable for finite r.

Next, we show the preconditions of Lemma 3.27 are always satisfied whilst estab-

lishing that

µM[ri](x) ≤ ν(x) for all x ∈ X∗

holds for all i. It is clear that

µM[r0](x) = µM[ε](x) ≤ ν(x) for all x ∈ X∗

since µM[ε](x) is the least semimeasure. Suppose the above bound holds for µM[ri].

If αi ≤ µM[ri](yi) then ri+1 = ri so the bound trivially holds for µM[ri+1]. Otherwise

Lemma 3.28 implies that

ν(yi)− µM[ri](yi) ≤
∑

x ≺ yi

µM[ri](x↓).

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 77

Since αi < ν(yi) this means

αi − µM[ri](yi) ≤
∑

x ≺ yi

µM[ri](x↓)

which allows us to apply Lemma 3.27. As a post condition we have

µM[ri+1](x) ≤ ν(x) for all x ∈ X∗.

This shows our algorithm is well-defined.

As a second post condition of Lemma 3.27 we have,

µM[ri+1](yi) = µM[ri](yi) + (αi − µM[ri](yi)) = αi

if µM[ri](yi) < αi and

αi ≤ µM[ri](yi)

otherwise. We will eventually enumerate αi arbitrarily close to ν(y) for every y ∈ B∗

since we enumerate every element of

{〈α, y〉 : α is a dyadic rational, y ∈ X∗, and α < ν(y)}

infinitely often (without loss of generality), and as the dyadic rationals are dense in

the reals9. Thus,

lim
i→∞

µM[ri](x) = ν(x) for all x ∈ B∗.

3.4.6 Interpreting the equivalence

We describe two interpretations of Theorem 3.29, the equivalence between enumer-

able semimeasures and processes. First is that any enumerable semimeasure corre-

sponds to a probabilistic computable model of the sequence’s generation. Second is

that constructing an enumerable semimeasure’s process can be seen as extracting

the knowledge out of the semimeasure10.

9This means we can approximate a real number arbitrarily closely by a dyadic rational.
10This interpretation suggested by Eliezer Yudkowsky in personal communication.

78 CHAPTER 3. COMPUTABILITY AND PREDICTION

Uncertain knowledge corresponds to probabilistic models

A process generates an output sequence from an input sequence. Whenever

ν(x) = µM(x)

holds, the knowledge of the sequence embodied in ν is equivalent to (i.e. assigns

the same probabilities as) the knowledge that the sequence is generated by the

process M from an unbounded but completely unknown sequence (see also Section

3.2.3). This is a probabilistic (or stochastic) model of the sequence’s generation.

Since processes can be seen as computer programs with input and output (Section

3.2.2), the semimeasure µM(x) can be seen as describing the expected output of the

program M with access to a purely random input stream.

For example, consider the sequence of floors an elevator visits, sampled at a fixed

time interval. In a 5 floor building this is a sequence over the set {1, 2, 3, 4, 5},
such as 111112234554 · · · . Suppose our knowledge about this sequence is described

by the semimeasure ν. This knowledge may come from a simulation which models

the people (randomly) arriving at floors and pressing buttons, and the elevator’s

response to these instructions. Using our knowledge, we can write a computer

program which simulates the elevator and outputs the sequence of floors it visits.

Since we are unsure of how many people will arrive when, the program uses the

random noise input to make stochastic choices. This is a probabilistic computable

model of the sequence’s generation.

Extracting knowledge, or factoring out certainty

For every enumerable semimeasure ν there exists a process M such that

ν(x) = µM(x), for all x ∈ X∗.

By Definition 3.10 we have

ν(x) = λ(M−1(Γx)).

The semimeasure ν represents partial knowledge about a sequence. Since λ repre-

sents complete ignorance about an unbounded sequence, and we know the process

3.4. PROCESSES AND SEMIMEASURES ARE EQUIVALENT 79

M with complete certainty (i.e. we know which function M : B# → X# it is), the

above equality is a factoring of the knowledge represented by ν. The construction

in Theorem 3.29 extracts the knowledge (or certainty) within ν into a process M ,

leaving behind complete ignorance (or uncertainty) within λ.

Chapter 4

Universal semimeasures

Semimeasures capture1 uncertain knowledge about a sequence, so their accuracy is

important. We evaluate a semimeasure’s error2 by comparing its predictions with

reality. We measure the error (or total error) of a semimeasure ν by the negative

logarithm

Err[ν(x↓)] = − log ν(x↓)

of the probability ν(x↓) it assigns the sequence x ∈ X# which actually occurs (see

Section 1.2 for a derivation of this measure). The higher this probability the lower

its error. A semimeasure’s error is zero when it assigns probability one to the true

sequence; the larger the error the more it deviates from this ideal. Error is called

surprisal or self-information in information theory, and expected error is entropy

[CT91].

Partial errors

Err[ν(x)] = − log ν(x)

for x ∈ X∗ measure the error when only a prefix x ∈ X∗ of the total sequence has

been read. Partial errors can be used to measure the error rate, particularly useful

if the total error Err[ν(x↓)] is infinite.

As a semimeasure’s error depends on an unknown sequence it is natural to study

the semimeasure’s worst-case performance. If a semimeasure ν’s error is at most

1Semimeasure capture the knowledge because probabilities are sufficient to make decisions
[Ber93]

2Section 1.2 derived a measure of accuracy on the scale [−∞, 0], then negated it to form a
nonnegative measure of inaccuracy or error.

81

82 CHAPTER 4. UNIVERSAL SEMIMEASURES

a constant larger than another ρ’s then we say ν dominates ρ (Section 4.1). If ν

doesn’t dominate ρ then ρ can arbitrarily outperform ν. Ideally we’d like to exclude

such semimeasures.

For the class of enumerable semimeasures we can fulfill this goal: there exists enu-

merable semimeasures which dominate all other enumerable semimeasures. The pre-

vious chapter described semimeasures generated by processes. A process is universal

if it simulates all others. The semimeasure µU of a universal process U dominates

all enumerable semimeasures (Section 4.2).

In the definition of dominance there is a hidden additive constant: the maximum

amount the dominated semimeasure can outperform the dominating one. The

smaller this constant the better the worst-case performance. The semimeasure µU

dominates any enumerable semimeasure ν with constant equal to ν’s complexity

relative to U (Sections 4.2.2, 4.2.4). For nice universal processes U there is reason

to expect these constants to be small (Section 4.2.5), so for such U the semimeasure

µU serves as a powerful predictor.

4.1 Dominance

Consider the semimeasures

ν1(x) =





1 if x = ε,

2−|x|−10 otherwise

ν2(x) = 2−2|x|

ν3(x) =





1 if x = ε,

0 otherwise

over the set X = {∆, Ξ}. If we thought the sequence was generated by first flipping

a coin 10 times, then if we got 10 heads continuously flipping the coin to generate a

sequence, we would use the semimeasure ν1 to describe our knowledge. If we thought

it were generated by continuously flipping two coins, where the first must be heads

for the sequence to continue and the second selects the elements of the sequence, we

would use the semimeasure ν2. If we thought the sequence was definitely empty we

would use the semimeasure ν3.

4.1. DOMINANCE 83

The semimeasure ν1 has the partial error Err[ν1(x)] = |x| + 10 for x .= ε and

Err[ν1(ε)] = 0, whilst ν2 has the partial error Err[ν2(x)] = 2|x|. Even though

Err[ν1(∆)] = 11 > 2 = Err[ν2(∆)] we have

Err[ν1(x)] ≤ Err[ν2(x)] + 10

for all x ∈ X∗: ν1’s partial error is at most 10 bits larger than ν2’s. No such bound

exists in the opposite direction as ν2’s error grows twice as fast as ν1’s. We say ν1

weakly dominates ν2 with constant 10.

For the semimeasures ν2 and ν3 we have

Err[ν2(x)] = 2|x| ≤





0 if x = ε

∞ otherwise




 = Err[ν3(x)]

and

Err[ν2(x↓)] = 2|z|+ 1 ≤





0 if z = ε

∞ otherwise




 + 1 = Err[ν3(x↓)] + 1

for all x ∈ X∗. We say ν2 strongly dominates ν3 with constant 1.

Note that the semimeasure ν1 has the total error Err[ν1(x↓)] = ∞ for x .= ε, whilst

ν2 has the total error Err[ν2(x↓)] = 2|x|+ 1. In case there is no c such that

Err[ν1(x↓)] ≤ Err[ν2(x↓)] + c

holds for all x ∈ X∗. So although ν1 weakly dominates ν2 it does not strongly

dominate it.

Definition 4.1. A semimeasure ρ weakly dominates (or dominates) a semimea-

sure ν with constant c ∈ R if

Err[ρ(x)] ≤ Err[ν(x)] + c for all x ∈ X∗.

If additionally

Err[ρ(x↓)] ≤ Err[ν(x↓)] + c for all x ∈ X∗

then ρ strongly dominates ν with constant c.

Dominance is a worst-case bound on error. Weak dominance bounds the total error

84 CHAPTER 4. UNIVERSAL SEMIMEASURES

Err[ρ(ω)] for infinite sequences ω ∈ X∞, since if ρ weakly dominates ν with constant

c then ν(ω↓) ≤ 2cρ(ω↓) for all infinite sequences ω ∈ X∞ by Lemma 4.2 below and

Equation (2.1), and so

Err[ρ(ω↓)] ≤ Err[ν(ω↓)] + c for all ω ∈ X∞.

Weak dominance also gives a sharp bound on the error rate

lim
n→∞

Err[ρ(ω1:n)]/n ≤ lim
n→∞

Err[ν(ω1:n)]/n

for all infinite sequences ω. Strong dominance additionally bounds the total error

for finite sequences (Section 4.1.1 below shows weak dominance isn’t sufficient).

Weak dominance is called simply dominance in the literature [LV97] [Hut05] and

is normally and equivalently defined as in Lemma 4.2 below. Strong dominance

appears to be novel.

Lemma 4.2. A semimeasure ρ weakly dominates a semimeasure ν if there exists a

constant k ∈ R such that

ν(x) ≤ kρ(x) for all x ∈ X∗.

If additionally

ν(x↓) ≤ kρ(x↓) for all x ∈ X∗

then ρ strongly dominates ν.

Proof. Combine Definition 4.1 of dominance with Definition 1.3 of error.

4.1.1 Weak and strong dominance are distinct

We have shown above that if ρ weakly dominates ν with constant c then

Err[ρ(ω↓)] ≤ Err[ν(ω↓)] + c for all infinite sequences ω ∈ X∞.

As hinted by the example of ν1 and ν2 in the previous section, we cannot extend

this result to finite sequences z ∈ X∗. The following construction clarifies why this

is so.

4.1. DOMINANCE 85

Example 4.3. Suppose ρ strongly dominates ν and ν(ε↓) is nonzero. Consider the

semimeasure

ρ̂(x) =






1 if x = ε,

1/|X| if |x| = 1,

ρ(x)/|X| otherwise.

Suppose ρ = µM for a process M i.e. that ρ represents the knowledge that the

sequence was generated by M fed random input (always possible by Theorem 3.29).

Then ρ̂ = µM̂ where M̂ first randomly guesses a character, each character with equal

probability 1/|X|, outputs it, then runs M . If M ’s output agrees with M̂ ’s guess

then M̂ outputs the rest of the sequence generated by M . Otherwise it outputs

nothing more.

The semimeasure ρ̂ dominates ν, since ρ(x) ≤ |X| ρ̂(x). However, as ν(ε↓) is nonzero

and ρ̂(ε↓) is zero, ρ̂ does not strongly dominate ν. The reason behind this lack of

strong dominance is M̂ always outputs a first character where as, by hypothesis, the

sequence described by ν can be empty.

One can generalise this. Suppose ρ strongly dominates ν and ν(x̂↓) is nonzero for

some x̂ ∈ X∗. Then

ρ̂(x) =






ρ(x̂)/|X| if x̂ ≺ x and (|x| − |x̂|) = 1,

ρ(x)/|X| if x̂ ≺ x and (|x| − |x̂|) > 1,

ρ(x) otherwise,

corresponds to the machine which runs M and only tries to guess M ’s next character

once M has output the string x̂ (with x̂ = ε we get the previous construction). As

before it will output its guess and only continue if it guesses correctly.

Again, ρ̂ dominates ν since ρ(x) ≤ |X| ρ̂(x). However, as ν(x̂↓) is nonzero and ρ̂(x̂↓)
is zero ρ̂ does not strongly dominate ν.

As with weak and strong dominance above, later sections will introduce several

concepts with weak and strong forms. These all stem from the difference between

weak dominance which bounds partial errors

Err[ρ(x)] ≤ Err[ν(x)] + k for all x ∈ X∗,

86 CHAPTER 4. UNIVERSAL SEMIMEASURES

and strong dominance which bounds both partial and total errors

Err[ρ(x↓)] ≤ Err[ν(x↓)] + k for all x ∈ X∗.

We will introduce the concepts of simulation, simulation complexity, universal pro-

cesses, and universal semimeasures. Each of these will have a weak and a strong

form. Just as strong dominance implies weak dominance, so too will the stronger

concepts imply their weaker counterparts.

4.2 Universal semimeasures

4.2.1 Simulation

Consider the processes U

ε

@@@@@@@@@@@@@@@@@@@@

222222222222222

∆Ξ

HHHHHHHH

IIIIIIII ∆

33
33

33
3

99
99

99
99

9

∆Ξ

<<
<<

<

==
==

= ∆Ξ

<<
<<

<

==
==

= ∆

,,
,,
,

--
--

- ∆

00
00
0

11
11

1

∆Ξ
...

∆Ξ
...

∆Ξ
...

∆Ξ
...

∆
...

∆
...

∆Ξ
...

∆Ξ
...

and M

∆

,,
,,
,

11
11

1

∆
...

∆Ξ
...

The function

f(p) =






1 if p = ε,

10q if p = 0q for q ∈ B#,

110q if p = 1q for q ∈ B#,

maps M ’s nodes into U ’s. This function has four properties

4.2. UNIVERSAL SEMIMEASURES 87

1. It preserves the structure of the tree: if p # q then f(p) # f(q). Formally, f

is monotone.

2. It never maps different nodes onto the same node: if p .= q then f(p) .= f(q).

Formally, f is injective.

3. It preserves labels: M(p) = U(f(p)).

4. It maps nodes at most a constant distance deeper down: |f(p)| ≤ |p|+ 2.

We will call such functions simulations (specifically, strong simulations). Simula-

tions are interesting because their existence establishes dominance relations (Sec-

tion 4.2.3).

The function fw(p) = 0p also satisfies the above properties if we weaken the second

to M(p) # U(fw(p)). This allows a reduction of the constant in the fourth: |fw(p)| ≤
|p|+ 1. We call such functions weak simulations.

Intuitively, a process U simulates another M if we can uniquely recode all of M

inputs into inputs for U , without increasing their length more than a fixed amount.

After this recoding, for a strong simulation U must output exactly what M would,

but for a weak simulation U can output additional trailing symbols.

Definition 4.4. A process U weakly simulates another M with constant k ∈ N
if there exists a monotone injective function f : B# → B# such that for all p ∈ B#

1. M(p) # U(f(p)),

2. |f(p)| ≤ |p|+ k.

If additionally M(p) = U(f(p)) for all p then M strongly simulates N .

Just as with weak and strong dominance, a process U can weakly simulate another

process M for some constant but not strongly simulate it for any constant. For

example, this happens with U defined by

∆Ξ

<<
<<

<

==
==

=

∆Ξ
...

∆Ξ
...

88 CHAPTER 4. UNIVERSAL SEMIMEASURES

and M defined by

∆

,,
,,
,

11
11

1

∆
...

∆Ξ
...

4.2.2 Simulation complexity

We will find (Theorem 4.8 below) that a semimeasure µU dominates another µM with

constant k whenever U simulates M with constant k. Since we want the sharpest

bound it is useful to have notation for the least simulation constant. This measures

the penalty incurred by simulating M on U , or the complexity of M relative to U .

Definition 4.5. The weak simulation complexity of a process M relative to

another U is

SU(M) = min{k : U weakly simulates M with constant k}.

We define SU(M) = ∞ if U cannot weakly simulate M .

The strong simulation complexity of a process M relative to another U is

SU(M↓) = min{k : U strongly simulates M with constant k}.

We define SU(M↓) = ∞ if U cannot strongly simulate M .

As all strong simulations are weak simulations we have

SU(M) ≤ SU(M↓)

for all processes M and N .

Complexity of a semimeasure

By Theorem 3.29, every enumerable semimeasure is the semimeasure of some pro-

cess. With this result we can naturally define the simulation complexity of a semi-

measure to be the complexity of the simplest process which generates it. This will

allow us to extend the dominance established below (Section 4.2.3) to all enumerable

semimeasures.

4.2. UNIVERSAL SEMIMEASURES 89

Definition 4.6. The simulation complexity of an enumerable semimeasure ν

relative to U is

SU(ν) = min{SU(M) : M is a process and µM(x) = ν(x) for all x ∈ X∗}

SU(ν↓) = min{SU(M↓) : M is a process and µM(x) = ν(x) for all x ∈ X∗}

where the first is weak, the second strong.

Complexity of a sequence

In a similar fashion to the above, we can define the simulation complexity of a

sequence to be the simulation complexity of the simplest process which generates it.

For a sequence x ∈ X# denote by Dx the constant process defined by

Dx(p) = x, for all p ∈ B#.

A constant process outputs a fixed sequence regardless of its input. The simulation

complexity of the process Dx relative to a process U is the natural way to define the

complexity of the sequence x relative to U .

Definition 4.7. The simulation complexity of a sequence x ∈ X# relative to U

is

SU(x) = SU(Dx)

SU(x↓) = SU(Dx↓)

where the first is weak, the second strong.

The weak simulation complexity is exactly the monotone complexity [LV97] Km(x)

of x:

SU(x) = SU(Dx)

= min{k : exists monotone injective f where

x # U(f(p)) and |f(p)| ≤ |p|+ k for all p}

= min{|p| : x # U(p)}

= Km(x)

90 CHAPTER 4. UNIVERSAL SEMIMEASURES

where the second step holds by using the mapping f 5→ f(ε) to get a p such that

x # U(p) and |p| ≤ k, and because whenever x # U(p) the function f : q 5→ pq is a

weak simulation of constant |p| by the monotonicity of U .

The strong simulation complexity of the sequence x is a new complexity. We find

SU(x↓) = SU(Dx↓)

= min{k : exists monotone injective f where

x = U(f(p)) and |f(p)| ≤ |p|+ k for all p}

≤ min{|p| : x = U(p′) for all p′ 6 p}.

The inequality in the last step is necessary, as we can have a strong simulation f of

constant k without having a constant subtree p with depth at most k. To see this,

fix a sequence x̂ ∈ X# and define the process Un by

Un(p) =





x̂c if p = bn0p′ for bn ∈ Bn and p′ ∈ B#,

x̂ otherwise,

for some element c ∈ X. There is a strong simulation of Dx̂ on Un with constant 1:

f(p) =





bn1p′ if p = bnp′ for bn ∈ Bn and p′ ∈ B#,

p otherwise,

but any p such that x = U(p′) for all p′ 6 p must have |p| > n. (It is easy to

construct instances where the last inequality is equality.)

4.2.3 Dominance from simulation

Every simulation of one process on another establishes a dominance relation between

the semimeasures generated by those processes. This is the key result for comparing

the performance of different semimeasures, and for constructing universal semimea-

sures.

4.2. UNIVERSAL SEMIMEASURES 91

Theorem 4.8. For any pair of processes M and U we have

Err[µU(x)] ≤ Err[µM(x)] + SU(M) for all x ∈ X∗,

and

Err[µU(x↓)] ≤ Err[µM(x↓)] + SU(M↓) for all x ∈ X∗.

Proof. If SU(M) = ∞ then the theorem is trivial. Otherwise, let f ∗ be a weak

simulation of M on U with constant SU(M) guaranteed by Definition 4.5. We have

µM(x) = λ(M−1(Γx))

≤ 2SU(M)λ(f(M−1(Γx)))

≤ 2SU(M)λ(U−1(Γx))

= 2SU(M)µU(x).

The first and last steps are by definition. The second step holds by Lemmata A.1

and A.2 from the appendix, since f is monotone, injective, and satisfies |f(p)| ≤
|p| + SU(M) for all p ∈ B#, and as λ(A ∩ B∞) = λA for any measurable set A.

The third step holds because if q ∈ f(M−1(Γx)) then q = f(p) for some p ∈ B#

with x # M(p). But by definition of weak simulation this means x # U(q), so

q ∈ U−1(Γx).

The second half is similar. If SU(M↓) = ∞ then the theorem is trivial. Otherwise, let

f ∗ be a strong simulation of M on U with constant SU(M↓) guaranteed by Definition

4.5. We have

µM(x↓) = λ(M−1({x}))

≤ 2SU(M↓)λ(f(M−1({x})))

≤ 2SU(M↓)λ(U−1({x}))

= 2SU(M↓)µU(x↓).

The first and last steps are by definition. The second step holds by Lemmata A.2

and A.1. The third step holds because if q ∈ f(M−1({x})) then q = f(p) for some

p ∈ B# with x = M(p). But by definition of strong simulation this means x = U(q),

so q ∈ U−1({x}).

92 CHAPTER 4. UNIVERSAL SEMIMEASURES

Dominance of arbitrary enumerable semimeasures

The above result extends simply to dominance of arbitrary enumerable semimeasures

by Definition 4.6.

Corollary 4.9. Let U be a process, and ν be an enumerable semimeasure. The

semimeasure µM weakly dominates ν with constant SM(ν):

Err[µU(x)] ≤ Err[ν(x)] + SU(ν) for all x ∈ X∗,

and it strongly dominates ν with constant SM(ν↓):

Err[µU(x↓)] ≤ Err[ν(x↓)] + SU(ν↓) for all x ∈ X∗.

Sequence complexity is an upper bound for error

Similarly, by Definition 4.7 we can extend to dominance of sequences. This shows

the complexity of the true sequence is an upper bound for the semmimeasure’s error.

This allows us to view performance from the perspective of compression, which we

do in Section 4.2.5.

Corollary 4.10. Let U be a process. We have

Err[µU(x)] ≤ SU(x) for all x ∈ X∗,

and

Err[µU(x↓)] ≤ SU(x↓) for all x ∈ X∗.

Proof. Apply Theorem 4.8 with M = Dx, the constant process defined by Dx(p) =

x. Note that µDx(x) = µDx(x↓) = 1 and so Err[µDx(x)] = Err[µDx(x↓)] = 0.

4.2.4 Universal semimeasures from universal processes

A process U ’s semimeasure dominates the semimeasures of all processes it simulates,

with constant at most the cost of simulation. A universal process, one which sim-

ulates all other processes, would thus dominate the semimeasures of all processes.

Since every enumerable semimeasure is generated by some process, this semimeasure

will dominate all enumerable semimeasures.

4.2. UNIVERSAL SEMIMEASURES 93

With this observation, we can finally construct a universal semimeasure.

Example 4.11. Take an enumeration Mi of processes (Theorem 3.25 constructs

one). A prefix-free encoding e : N → B∗ is one where given any p there is at most

one i such that e(i) # p. (Equivalently, e(N) is a prefix-free set, and e is injective.)

For example,

e1(i) = 0i1

is such an encoding.

Define the process U by

U(p) =





Mi(q) if p = e(i)q for some i ∈ N and q ∈ B#,

ε otherwise.

for all p ∈ B#. The process U is well-defined because e is a prefix-free encoding.

The process U simulates all processes, for any process M equals the process Mi for

some i, and

f(p) = e(i)p

is a simulation of Mi on U with constant |e(i)|. As a consequence

SU(M) ≤ SU(M↓) = SU(Mi↓) ≤ |e(i)|.

This example generalises to Theorem 4.14 below.

Definition 4.12. A weakly universal process U is one which weakly simulates

all processes. Similarly, a strongly universal process U strongly simulates all

process.

Definition 4.13. A weakly universal semimeasure (or universal semimea-

sure) ξ is one which weakly dominates all enumerable semimeasures. Similarly, a

strongly universal semimeasure ξ strongly dominates all enumerable semimea-

sures.

Theorem 4.14. If U is a weakly universal process, then µU is a weakly universal

semimeasure. Similarly for strongly universal process and semimeasure.

94 CHAPTER 4. UNIVERSAL SEMIMEASURES

Proof. Apply Theorem 4.8.

Theorem 4.8 and Corollaries 4.9 and 4.10 can both be used to establish upper

bounds3 on a universal semimeasure’s error. Theorem 4.8 says the universal semi-

measure µU performs as well as any probabilistic computable model (see Section

3.4.6) but for a penalty equal to the complexity of the model with respect to U .

Corollary 4.9 establishes that it performs as well as any enumerable semimeasure

but for a penalty equal to the complexity of the semimeasure with respect to U . This

shows to perform significantly better than a universal predictor, another predictor

or probabilistic model must be significantly more complex.

We can establish an absolute bound on error too. By Corollary 4.10 above, the

predictor µU ’s error is bounded above by the simulation complexity SU(x↓) of the

true sequence x ∈ X#. The shorter the program p ∈ B∗ for which U(p′) = x for all

p′ 6 p, the lower SU(x↓) is. This means the more U can compress x the better µU

performs.

The following, and final, section discusses why we might expect the sequences hu-

mans come across to be simple, relative to a sufficiently nice universal process U .

Were this so, then µU would predict real-world sequences absolutely well.

4.2.5 Humanly accessible sequences may be simple

The previous section showed the more U can compress x, the better the universal

semimeasure µU performs. This usage of “compression” is more general than that

used in real-word compression problems. Decompression can use arbitrary amounts

of space and time, whereas real-world algorithms cannot. In addition we need only

supply the decompression algorithm: the predictor will, in effect, decompress all

possible strings to form its predictions.

Suppose we want to compress a movie losslessly. An uncompressed movie is about 1

terabit (1012 bits) in size4. There are a number of standard compression methods.

1. The simplest method is not to compress it. To do this we prefix a short “echo”

program, along with the size of the sequence, to the movie’s bits. This results

3These bounds are exact i.e. no extra additive constants.
4640× 480× 24× 24× 60× 100 ≈ 1012bits.

4.2. UNIVERSAL SEMIMEASURES 95

in a slightly larger file (40bits plus the length of the echo program). We need

to include the size of the sequence because our programs must know their own

length. This is because we must have U(p′) = x for all p′ 6 p where p is the

program.

2. A general purpose compression algorithm such as zip may produce a shorter al-

gorithm, although these methods tend to perform poorly on video data [Sal00].

Similar to before, we will have a program of the form dc where d is the decom-

pression algorithm and c is the compressed data. All our compression methods

are of this form.

3. A lossless video compression algorithm will perform better as the algorithms

are specialised to video data. For example, in the related domain of audio

encoding, lossless audio compression techniques can decrease filesize by over

50% [Lie04].

Given the unusual circumstances (i.e. unbounded space and time, the central im-

portance of short programs) a number of more esoteric methods open up. These are

necessarily speculative because these algorithms cannot be run in the real world, at

least not in their naive form.

One such method is simulating the entire universe, then using the results of this

simulation to generate a sequence. Simulating the universe requires the laws of

physics and a lot of computational power, but we can use as much computing power

as we need. If the laws of physics are compact this may require only a very short

program (see [Teg96] for why the universe may be simple). This is in many ways

analogous to computational theory proofs which run all possible programs in order

to simplify the derivation (see e.g. [LV97] [Hut05]). That the universe as a whole

may be simple, even though it contains complex parts, is analogous to the fact

that the set of natural numbers is simple, even though particular numbers can be

arbitrarily complex.

Simulating the universe not as strange as it may sound. The one thing we know

about any sequence we encounter is that we encountered it within the universe5. This

means it must appear somewhere in the simulation of the universe, near wherever

humans appear in the simulation. The trick is finding short programs which can

5This kind of reasoning, called anthropic reasoning, is not as trivial as it may sound; see [Bos02]
for details.

96 CHAPTER 4. UNIVERSAL SEMIMEASURES

locate and extract these sequences. The length of such a program is difficult to

estimate: we know little about the behaviour of extremely long running programs

as we are not patient enough to wait for them to finish. In what follows we speculate

on several possible methods.

1. One possible program could simulate the universe and extract the movie from

someone’s computer. To extract the movie we need to store the location of the

computer (in time and space) and describe how the bits are stored inside the

computer. It is difficult to estimate how much information this would require.

2. Instead of storing the location of the computer and instructions for how to

extract the file, would could store a pattern to search for. The search process

would comb the state of the universe looking for bitstreams matching the

pattern, outputting the first that is found. For instance, if we try all relatively

short ways of converting atoms into bitstreams, the first bitstream of length

1012 which has the same 109 first bits as the movie it finds may be the actual

movie. Or, the first bitstream of length 1012 with the same (sufficiently long)

hash code.

3. We could describe the movie as the nth movie filmed in human history. A

similar method to the above could be used to decode this: a pattern searcher

combing the universe first for human civilisation, then for its movies. Although

storing n would require little space, the shortest pattern which detects human

movies may be long. It is again difficult to estimate.

Future work

Theorem 3.29 shows semimeasures of processes are exactly enumerable semimea-

sures. Theorem 4.8 shows simulation between processes implies dominance between

their semimeasures. Perhaps a converse could be proven, that whenever one enu-

merable semimeasure ν dominates another ρ there are processes U and M such that

ν = µU , ρ = µM , and U simulates M .

Extending the above, we show the semimeasure of universal processes are universal

enumerable semimeasures. Is the converse true?

4.2. UNIVERSAL SEMIMEASURES 97

Section 4.2.2 introduced the simulation complexity SU(M) of a process M relative

to another U . It is easy to see

SU(x) = SU(Dx)

is equal to the monotone complexity KmU(x) of x, where Dx is the constant pro-

cess defined by Dx(y) = x. What does the strong simulation complexity SU(Dx↓)
correspond to? In general this complexity measure could do with future study.

Finally, the implications of replacing weak dominance with strong could do with

investigation.

Conclusion

This thesis constructed, in detail, universal (enumerable) semimeasures. Universal

semimeasures µU perform no worse than other other enumerable semimeasure ν

but for a penalty of at most the complexity SU(ν) of ν relative to the underlying

universal process U . Their error when predicting a sequence x ∈ X# is at most the

complexity SU(x↓) of the sequence relative to U . For standard universal processes,

e.g. those produced from common programming languages, the sequences we come

across may be fairly simple making µU an absolutely powerful predictor.

Appendix A

Auxiliary lemmata

We prove two auxiliary lemmata for Theorem 4.8. Note that

λ(A) = λ(A ∩ B∞)

for any measurable set A ⊆ B#. This is because λ(B∗) = 0. For simplicity we will

restrict our measure to subsets of B∞, defining the cylinder set Γ0
l = {lp : p ∈ B∞}.

Lemma A.1. If for some x ∈ X∗ and some process M : B# → X#, either A =

M−1(Γx) ∩ B∞ or A = M−1({x}) ∩ B∞, then

A =
⋂

i∈N

⋃

l∈Li

Γ0
l

for some sequence of sets Li ⊆ B∗ and where Γ0
l = {lp : p ∈ B∞}.

Proof. If x # M(p) then by continuity of M there exists a finite prefix pf ≺ p with

x # M(pf). By monotonicity of M we have Γpf
⊆ M−1(Γx). Thus,

M−1(Γx) =
⋃

pf∈B∗
Γpf

[x # M(pf)]

and so

M−1(Γx) ∩ B∞ =
⋃

pf∈B∗
Γ0

pf
[x # M(pf)]

since Γ0
pf

= Γpf
∩ B∞.

99

100 APPENDIX A. AUXILIARY LEMMATA

Note that

B∞ \ Γ0
l =

⋃

p "=l

|p|=|l|

Γ0
p

for any l ∈ B∗. Thus

M−1({x}) ∩ B∞ = M−1(Γx \ ∪c∈XΓxc) ∩ B∞

=
(
M−1(Γx)) ∩ B∞)

\
(
M−1(∪c∈XΓxc) ∩ B∞)

=

(
⋃

l∈L

Γ0
l

)
\

⋃

l∈L′

Γ0
l

=

(
⋃

l∈L

Γ0
l

)
∩

⋂

l∈L′

(B∞ \ Γ0
l)

=

(
⋃

l∈L

Γ0
l

)
∩

⋂

l∈L′




⋃

p "=l

|p|=|l|

Γ0
p





for some sets L, L′ ⊆ B∗.

101

Lemma A.2. Let f : B# → B# be a monotone injective function satisfying

|f(p)| ≤ |p|+ k for all p ∈ B#

for some k ∈ N. If

A =
⋂

i∈N

⋃

l∈Li

Γ0
l

for Li ⊆ X∗ and where Γ0
l = {lp : p ∈ B∞}, then

λ(A) ≤ 2kλ(f(A)).

Proof. First, we have

λ(Γ0
l)

(1)
= lim

j→∞

∑

pj∈Bj

λ(Γ0
lpj

)

(2)

≤ 2k lim
j→∞

∑

pj∈Bj

λ(Γ0
f(lpj))

(3)
= 2kλ




⋂

j

⋃

pj∈Bj

Γ0
f(lpj)





(4)
= 2kλ(f(Γ0

l))

for any l ∈ B∗. The following justifies each step.

1. We have

Γ0
l =

⋂

i

Γ0
l =

⋂

i

⋃

pi∈Bi

Γ0
lpi

since if x ∈ B∞ begins with l then for any i it begins with lpi for some pi ∈ Bi.

As Γ0
l ⊆ Γ0

l we can exchange intersection with limit. As Γ0
lpi

for Bi are pairwise

disjoint for fixed i, we can exchange disjoint union with summation.

2. This holds because |f(p)| − k ≤ |p|, and as λ(Γ0
p) = 2−|p|.

3. We have,

lim
j→∞

∑

pj∈Bj

λ(Γ0
f(lpj)) = lim

j→∞
λ




⋃

pj∈Bj

Γ0
f(lpj)



 = λ




⋂

j

⋃

pj∈Bj

Γ0
f(lpj)





102 APPENDIX A. AUXILIARY LEMMATA

as f is injective, so Γ0
f(lpj)

are pairwise disjoint for fixed j, and as f is monotone,

so
⋃

pj+1∈Bj+1 Γ0
f(lpj+1) ⊆

⋃
pj∈Bj Γ0

f(lpj)
for all j.

4. Observe that

f(Γ0
l) =

⋂

j

⋃

pj∈Bj

Γ0
f(lpj).

To see this, suppose x ∈ B∞ is in the left hand set. Then x = f(lp) for

some p ∈ B∞. For every j there exists pj ∈ Bj such that pj ≺ p, and as f is

monotone f(lpj) # f(lp) = x. So x is in the right hand set.

Suppose instead that x ∈ B∞ is in the right hand set. Then for every j there

exists pj ∈ Bj such that f(lpj) # x. Since the prefixes of x form a linear order,

and as f is monotone and injective, we have lpj # lpj+1 and f(lpj) # f(lpj+1)

for all j. So limj→∞ lpj is well-defined and equal to lp for some p ∈ B∞, and

limj→∞ f(lpj) is well-defined, with limj→∞ f(lpj) # x.

We have limj→∞ f(lpj) = x, since as f is injective the limit is an infinite

sequence. But then as limj→∞ f(lpj) # f(lp) we have x = f(lp). So x is in

the right hand set.

Next, observe that

A =
⋂

i

⋃

l∈Li

Γ0
l

=
⋂

i




⋂

j≤i

⋃

l∈Lj

Γ0
l





=
⋂

i

⋃

l∈Bi

Γ0
l

for some Bi ⊆ B∗ since sets of the form ∪l∈LiΓ
0
l are closed under finite intersection

(see the proof of Lemma 2.7). We replace Li with Bi to ensure that

⋃

l∈Bi+1

Γ0
l ⊆

⋃

l∈Bi

Γ0
l

holds for all i (i.e. that ∪l∈BiΓ
0
l is decreasing in i), to allows us to swap intersections

with limits below. We can assume Bi are prefix-free since

⋃

l∈Bi

Γ0
l =

⋃

l∈min Bi

Γ0
l

103

and min Bi is prefix-free.

Finally, we have

λ(A)
(1)
= λ

(
⋂

i∈N

⋃

l∈Bi

Γ0
l

)

(2)
= lim

i→∞

∑

l∈Bi

λ(Γ0
l)

(3)

≤ 2k lim
i→∞

∑

l∈Bi

λ(f(Γ0
l))

(4)
= 2kλ

(
⋂

l

⋃

l∈Bi

f(Γ0
l)

)

(5)
= 2kλ(f(A)).

The following justifies each step.

1. By the Lemma’s hypothesis, and by definition of Bi.

2. Since
⋃

l∈Bi+1
Γ0

l ⊆
⋃

l∈Bi
Γ0

l by definition of Bi, we can exchange the intersec-

tion for a limit. As Bi is prefix-free, we can exchange the disjoint union with

summation.

3. Because λ(Γ0
l) ≤ 2kλ(f(Γ0

l)).

4. Observe that

lim
i→∞

∑

l∈Bi

λ(f(Γ0
l)) = lim

i→∞
λ

(
⋃

l∈Bi

f(Γ0
l)

)
= λ

(
⋂

l

⋃

l∈Bi

f(Γ0
l)

)
.

First step is because f(Γ0
l) are pairwise disjoint for l ∈ Bi and fixed i, since

Bi is prefix-free and f is injective. Second step is because

⋃

l∈Bi

f(Γ0
l) = f

(
⋃

l∈Bi

Γ0
l

)

is decreasing in i as
⋃

l∈Bi
Γ0

l is.

104 APPENDIX A. AUXILIARY LEMMATA

5. We have

⋂

i

⋃

l∈Bi

f(Γ0
l) =

⋂

i

f

(
⋃

l∈Bi

Γ0
l

)
= f

(
⋂

i

⋃

l∈Bi

Γ0
l

)
= f(A).

First step holds for any function f , but the second holds because f is injective.

Bibliography

[Ash72] Robert B. Ash. Real analysis and probability. Academic Press, New York,
1972. Probability and Mathematical Statistics, No. 11.

[Ber79] Jose-M. Bernardo. Expected information as expected utility. Ann. Statist.,
7(3):686–690, 1979.

[Ber93] James O. Berger. Statistical decision theory and Bayesian analysis.
Springer Series in Statistics. Springer-Verlag, New York, 1993. Corrected
reprint of the second (1985) edition.

[Bos02] Nick Bostrom. Anthropic Bias: Observation Selection Effects in Science
and Philosophy (Studies in Philosophy). Routledge, 2002.

[Cal02] Cristian S. Calude. Information and randomness. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, second edi-
tion, 2002. An algorithmic perspective, With forewords by Gregory J.
Chaitin and Arto Salomaa.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of information theory.
Wiley Series in Telecommunications. John Wiley & Sons Inc., New York,
1991. A Wiley-Interscience Publication.

[Dud89] Richard M. Dudley. Real analysis and probability. The Wadsworth &
Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced
Books & Software, Pacific Grove, CA, 1989.

[Fre90] Edward Fredkin. Digital mechanics: an informational process based on
reversible universal cellular automata. Phys. D, 45(1-3):254–270, 1990.
Cellular automata: theory and experiment (Los Alamos, NM, 1989).

[Gan80] Robin Gandy. Church’s thesis and principles for mechanisms. In The
Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis.,
1978), volume 101 of Stud. Logic Foundations Math., pages 123–148.
North-Holland, Amsterdam, 1980.

105

106 BIBLIOGRAPHY

[GR04] Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules,
prediction, and estimation. Technical Report 463, Department of Statis-
tics, University of Washington, 2004.

[Gur05] Yuri Gurevich. Interactive algorithms 2005. In Mathematical foundations
of computer science 2005, volume 3618 of Lecture Notes in Comput. Sci.,
pages 26–38. Springer, Berlin, 2005.

[HH99] John Hamal Hubbard and Barbara Burke Hubbard. Vector calculus, linear
algebra, and differential forms. Prentice Hall Inc., Upper Saddle River, NJ,
1999. A unified approach.

[Hut05] Marcus Hutter. Universal artificial intelligence. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, Berlin, 2005. Sequential
decisions based on algorithmic probability.

[Jay68] Edwin T. Jaynes. Prior probabilities. IEEE Trans. on Systems Science
and Cybernetics, SSC-4(5):227, 1968.

[Jay03] E. T. Jaynes. Probability theory. Cambridge University Press, Cambridge,
2003. The logic of science, Edited and with a foreword by G. Larry Bret-
thorst.

[Knu92] Donald E. Knuth. Two notes on notation. Amer. Math. Monthly,
99(5):403–422, 1992.

[KST82] Daniel Kahneman, Paul Slovic, and Amos Tversky. Judgment under Un-
certainty: Heuristics and Biases. Cambridge University Press, 1982.

[Leg97] Shane Legg. Solomonoff induction. Technical Report 30, Centre for Dis-
crete Mathematics and Theoretical Computer Science. University of Auck-
land, 1997.

[Lie04] Tilman Liebchen. An introduction to MPEG-4 audio lossless coding. In
IEEE ICASSP 2004, Montreal, May 2004, 2004.

[LV97] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and
its applications. Graduate Texts in Computer Science. Springer-Verlag,
New York, second edition, 1997.

[Odi89] Piergiorgio Odifreddi. Classical recursion theory, volume 125 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 1989. The theory of functions and sets of natural numbers,
With a foreword by G. E. Sacks.

[Pol04] Jan Poland. A coding theorem for enumerable output machines. Inform.
Process. Lett., 91(4):157–161, 2004.

BIBLIOGRAPHY 107

[Sal00] D Salomon. Data compression: the complete reference. New York:
Springer, 2nd edition, 2000.

[Sch02] Jürgen Schmidhuber. Hierarchies of generalized Kolmogorov complexities
and nonenumerable universal measures computable in the limit. Internat.
J. Found. Comput. Sci., 13(4):587–612, 2002.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference. parts I and II.
Information and Control, 7:1–22 and 224–254, 1964.

[Sol78] R. J. Solomonoff. Complexity-based induction systems: comparisons and
convergence theorems. IEEE Trans. Inform. Theory, 24(4):422–432, 1978.

[Teg96] Max Tegmark. Does the universe in fact contain almost no information?
Found. Phys. Lett., 9(1):25–41, 1996.

[ZL70] A. K Zvonkin and L. A. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means of
the theory of algorithms. Russian Mathematical Surveys, 25(6):83–124,
1970.

