
CDMTCS
Research
Report
Series

Exact Approximations of
Omega Numbers

C. S. Calude and M. J. Dinneen
University of Auckland, NZ

CDMTCS-293
December 2006

Centre for Discrete Mathematics and
Theoretical Computer Science

Exact Approximations of Omega Numbers

Cristian S. Calude and Michael J. Dinneen
Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand
http://www.cs.auckland.ac.nz/∼{cristian,mjd}

Abstract

A Chaitin Omega number is the halting probability of a universal prefix-free
Turing machine. Every Omega number is simultaneously computably enumerable
(the limit of a computable, increasing, converging sequence of rationals), and algo-
rithmically random (its binary expansion is an algorithmic random sequence), hence
uncomputable. The value of an Omega number is highly machine-dependent. In
general, no more than finitely many scattered bits of the binary expansion of an
Omega number can be exactly computed; but, in some cases, it is possible to prove
that no bit can be computed.

In this paper we will simplify and improve both the method and its correctness
proof proposed in an earlier paper, and we will compute the exact approximations
of two Omega numbers of the same prefix-free Turing machine, which is universal
when used with data in base 16 or base 2: we compute 43 exact bits for the base 16
machine and 40 exact bits for the base 2 machine.

1 Introduction

Chaitin Omega number is the halting probability of a universal prefix-free (self-
delimiting) Turing machine. Every Omega number is simultaneously computably enu-
merable (the limit of a computable, increasing, converging sequence of rationals), and
algorithmically random (its binary expansion is an algorithmic random sequence). Any
Omega number is more than uncomputable: no more than finitely many scattered bits
of the binary expansion of an Omega number can be exactly computed. The value of an
Omega number is highly machine-dependent; in some cases, it is possible to prove that
no bit can be computed.

This paper describes a simplification and improvement of the hybrid procedure pro-
posed in [5] (which combines Java programming and mathematical proofs) for computing
exact approximations of Omega numbers. We will apply this technique to a compact
prefix-free (Turing) machine which will be proved to be universal when computing in base
16 and in base 2; we will compute exact approximations for the corresponding Omega
numbers.

Computing lower bounds is not difficult: we just generate more and more halting
programs and add their contributions to Omega. Computing upper bounds is much
more demanding. The idea is to systematically run more and more programs, filter out
all non-halting programs and try to use this information to obtain better and better
upper bounds. If the first bit of the approximation happens to be 1, then sure, it is

1

exact. However, if the provisional bit given by an approximation is 0, then, due to
possible overflows, this bit is uncertain. This situation extends to other bits as well.
Only an initial run of 1’s gives exact values for some bits of the Omega number. Of
course, we can compute exact 0 digits, but as a result of balancing the lower and upper
bounds.

The paper is structured as follows. Section 2 introduces the notation and the basic
background in algorithmic information theory: computably enumerable (c.e.) reals,
program-size complexity, random reals and c.e. random (Omega) reals. In Section 3 we
present the simplified new prefix-free machine and in Section 4 we describe a simulator
for it. In Section 5 we present and justify our procedure for obtaining approximations.
In Section 6 we present the result justifying the computation of the first exact 43 bits of
Omega for the case when the prefix-free machine works with data in base 16. In Section 7
we present the results of approximation for the Omega for the same prefix-free machine,
this time working with data in base 2. The last section includes some final comments.
The appendix contains some details about the computation process and the data used
for the computation.

2 Notation and theoretical background

We will use notation that is standard in algorithmic information theory; we will assume
familiarity with Turing machine computations, computable and computably enumerable
(c.e.) sets (see, for example, [14, 15]) and elementary algorithmic information theory
(see, for example, [1]).

By N we denote the set of non-negative integers (natural numbers). Let Σ = {0, 1}
denote the binary alphabet. Let Σ∗ be the set of (finite) binary strings, and Σω the set
of infinite binary sequences. The length of a string x is denoted by |x|. A subset A of
Σ∗ is prefix-free if whenever s and t are in A and s is a prefix of t, then s = t.

For a sequence x = x0x1 · · ·xn · · · ∈ Σω and integer n ≥ 1, x(n) denotes the prefix of
length n of x and xi denotes the ith digit of x, i.e. x(n) = x0x1 · · ·xn−1 ∈ Σ∗.

A prefix-free Turing machine, shortly, a machine, C is a Turing machine processing
binary strings such that its program set (domain) PROGC = {x ∈ Σ∗ | C(x) halts} is a
prefix-free set of strings. Clearly, PROGC is c.e.; conversely, every prefix-free c.e. set of
strings is the domain of some machine. The program-size complexity of the string x ∈ Σ∗

(relatively to C) is HC(x) = min{|y| | y ∈ Σ∗, C(y) = x}, where min ∅ = ∞. A major
result in algorithmic information theory is the following universality theorem:

Theorem 1 We can effectively construct a machine U (called universal) such that for
every machine C, there is a constant c > 0 (depending upon U and C) such that for every
x, y ∈ Σ∗ with C(x) = y, there exists a string x′ ∈ Σ∗ with U(x′) = y and |x′| ≤ |x|+ c.

In complexity-theoretic terms, HU (x) ≤ HC(x) + c. Note that PROGU is c.e. but
not computable.

If S ⊂ Σ∗ is prefix-free, then ΩS =
∑

s∈S 2−|s|. If C is a machine, then ΩC = ΩPROGC

represents its halting probability (see more detailed probability facts in [1]). When C = U
is a universal prefix-free machine, then its halting probability ΩU is called a Chaitin
Omega number, shortly, Omega number, [9, 10].

2

There are many equivalent ways to define (algorithmic) random sequences, see [1].
For our aim we will use the following complexity-theoretic definition (see [9]): an infinite
sequence x is (algorithmically) random if there is a constant c such that H(x(n)) > n−c,
for every integer n > 0. A real α is (algorithmic) random if its binary expansion x (i.e.
α = 0.x) is random. The choice of the binary base does not play any role, cf. [6, 12, 17]:
randomness is a property of reals not of names of reals.

A real α is called computably enumerable (c.e.) if there is a computable, increasing
sequence of rationals which converges (not necessarily computably) to α.

The following characterization of c.e. and random reals was proved in the following
series of papers [9, 7, 13] (see also [2, 1]):

Theorem 2 Let α ∈ (0, 1). The following conditions are equivalent:

1. The real α is c.e. and random.

2. There effectively exists a universal machine U such that α = ΩU .

In contrast with π, for which, given enough computational resources, one can compute
as many as we wish digits of its binary expansion, for any Omega number we cannot
compute more than finitely many digits, [9]. We present this result in terms of provability
capacity of ZFC (Zermelo-Fraenkel set theory with choice):

Theorem 3 Assume that ZFC is arithmetically sound, that is, any theorem of arithmetic
proved by ZFC is true. Then, for every universal machine U , ZFC can determine the
value of only finitely many bits of ΩU .

As the value of an Omega number is highly machine-dependent, the difficulty of
computing the initial bits of an Omega number varies considerably, from no bit to as
many but finitely. To understand this phenomenon we need the following concept.

A machine U for which Peano Arithmetic can prove its universality and ZFC cannot
determine more than the initial block of 1 bits of the binary expansion of its halting
probability, ΩU , is called Solovay machine.1 In [3] the following result was proved:

Theorem 4 Assume that ZFC is arithmetically sound. Then, every c.e. random real is
the halting probability of a Solovay machine.

For example, if α ∈ (3/4, 7/8) is c.e. and random, then in the worst case ZFC can
determine its first two bits (11), but no more. For α ∈ (0, 1/2) we obtain Solovay’s
famous result (which also motivates the name “Solovay machine”) [16]:

Theorem 5 Assume that ZFC is arithmetically sound. Then, every c.e. random real
α ∈ (0, 1/2) is the halting probability of a Solovay machine which cannot determine any
single bit of α. No c.e. random real α ∈ (1/2, 1) has the above property.

In general only the initial run of 1’s (if any) can be exactly computed.
1Clearly, U depends on ZFC.

3

3 A simplified language for register machine programs

The Omega numbers studied in this paper will be defined, following [10], using an im-
plementation based on a register machine language.

Any register machine has a finite number of registers, each of which may contain
an arbitrarily large non-negative integer. The list of instructions is given below in two
forms: our compact form and its corresponding Chaitin style version, [10]. The current
model is “denser” than both models used in [10, 5]. The main difference between the
implementations in [10, 5] and ours is in the encoding: we use 4 bits instead of 7 or 8
bits per character. The data will be given in two different formats: for the base 16, as a
string of 4-bit characters (that is, the read instruction reads 4 raw bits (1 character) at
a time), for the base 2 as 1-bit strings (the read instruction reads 1 raw bit at a time).

By default, all registers, labelled with a string of ‘a’ to ‘h’ characters, are initialized
to 0. It is a syntax error if the first occurrence of register j appears before register i in
a program, where j is lexicographic greater than i. Also, all registers lexicographic less
than j must have occurred in the program.

To summarize, the alphabet of the machine instructions consists of 16 elements,
Σ16 = {a, b, c, d, e, f, g, h, i, comma,=,&, !,%, 0, 1}. For the base 16 model the data uses
the alphabet Σ16; for the base 2 model the data uses the alphabet Σ2 = {0, 1}. The
concatenation of strings x and y is denoted by x · y. The character length of a string x
is denoted by |x|. If w = x · d is a program consisting of string of instructions x followed
by data d (also a string), then the program (bit) length of w, denoted by ‖w‖ is 4|w| and
4|x|+ |d| in the base 16 and base 2 models, respectively.

The register machine instructions are listed below. Note that in all cases R2 denotes
either a register or a binary constant of the form 1(0 + 1)∗ + 0, while R1 and R3 must
be a register variable.

= R1, R2, R3 (EQ R1 R2 R3)

If the contents of R1 and R2 are equal, then the execution continues at the R3-th
instruction, where R3 = 0 denotes the first instruction. If they are not equal, then
execution continues with the next instruction in sequence. If the content of R3 is
outside the scope of the program, then we have an illegal branch error.

& R1, R2 (SET R1 R2)

The contents of register R1 is replaced by the contents of register R2.

+ R1, R2 (ADD R1 R2)

The contents of register R1 is replaced by the sum of the contents of registers R1
and R2.

! R1 (READ R1)

For the base b model, b bits are read into the register R1, so the numerical value of
R1 becomes at most b − 1. Any attempt to read past the last data-bit results in a
run-time error.

% (HALT)

4

This is the last instruction for each register machine program before the raw data.
It halts the execution in two possible states: either successfully halts or it halts with
an under-read error (i.e., not all data read).

A register machine program consists of a finite list of labelled instructions from the
above list, with the restriction that the HALT instruction appears only once, as the last
instruction of the list. The data (a base 2 or base 16 string) follows immediately after
the HALT instruction. A program not reading the whole data or attempting to read past
the last data-bit results in a run-time error.

A canonical program is a register machine program in which (1) labels appear in
increasing numerical order starting with 0, (2) new register names appear in increasing
lexicographical order starting from ‘a’, (3) there are no leading or trailing spaces, (4)
operands are separated by a single space, (5) there is no space after labels or operators,
(6) instructions are separated by a single space, (7) delete all labels as they implicitly
appear in increasing order starting with 0, (8) delete spaces and the colon symbol with
the first non-data instruction having an implicit label 0, (9) separate multiple operands
by a single comma symbol.

Note that for every register machine program there is a unique canonical program
which is equivalent to it, that is, both programs have the same domain and produce the
same output on a given input. If x is a program and y is its canonical program, then
|y| ≤ |x|.

We next give an example of a canonical program that reads two 16 bit integers and
computes the product by using a “subroutine” for multiplication.

To aid the presentation and development of these programs (see [4] for more realistic
examples) we use a consistent style for subroutines, using the following conventions:

1. The letter ‘L’ followed by characters (usually 1, . . . , 9) and terminated by ‘:’ is used
to mark line numbers. These are local within the subroutine. References to them
are replaced with the binary constant in the final program.

2. For unary subroutines, registers a = argument, b = return line, c = answer (a and
b are unchanged on return). In our example, we have a subroutine READINT that
takes an argument a denoting the number of binary bits to read and returns a
register c that binary number.

3. For binary subroutines, registers a = argument1, b = argument2, c = return line,
d = answer (a, b and c are unchanged on return). In our example, we have a
subroutine MULT that takes registers a and b and multiplies them together and
returns the product in register d.

4. For Boolean data types, as expected, we use integers 0 = false and 1 = true.
Also, the characters ‘0’ and ‘1’ are assumed to be encoded numerically as 0 and 1,
in the 4-bit (base 16) data model,

&a,Main
=b,c,a // b=c=0 so jumps to line denoted by "Main".

5

&d,0 // MUL(a,b) returns a*b
=a,0,c
=b,0,c // if a or b is zero return current product
&e,L1
&f,1
+d,a // keep adding a to our answer d for b times.
L1: =f,b,c
+f,1
+d,a
=a,a,e

&c,0 // READINT(a) return an a-bit positive integer b
&d,0
=a,0,b // return if a is not at least 1
L1: +c,c // shift all c’s bits left and add next bit
!e
+c,e // read bit into e and add to c
+d,1
=a,d,b
&e,L1
=a,a,e

&a,10000 // Main: example multiplies two 16 bit integers
&b,L1
&d,READINT
=a,a,d
L1: &f,c // save first integer
&b,L2
&d,READINT
=a,a,d
L2: &a,f // recover argument ’a’ for MULT
&c,L3
=a,a,MUL
L3: &a,d // move the answer to register a
% // halt
1100001110111110

The actual (non-commented) version of the previous example looks like this (where
one reads the instructions down the columns then across the rows):

&a,10110
=b,c,a
&d,0
=a,0,c
=b,0,c
&e,1000
&f,1
+d,a
=f,b,c

+f,1
+d,a
=a,a,e
&c,0
&d,0
=a,0,b
+c,c
!e
+c,e

+d,1
=a,d,b
&e,1111
=a,a,e
&a,10000
&b,11010
&d,1100
=a,a,d
&f,c

&b,11110
&d,1100
=a,a,d
&a,f
&c,100001
=a,a,10
&a,d
%
1100001110111110

6

Here the line address of Main is 22 (10110), MUL is 2 (10), and READINT is 12 (1100).
Finally newlines and spaces are not part of a register machine program so we actually
have the following (wrapped) string with data over the alphabet Σ16:

&a,10110=b,c,a&d,0=a,0,c=b,0,c&e,1000&f,1+d,a=f,b,c+f,1+d,a=a,a,e&c,0&d,

0=a,0,b+c,c!e+c,e+d,1=a,d,b&e,1111=a,a,e&a,10000&b,11010&d,1100=a,a,d&f,

c&b,11110&d1100=a,a,d&a,f&c,100001=a,a,10&a,d%1100001110111110

Our register machine language can be used in two forms: (a) in base 2 or (b) in base
16, depending on whether the READ instruction (!) reads the data 1 bit at a time or
4-bit nibbles at a time, respectively. In the above example, we assumed the program
encodes integers in a binary text string (either model). This is convenient, but not the
most space efficient way, to represent integers if we are working in base 16 (i.e., we ignore
3 bits out of every 4 data bits). The reader can easily modify the example to use all 4
bits of data by modifying the subroutine READINT(a) to shift 4 bits to the left instead
of 1 (see register c on line L1).

It is easy to prove, using Chaitin’s standard technique [10], that, in both cases, the
simplified register machine language implements a universal machine (working in base
16 or base 2).

3.1 A simulator for register machine programs

We have implemented a Java program Simulate(String p, int jtime) that reads in
a register machine program p and an integer jtime and simulates the running of the
program for at most jtime executions of an EQ instruction (branch). Here p consists of
a program (base 16) + data (either base 2 or base 16) and jtime is an upper bound on
the number of instruction jumps that occur in the simulation.

The simulator first tests the program p for syntactical correctness. If the test is not
passed, then it returns:

5 – syntax error

If the test was passed, then it simulates the computation of the program on the
given data until one of the following conditions have been reached. It then returns:

0 – underread (halts but not all data read)
1 – overread (error as the result of trying to read past end of data)
2 – illegal branch (error in the EQ instruction)
3 – halt success
4 – loop condition (exceeded jtime)

7

4 The procedure to approximate Omega

Our simulator was used to test the halting problem for all register machine programs
of a certain length (in both bases). The results have been obtained according to the
following procedure (which is adapted from [5]), elaborated here for the base 16 case:

1. Start by generating all programs of 4 bits (1 character) and test which of them
stops.2. All strings of length 4 which can be extended to programs are considered
prefixes for possible halting programs of longer length; they will simply be called
prefixes. In general, all strings of length n which can be extended to programs are
prefixes for possible halting programs of length n + 4 or longer. Canonical prefixes
are prefixes of canonical programs.

2. Testing the halting problem for programs of length n ∈ {4, 8, 12, . . . , 80} was done
by running all candidates (that is, programs of length n which are extensions of
prefixes of length n− 4) for up to jtime=1000.3

The most important step of our procedure is to solve the halting problem for small-size
programs. We establish that a program does not halt by using these three methods:

1. Syntactically eliminate correct programs which contain “obvious” loops or correct
programs which have a prefix which loops “onto itself” (that is, the loop does not
involve other instructions than those in the prefix).

2. Simulate any non-filtered program for jtime=1000; if the computation does not
stop, then store the program for further analysis (a combination of special syntactic
tests and eventually manual screening).

3. Perform a global analysis of possible errors (mainly due to manual screening) to
ensure that they do not affect the final result.

A simple example of a prefix filter is =a,a,a. This filter could have been discovered
“automatically” by observing, via the simulator, that the program =a,a,a% exceeded
our jtime limit. Thus, the filter pattern =a,a,a<SEQ>%, where <SEQ> is any sequence
of instructions will also loop. In general, any program <LSEQ>%<DATA> (after human
verification) that loops will imply that <LSEQ><SEQ>%<DATA> also loops. Here <LSEQ> is
a sequence of instructions (which, in fact, will never be encountered) and <DATA> denotes
the possible data that the program reads. Since we are mainly concerned about counting
only the halting programs, we can also check for prefixes (when extended) that would
always yield ‘overread’ case (e.g. the simulator returns 1).

The simulation of remaining programs obtained by extending the set of canonical
prefixes was done with the simulator described earlier. Note that a canonical prefix is
one of two types: (a) a syntactically correct sequence of instructions without the HALT
instruction (%) and (b) a syntactically correct program that the simulator returns 1

2In this trivial case only the program % halts.
3Note that in the earlier work [5] we simulated each program up to an upper bound of 100 steps. In

our case, if we encounter the return value of 5 from the simulator then this implies that we have executed
at least jtime (and probably much more) steps.

8

(‘overread’ data case). The enumeration process is quite efficient since we know that
only very few short programs stop after a very long time, see [8]. The main bottleneck
in our approach is having to store all canonical prefixes (filtered) of a given length in
preparation for counting the halting programs of the next length.

Finally, the remaining programs, which have been considered “non-halting” have been
screened for further signs of “looping-ness”. This screening was partially automated.
Although the screening process was very thorough, due to the largeness of analyzed data
some mistakes could have been introduced for large programs, i.e. for programs of length
greater than 17. Is our analysis fatally flawed? To prove that this is not the case we
assumed that for programs of length greater than 17 the proportion of mistakes was up
to 5% of the corresponding counts (which implies a huge variation in our data, easy to
be discounted); in this case we prove the values of the exact calculated bits (first 43)
remain unchanged.

We end this section with a result that is useful in proving upper bounds.

Theorem 6 Let P denote the set of all canonical prefixes that are overreads of (program)
length k. The contribution of halting extensions of P to ΩUb, using the base b data model,
is at most b · |P | · 2−k−lg2(b) = |P | · 2−k.

Proof. Here is a short proof (suggested by [18]). The set of halting suffixes extending
some prefix x ∈ P, {z | Ub(xz) halts}, is a prefix-free set itself, and thus, by virtue of
Kraft’s inequality, ∑

{z|Ub(xz) halts}
b−|z| ≤ 1.

Accordingly, the contribution of all halting extensions of prefixes in P to ΩUb, ex-
pressed in base 2, is at most∑

{z|x∈P, Ub(xz) halts}
2−(k+|z| lg2(b)) = |P | · 2−k ·

∑
{z|Ub(xz) halts}

b−|z| ≤ |P | · 2−k.

Kraft’s inequality somehow obscures the computational phenomenon described in the
theorem. For a better understanding we provide more details for the case b = 2, where
the contribution is at most |P | · 2−k.

We claim that the contribution to ΩU2 is maximised when for all p ∈ P both machines
p ·0 and p ·1 halt. Here the contribution to ΩU2 with these length k+1 halting programs
is 2|P | · 2−(k+1) = |P | · 2−k. Assume this is not the largest case. Then there is some
p ∈ P such that either p · 0 or p · 1 does not halt. In this case, without loss of generality,
if p · 1 does not halt (i.e. it’s still an overread), we would have a non-empty set

X = {p′ = p · 1 · x | x ∈ {0, 1}∗, |x| ≥ 1 and p′ halts} 6= ∅.

By the prefix-free property of the domain, if we have p1, p2 ∈ X and x1 6= x2, then
neither p1 or p2 is a prefix of the other. Thus we can view X as a set of leaves of an
enumeration binary tree {0, 1}∗ rooted at r = p · 1 (possibly of infinite size).

(1) The finite case: We prove our result by induction on the height of the tree. If the
height is 1, then the worst case is two leaves at distance 1 from r (and strings of length
k + 2). The contribution to ΩU2 is at most 2−(k+2) + 2−(k+2) = 2−k−1 which is the

9

same contribution as if the machine r would have halted. Now consider the case when
the height is t > 1. Let T1 and T2 be the subtrees rooted at the children of r. The
contribution of each subtree to ΩU2 is the same as 1/2 times the contribution if each tree
Ti had been rooted at r because of the distances to the leaves (i.e. program lengths are
1 bit longer). Thus, adding together both cases yields a contribution to ΩU2 that is at
most as if we had subtrees of height at most t− 1.

(2) The infinite case: First consider the situation where there is a halting extension for
every length t > k+1. The tree looks like an infinite path with a single pendant hanging
off each internal node (to either the left or right) of this path. The amount added to
ΩU2 is simply

Σ∞
i=k+22

−i = 2−(k+2) · Σ∞
i=02

−i = 2−k−1.

Since this is the same contribution as if the prefix machine r would have halted, the
statement of the lemma is not contradicted. To complete the proof we claim that any
infinite enumeration tree rooted at r can also contribute at most this sum to ΩU2. We
assume that every internal node has two children, otherwise we can contract an edge
and get a better tree with respect to a subtree’s contribution to ΩU2. The idea is
to successively modify the tree without decreasing it’s “halting” contribution to ΩU2

and end up with a tree isomorphic to the simple infinite caterpillar tree that we just
investigated. Let t denote the smallest distance from r that have at least two leaves.
If no such t exists, then we are done. If two of these leaves are siblings, then assume
their internal parent node represents a halting program. (It has length one less so the
contribution to ΩU2 is preserved.) Otherwise, consider the roots r1 and r2 of two of these
leaves at distance t from r. Swap the subtree (non-leaf child) rooted at r1 with the leaf
node child rooted at r2. All distances are still preserved in this new tree but now we can
eliminate two leaf nodes (since they are now siblings). We can repeat this process until
the caterpillar tree emerges. 2

5 The first 43 bits of Omega in base 16

The distribution of programs of up to 80 bits for U16 is presented in Table 1 in Ap-
pendix B. All binary strings representing programs have their length divisible by 4. In
this table we do not include counts for all programs that loop, since this property was
automatically detected (via a syntactical analysis) and filtered as mentioned earlier.

As a concrete example (referring entries in Table 1 in Appendix B), we have these
four extendable prefixes: !a, &a, +a and =a. The first overread (at the next level) is !a%
and this string combined with the seven extendable strings !a!, !a&, !a+, !a=, &a,, +a,
and =a, form a complete set of eight canonical prefixes of length 12 (= 3× 4).

At every stage we compute a lower bound and an upper bound for ΩU16 in base 16.
The lower bound is easy: we just add the contributions of halting programs generated
at that stage. Let Ωk

U16 be the approximation of ΩU16 given by the summation of all
halting programs of up to k bits in length, that is,

Ωk
U16 =

∑
{‖w‖≤k, U16(w)halts}

16−|w|. (1)

10

In Table 1 in Appendix B we summarize the numbers of halting, looping, overhead,
illegal branch and extendable programs up to data string length 20 for the base 16 model.
Using the halting counts, given in the table, we obtain the following approximations:

Ω0
U16 = 0.

Ω4
U16 = 0.0001

Ω8
U16 = 0.00010000

Ω12
U16 = 0.000100000000

Ω16
U16 = 0.0001000000010000

Ω20
U16 = 0.00010000000100001000

Ω24
U16 = 0.000100000001000010000100

Ω28
U16 = 0.0001000000010000101001001010

Ω32
U16 = 0.00010000000100001010011011110100

Ω36
U16 = 0.000100000001000010100111000100010100

Ω40
U16 = 0.0001000000010000101001110110010100111010

Ω44
U16 = 0.00010000000100001010011101101111000110111001

Ω48
U16 = 0.000100000001000010100111011011111100101011010101

Ω52
U16 = 0.0001000000010000101001110111000011010000111100110010

Ω56
U16 = 0.00010000000100001010011101110000111111001100111010001101

Ω60
U16 = 0.000100000001000010100111011100010000000011111101101011000011

Ω64
U16 = 0.0001000000010000101001110111000100000100110000010000100111000111

Ω68
U16 = 0.00010000000100001010011101110001000001011001010001011101000010111001

Ω72
U16 = 0.000100000001000010100111011100010000010110101101110010000001011100101010

Ω76
U16 = 0.000100000001000010100111011100010000010110111110011000100011101010110111111

1
Ω80

U16 = 0.000100000001000010100111011100010000010111000010101001100101001100101011001
1100

To be able to compute the exact values of the first N bits of ΩU16 we need to be
able to prove upper bounds on the obtained approximations. Our strategy consists in
showing that longer programs do not affect the first N bits of ΩU16. Due to our specific
procedure for solving the halting problem, any halting program of length N has a prefix
of length N − 4. This gives an upper bound for the number of possible halting programs
of length N .

Note that each halting program with non-empty data has to have at least one READ
instruction.

With Ωk
U16 from (1) we have:

ΩU16 =
∑

U16(w)halts
16−|w| = Ωk

U16 +
∑

{‖x‖>k, U16(w)halts}
16−|w|,

so to obtain an exact approximation of order k for Omega we need to find an upper
bound for the series:

∑
{‖x‖>k, U16(w)halts}

16−|w|.

11

The upper bound will be obtained by observing that each halting program of length
greater than k has to extend an extendable prefix of length k. There are two types of
extendable prefixes: those which contain HALT and those which do not contain HALT. The
upper bound will be the sum between the number of halting programs extending these
two types of extendable prefixes:

• if x contains HALT and we have Mk prefixes x of length k, then, in view of Theorem 6
(for b = 16), the worst case scenario leading to a halting program is to add just
one character and halt, i.e. the contribution is 16 ·Mk · 2−4k−4 = Mk · 16−k;

• if y does not contain HALT, and we have Nk prefixes y of length k, then the worst
case scenario leading to a halting program is to assume that all extensions halt
with HALT, hence y ·% contributes Nk · 16−k−1.

Consequently, our approximation of the tail series is:∑
{‖x‖>k, U16(x)halts}

16−|x| ≤ Mk · 16−k + Nk · 16−k−1 = (Mk + 16−1 ·Nk) · 16−k.

The “tail” contribution of all programs of length greater or equal to 84 (M21 =
75582618484 and N21 = 1386091346) is bounded by

2−42 ≤
∑

{‖x‖>20, U16(x)halts}
16−|x| (2)

≤ (75582618484 + 16−1 · 1386091346) · 16−20 < 2−43,

consequently, using Table 1 in Appendix B, the lower bound is:

0.000100000001000010100111011100010000010111000010101001100101001100101011001
1100

and, in view of (2), the upper bound is:

0.000100000001000010100111011100010000010111010100010001001001000001001000010
00101001

In conclusion, the first 43 exact bits of ΩU16 are:

00010 00000 01000 01010 01110 11100 01000 00101 110

Comments. (a) Assume that the “screening process” for halting programs described
in Section 4 has an unreasonable high number of mistakes at levels 18–20, say 5% of
declared non-halting programs actually halt. With this “new data” the counts of halting
programs in Table 1, in Appendix B, will be changed at the last levels as follows:

Programs + data string length Number of halting programs
18 426582153
19 4506223687
20 18329694665

12

Using the above approximation method we get a “new” lower bound for Omega whose
first 43 are exactly the bits of ΩU16.

(b) Comparing with the model in [5], for the present more compact machine we computed
more bits of its Omega number: 43 ∗ 7/4 = 75.25 > 75 = 64 ∗ 7/4.

6 The first bits of Omega in base 2

For the base 2 model our task to compute the initial bits of ΩU2 is a little harder. We have
to consider all program lengths (including data) and not just those that are a multiple
of 4. In Table 2, in Appendix B, we list the counts of the halting programs that we have
discovered for various lengths. The bold entries (i.e. to length at most 61) in this table
are exact while the other entries are just lower bounds.

Let Ωk
U2 be the approximation of ΩU2 given by the summation of all halting programs

of up to k bits in length, that is,

Ωk
U2 =

∑
{‖w‖≤k, U2(w)halts}

2−‖w‖. (3)

Recall that in this case if U2(w) halts, then w is of the form w = x · d, where x is
a string of instructions (the last is HALT, denoted by %) and d is a sequence of raw bits.
The program length of w is now ‖w‖ = 4|x|+ |d|, where |x| is the number of characters
in x and |d| is the length of the binary string d.

Again using these counts, we can compute (for the base 2 model) an Omega lower
bound of ΩU2 at each stage. The successive approximations are:

Ω0
U2 = 0.

Ω1
U2 = 0.0

Ω2
U2 = 0.00

Ω3
U2 = 0.000

Ω4
U2 = 0.0001

Ω5
U2 = 0.00010

Ω6
U2 = 0.000100

Ω7
U2 = 0.0001000

Ω8
U2 = 0.00010000

Ω9
U2 = 0.000100000

Ω10
U2 = 0.0001000000

Ω11
U2 = 0.00010000000

Ω12
U2 = 0.000100000000

Ω13
U2 = 0.0001000000010

Ω14
U2 = 0.00010000000100

Ω15
U2 = 0.000100000001000

Ω16
U2 = 0.0001000000010000

Ω17
U2 = 0.00010000000100000

Ω18
U2 = 0.000100000001000000

Ω19
U2 = 0.0001000000010000000

Ω20
U2 = 0.00010000000100001000

13

Ω21
U2 = 0.000100000001000010000

Ω22
U2 = 0.0001000000010000101000

Ω23
U2 = 0.00010000000100001010000

Ω24
U2 = 0.000100000001000010100100

Ω25
U2 = 0.0001000000010000101001000

Ω26
U2 = 0.00010000000100001010010000

Ω27
U2 = 0.000100000001000010100100000

Ω28
U2 = 0.0001000000010000101001001010

Ω29
U2 = 0.00010000000100001010011011100

Ω30
U2 = 0.000100000001000010100110111000

Ω31
U2 = 0.0001000000010000101001110011000

Ω32
U2 = 0.00010000000100001010011101000100

Ω33
U2 = 0.000100000001000010100111010101000

Ω34
U2 = 0.0001000000010000101001110101010000

Ω35
U2 = 0.00010000000100001010011101010100000

Ω36
U2 = 0.000100000001000010100111011000010100

Ω37
U2 = 0.0001000000010000101001110110010000010

Ω38
U2 = 0.00010000000100001010011101101101100101

Ω39
U2 = 0.000100000001000010100111011011011010011

Ω40
U2 = 0.0001000000010000101001110110111101111111

Ω41
U2 = 0.00010000000100001010011101101111110101111

Ω42
U2 = 0.000100000001000010100111011100000001010111

Ω43
U2 = 0.0001000000010000101001110111000000010110111

Ω44
U2 = 0.00010000000100001010011101110000001111001000

Ω45
U2 = 0.000100000001000010100111011100001010101001001

Ω46
U2 = 0.0001000000010000101001110111000010110110001111

Ω47
U2 = 0.00010000000100001010011101110000110111111101011

Ω48
U2 = 0.000100000001000010100111011100001110010111000111

Ω49
U2 = 0.0001000000010000101001110111000011101111001101011

Ω50
U2 = 0.00010000000100001010011101110000111100001101011011

Ω51
U2 = 0.000100000001000010100111011100001111000111010101011

Ω52
U2 = 0.0001000000010000101001110111000011110100000110101110

Ω53
U2 = 0.00010000000100001010011101110000111101010100011100001

Ω54
U2 = 0.000100000001000010100111011100001111100001010011100111

Ω55
U2 = 0.0001000000010000101001110111000011111000100100011011001

Ω56
U2 = 0.00010000000100001010011101110000111110011001000001101101

Ω57
U2 = 0.000100000001000010100111011100001111100110111101010111101

Ω58
U2 = 0.0001000000010000101001110111000011111001111101100101000011

Ω59
U2 = 0.00010000000100001010011101110000111110011111111001010111111

Ω60
U2 = 0.000100000001000010100111011100001111101000001110000001001011

Ω61
U2 = 0.0001000000010000101001110111000011111010001010111001010001001

The following lower bound approximations Ω<j
U2 incorporate the counts of those reg-

ister machine programs of length j which we know that halt. Due to the large number
of prefixes we did not extend some of the prefixes when the string length was more than
30 or when the program+data length was more than 80.

Ω<62
U2 = 0.00010000000100001010011101110000111110100011010011101110110101

14

Ω<63
U2 = 0.000100000001000010100111011100001111101001001001001011101100001

Ω<64
U2 = 0.0001000000010000101001110111000011111010010011010011001000111010

Ω<65
U2 = 0.00010000000100001010011101110000111110100101001110001100111011100

Ω<66
U2 = 0.000100000001000010100111011100001111101001010101001111000010100001

Ω<67
U2 = 0.0001000000010000101001110111000011111010010101101100110000100100001

Ω<68
U2 = 0.00010000000100001010011101110000111110100101011110010000110011101000

Ω<69
U2 = 0.000100000001000010100111011100001111101001011000001001111001000010011

Ω<70
U2 = 0.0001000000010000101001110111000011111010010110010111010100001011110110

Ω<71
U2 = 0.00010000000100001010011101110000111110100101100110111001000101111011101

Ω<72
U2 = 0.000100000001000010100111011100001111101001011010010110001011110101100001

Ω<73
U2 = 0.0001000000010000101001110111000011111010010110101000011100111000011111010

Ω<74
U2 = 0.00010000000100001010011101110000111110100101101010110110101001100001010100

Ω<75
U2 = 0.000100000001000010100111011100001111101001011010101111111100110011101110110

Ω<76
U2 = 0.000100000001000010100111011100001111101001011010110011100010110101010000011

1
Ω<77

U2 = 0.000100000001000010100111011100001111101001011010110100010111011110101000101
11

Ω<78
U2 = 0.000100000001000010100111011100001111101001011010110100111100110000110111000

000
Ω<79

U2 = 0.000100000001000010100111011100001111101001011010110101010100100011001111111
1010

Ω<80
U2 = 0.000100000001000010100111011100001111101001011010110101100101111101011011010

10010
Ω<81

U2 = 0.000100000001000010100111011100001111101001011010110101101011100101110000100
001101

Ω<82
U2 = 0.000100000001000010100111011100001111101001011010110101101011101101110111101

1100111
Ω<83

U2 = 0.000100000001000010100111011100001111101001011010110101101011110100100101010
00011010

Ω<84
U2 = 0.000100000001000010100111011100001111101001011010110101101100001011011000011

110010000

We now explain how we calculated an upper bound for ΩU2. We will slightly change
the strategy used for the base 16 model because in the base 2 model there are too many
programs to generate. To make the process feasible we will apply several times Theorem 6
for various sets of canonical prefixes (grouped by program+data length sizes) which will
be aggregated into a final upper bound.

As in the base 16 model there are two types of extendable prefixes: those which
contain HALT and those which do not contain HALT. The upper bound will be obtained
by summing the potential halting programs that can occur by extending these two types
of extendable prefixes. Using a similar analysis as in base 16 model, if we have Mk

canonical prefixes of length k which contain HALT and Nk prefixes of length k which do
not contain HALT, then an upper bound for the tail series:

∑
{‖x‖>k, U2(w)halts}

2−‖w‖ = ΩU2 − Ωk
U2

15

is
2 ·Mk · 2−k−1 + 1 ·Nk · 2−k−4 = Mk · 2−k + Nk · 2−k−4. (4)

The computation is feasible for extendable prefixes that do not contain HALT till
k = 80: we have obtained N80 = 550974535, so these prefixes contribute with N80 ·2−84 =
550974535 · 2−84.

Next we consider the overread prefixes, i.e. prefixes which contain HALT. Ideally, we
would have computed M80, so the upper bound would have been M80 · 2−80 + N80 · 2−84.
Unfortunately, in the base 2 case we did not reach M80, hence we have a set of non-
extended prefixes of different program lengths. Still, by iterating Theorem 6, we still get
an upper bound considering where the remaining prefixes have lengths 61, 67, 73, 76,
79, 81 or 84. More precisely, instead of M80 · 2−80 we use the bound M ′

61 · 2−61 + M ′
67 ·

2−67 +M ′
73 · 2−73 +M ′

76 · 2−76 +M ′
79 · 2−79 +M ′

81 · 2−81 +M ′
84 · 2−84. Here M ′

j , represents
the count of the non-extended prefixes of length j. These counts are listed below:

Program+data length (j) M ′
j

61 10
67 8745008
73 891868952
76 37749002
79 2587456080
81 921721461
84 149028029

A concrete example is M ′
61 representing just these 10 overread prefixes (pro-

gram+data lengths are 4 ∗ 9 + 25 = 61 bits):

!a=a,0,a%00000000000000000000000000
!a=a,0,b%00000000000000000000000000
!a=a,1,b%11111111111111111111111111
!a=a,b,a%00000000000000000000000000
!a=a,b,b%00000000000000000000000000

!a=a,b,c%00000000000000000000000000
!a=b,a,a%00000000000000000000000000
!a=b,a,b%00000000000000000000000000
!a=b,a,c%00000000000000000000000000
!a=b,c,a%00000000000000000000000000

It is interesting to note that 9 of these 10 prefixes can extend to either a halt or an
overread (repeatedly). These enumeration trees are isomorphic to the caterpillar trees
discussed in the proof of Theorem 6. So we saved a bit of computation by not extending
them (which we could have done much earlier). The other/last case always extends to a
loop or an overread4.

An upper bound for ΩU2 is now obtained by adding a “tail” of potential halting
programs, by iterating Theorem 6, to our best lower bound:

ΩU2 ≤ Ω<84
U2 + N80 · 2−84 +

∞∑
i=1

M ′
i · 2−i.

The value of M ′
i is 0 for all but a finite number of cases; moreover, the set of lengths

{61, 67, 73, 76, 79, 81, 84} accounts for all possible extensions (of data) of these prefixes
that halt.

4Thus, we could set M ′
61 = 9, since this particular prefix never extends to a halting program.

16

Indeed, we just look at the set of overread programs that we did not extend. The
enumeration tree has a finite height, so from the definition of M ′

i , the set of overread
prefixes (that were not extended) fall into at most a finite number of M ′

i > 0 cases.

If a program halts, then it must be in exactly one of these three cases:

1. It has been enumerated and counted (i.e. its size is at most 80),

2. It is an extension of one of the Nj prefixes without HALT (i.e. its size is at least 84),
or

3. It has a prefix that is in (at most) one of the non-extended overread sets (i.e. its
size is at least 62).

There are no other cases. Let Oi denote the overread set corresponding to M ′
i . We

also know there does not exist x ∈ Oi and y ∈ Oj , i 6= j, such that x is a prefix of y: this
follows from our lexicographic enumeration procedure over Σ16. Consequently, tallying
the contribution of each of these three cases we have:

ΩU2 ≤ Ω<84
U2 + N80 · 2−84 + M ′

61 · 2−61 + M ′
67 · 2−67 + M ′

73 · 2−73

+M ′
76 · 2−76 + M ′

79 · 2−79 + M ′
81 · 2−81 + M ′

84 · 2−84.

Thus evaluating this formula we get an upper bound. (Implicit in Theorem 6 we
assume, for the worst, that all canonical prefixes extend to a halting program of length
at most 85.)

Ω85
U2(ub) = 0.0001000000010000101001110111000011111010100001111001000000001011000110100

000001111000.

After comparing with our earlier lower bound we conclude that we have calculated
the 40 exact bits (underlined below):

Ω84
U2(lb) = 0.00010000000100001010011101110000111110100101101011010110110000101101100

0011110010000.

that is, the first exact 40 bits of ΩU2 are

00010 00000 01000 01010 01110 11100 00111 11010

Finally, let us observe that stopping our computation at level 60 would give us
M60 = 486283, N60 = 2764738. As expected, the resulting upper bound is less exact
than the upper bound previously obtained, but using the formula (4) we still get 40
exact bits of ΩU2.

17

7 Final comments

From the results of two previous sections we can conclude, as expected, that the two
models (base 16 and base 2) of our compact register machine yield different Omegas. We
also observe that the semantics of the READ instruction getting 4 bits at a time (instead
of 1) allows for more short programs to halt. However, we are not advocating the use
of one particular model over the other. The base 2 model is more flexible in allowing
any length of data—not just a multiple of 4 bits, which is more in line with modern
computer architectures having bytes being the smallest unit of storage for a program.
The encoding of data is paramount (base 2 vs. base 16): one can see that ΩU16 6= ΩU2.

In connection with our time-bounded simulation, one would naturally want to know
the shortest program that halts with more than 1000 branches. Why? For example,
if this program is larger than 80 bits, then all of our looping programs (in both base
models) never halt. One such short program is given below, with instruction labels given
above the operators:

0 1 2 3 4 5 6
&a,111111111&b,1&c,110+d,1=a,d,c=a,a,b%

This program has length 156 bits (39 characters). We can reduce this by 12 bits if we
are using the base 16 register machine (replace the instruction &c,110 with !c and add
one character/nibble of data that has value 6). The authors are interested in knowing if
there are any shorter programs.

Finally, one method for improving our upper bound (and possibly an easy way to
yield more exact bits known) is to consider more closely the tail of the Nk prefixes that
do not contain HALT. Our analysis ignored the syntactical properties of valid register
machine programs and just assumed every prefix string can be extended to a halting
program by appending 4 bits. However, the halt instruction % may only appear after a
complete (preceding) instruction has been well specified with its operator and operand
arguments. In fact, by a simple probabilistic observation, it is easy to see that at most
1/4 of prefixes have their last instruction well-specified with all required operands. The
authors suspect that a more detailed analysis of the syntax of valid programs might
provide us one more known bit by lowering the contribution to Omega of this tail by a
factor of 1/2.

Acknowledgement

We thank Ivy Jiang and Simona Mancaş who helped us write (and debug) preliminary
versions of the Java simulator for the register machine language(s) described here. We
are grateful to Greg Chaitin and John Tromp for valuable criticism and comments which
improved this paper.

References

[1] C. S. Calude. Information and Randomness: An Algorithmic Perspective, 2nd Edi-
tion, Revised and Extended, Springer Verlag, Berlin, 2002.

18

[2] C. S. Calude. A characterization of c.e. random reals, Theoret. Comput. Sci. 271
(2002), 3–14.

[3] C. S. Calude. Chaitin Ω numbers, Solovay machines and incompleteness, Theoret.
Comput. Sci. 284 (2002), 269–277.

[4] C. S. Calude, Elena Calude, M. J. Dinneen. A new measure of the difficulty of
problems, Journal for Multiple-Valued Logic and Soft Computing 10 (2006), 1–21.

[5] C. S. Calude, M. J. Dinneen and C.-K. Shu. Computing a glimpse of randomness,
Experimental Mathematics 11, 2 (2002), 369–378.

[6] C. Calude, H. Jürgensen. Randomness as an invariant for number representations,
in H. Maurer, J. Karhumäki, G. Rozenberg (eds.). Results and Trends in Theoretical
Computer Science, Springer-Verlag, Berlin, 1994, 44–66.

[7] C. S. Calude, P. Hertling, B. Khoussainov, Y. Wang. Recursively enumerable reals
and Chaitin Ω numbers, Theoret. Comput. Sci. 255 (2001), 125–149.

[8] C. S. Calude, M. A. Stay. Most Programs Stop Quickly or Never Halt, CDMTCS
Research Report 284, 2006.

[9] G. J. Chaitin. A theory of program size formally identical to information theory, J.
Assoc. Comput. Mach. 22 (1975), 329–340.

[10] G. J. Chaitin. Algorithmic Information Theory, Cambridge University Press, Cam-
bridge, 1987. (third printing 1990)

[11] G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore, 1997.

[12] P. Hertling, K. Weihrauch. Randomness spaces, in K. G. Larsen, S. Skyum, and
G. Winskel (eds.). Automata, Languages and Programming, Proceedings of the 25th
International Colloquium, ICALP’98 (Aalborg, Denmark), Springer-Verlag, Berlin,
1998, 796–807.

[13] A. Kučera, T. A. Slaman. Randomness and recursive enumerability, SIAM J. Com-
put. 31, 1 (2001), 199–211.

[14] P. Odifreddi. Classical Recursion Theory, North-Holland, Amsterdam, Vol.1, 1989,
Vol. 2, 1999.

[15] R. I. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.

[16] R. M. Solovay. A version of Ω for which ZFC can not predict a single bit, in
C.S. Calude, G. Păun (eds.). Finite Versus Infinite. Contributions to an Eternal
Dilemma, Springer-Verlag, London, 2000, 323-334.

[17] L. Staiger. The Kolmogorov complexity of real numbers, in G. Ciobanu and Gh.
Păun (eds.). Proc. Fundamentals of Computation Theory, Lecture Notes in Comput.
Sci. No. 1684, Springer-Verlag, Berlin, 1999, 536–546.

[18] J. Tromp. Email to C. Calude, 21 December 2006.

19

Appendix

A Some details about the computation process

The source-code for our register machine simulator (written in Java) that we used to
compute the first bits of the two Omegas is available for download at ftp://ftp.cs.
auckland.ac.nz/pub/research/CDMTCS/Omega.

Our computational process was pretty much automated with the use of shell scripts.
For example, we used the following bash script to classify register machines at each new
level.

#!/bin/bash

i=$*
echo extending len=$i

java -cp Java_Progs -Xmx2000M EnumOverread overread.$i
rm runnable
cp overread overread.$((i+1))
mkdir -p $((i+1))/overread/*
mv halt loop extendable underread overread illegalbranch $((i+1))/overread
gzip -f -q $((i+1))/overread/*

java -cp Java_Progs -Xmx2000M Enumerate extendable.$i
rm runnable
cp extendable extendable.$((i+1))
mkdir -p $((i+1))/extendable/*
mv halt loop extendable underread overread illegalbranch $((i+1))/extendable
gzip -f -q $((i+1))/extendable/*

In the above script, we extend the two types of canonical prefixes, ones with halt
(overread) and ones without (extendable), and store the compressed results of the sim-
ulator in directories that are named to correspond to the current level i. Both the
programs Enumerate and EnumOverread call the register machine simulator on each of
their generated strings. In the case of EnumOverread we do not need to (re)check the
syntax of the generated strings since we are just adding more data.

To extract register machine programs of a given length for the base 2 model we used
the following simple perl script. (For the base 16 model we just multiply the string length
by 4.)

#!/usr/bin/perl

$goal = $ARGV[0];

while (<>) # this file is named in $ARGV[1]
{

20

if (/(.*%)(.*)/) # program has data
{

$prog = $1;
$data = $2;
$pdlen = 4*length($prog)+length($data);
print $prog.$data,"\n" if ($pdlen == $goal);

}
else # program has no data
{

chomp $_;
$prog = $_;
$pdlen = 4*length($prog);
print $prog,"\n" if ($pdlen == $goal);

}
}

Finally, we used the following program to produce an Omega lower bound from a list
of halting counts.

import java.io.*;
import java.util.*;
import java.math.BigInteger;

class approx
{
public static void main(String[] argv) throws IOException
{

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);

int maxlen = Integer.parseInt(in.readLine());

BigInteger total = new BigInteger("1");

for (int i=1; i<=maxlen; i++)
{
String line = in.readLine();
StringTokenizer tokens = new StringTokenizer(line);

int len = Integer.parseInt(tokens.nextToken());
System.out.print("Omega_"+len+" = 0.");

BigInteger num = new BigInteger(tokens.nextToken());
total = total.shiftLeft(1);
total = total.add(num);
System.out.println(total.toString(2).substring(1));

}
}
}

21

B Data

Table 1: Distribution of programs into simulator categories (base 16 model)

Program + Number of Number of Number of Number of Number of
data length halting looping overread illegal branch extendable

0 0 0 0 0 0

1 1 0 0 0 0

2 0 0 0 0 4

3 0 0 1 0 7

4 16 0 0 0 20

5 8 0 2 0 56

6 4 0 32 0 158

7 522 0 41 0 358

8 596 0 96 0 1162

9 468 0 1507 0 3043

10 21498 5 2925 52 10311

11 40473 2052 7574 53 25746

12 44869 18 79507 208 92901

13 1073634 7932 219114 3070 245506

14 2874221 2601 656188 7174 929279

15 4387315 1242508 5108174 64750 2467020

16 63135127 92453 18590195 270447 9829406

17 221590601 6219247 71366861 1563562 27034182

18 426445722 2728623 711343532 5358476 113105879

19 4456593631 992601131 5887007185 83028791 315733989

20 18322322348 147446347 75582618484 187451863 1386091346

22

Table 2: Number of halting register machine programs of a given length (base 2 model)

Program + Number
data length of halting

1 0
2 0
3 0
4 1
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 2
14 0
15 0
16 0
17 0
18 0
19 0
20 8
21 0
22 8
23 0
24 4
25 0
26 0
27 0
28 10

Program + Number
data length of halting

29 72
30 0
31 40
32 20
33 32
34 0
35 0
36 212
37 90
38 609
39 9
40 473
41 177
42 249
43 9
44 602
45 3513
46 765
47 5325
48 1521
49 4829
50 1669
51 2037
52 9304
53 9605
54 49957
55 7947
56 65211

Program + Number
data length of halting

57 23011
58 58313
59 16441
60 64205
61 242163
62 153251
63 663543
64 263032
65 832872
66 441577
67 819167
68 805542
69 1235011
70 5463760
71 2229745
72 10462631
73 6092344
74 12432992
75 4798158
76 15074843
77 6900489
78 9773970
79 12471418
80 18254686
81 11807337
82 531661
83 879692
84 5976924

23

