
CDMTCS
Research
Report
Series

Balance Machines: A New
Formalism for Computing

Joshua J. Arulanandham
Michael J. Dinneen

Department of Computer Science

University of Auckland

Auckland, New Zealand

CDMTCS-256

December 2004

Centre for Discrete Mathematics and

Theoretical Computer Science

Balance Machines:
A New Formalism for Computing

Joshua J. Arulanandham and Michael J. Dinneen
Department of Computer Science

The University of Auckland
Auckland, New Zealand

{joshua,mjd}@cs.auckland.ac.nz

December 1, 2004

Abstract

The Balance Machine is a newly proposed natural computational model that
consists of components resembling physical balances. The model has only one
operation, “balancing”, which suffices in principle to perform universal compu-
tation. An interesting feature of the balance machine is its bidirectional oper-
ation: it can compute “forwards and backwards”, i.e. both a function and its
partial inverse can be computed spontaneously using the same machine. Also,
the machine exhibits a different kind of parallelism—a “bilateral parallelism”.

The aim of this note is two–fold: To introduce a formalism for computing
with balance machines—a convenient notation for representing the mechani-
cal model on paper, and to demonstrate its expressive power by solving two
NP–complete problems, namely, Set Partition and Knapsack.

1 Computing without knowing how to count

Standard theoretical formalisms and programming languages of mainstream computer
science influence us to think of computation mainly in terms of arithmetic/logical op-
erations and symbol processing. We introduce a new computing formalism which
is not based on arithmetic/logic or symbol processing, but which can, in principle,
serve the purpose of its classical, better–known counterparts. Our formalism per-
tains to computing with a Balance Machine, an unconventional mechanical model of
computation first proposed in [1].

The idea of computing using a balance might seem bizarre. It can be explained
with the following example which is hypothetical and rather crude, yet serves our pur-
pose. Suppose there is an illiterate farmer who has no knowledge of numbers/numerals

1

and counting, but nevertheless wishes to “count” if all of his sheep return safely after
going out for grazing. How would he manage to do it without even knowing how to
count 1, 2, 3, . . .? (Well, he could use pebbles to keep count of his sheep, but that
would not illustrate our idea of a balance!) He installs a gigantic physical balance in
his backyard. Before sending the sheep out for grazing he makes all his sheep stand
on the left side of the balance and puts a huge barrel on its right. By trial and error
he finds out to what extent the barrel needs to be filled, say, with a liquid, to balance
the sheep’s weight. After the sheep return, all he does is to make the sheep stand on
the left side of the balance again, place the same barrel on its right and see if they
balance or not1. The point is that the actual numerical value of the weight of sheep
(or their count given by a number) is not important for this computation; it is not
necessary that the farmer should scribble the value (a number) on a piece of paper or
memorize it. In fact, the illiterate farmer’s approach to compute using weights of pos-
sibly unknown values—that is, we do not know the values of the numbers representing
them, but only know of “something that balances this”—can be put to use, literally
in every conceivable computing situation! For example, as shown in Figures 2 and 6,
the process of adding two quantities x and y can be reduced to finding “something
that balances x and y weights (placed on the left pan)”.

Typically, a balance machine “computer” consists of components that resemble
ordinary physical balances (see Figure 1), each with a natural tendency to spon-
taneously balance their left and right pans: If we start with certain fixed weights,
representing inputs, on some2 of the pans, then the balance–like components would
vigorously try to balance themselves by filling the rest of the pans with suitable (liq-
uid) weights representing the outputs. Roughly speaking, the proposed machine has
a natural ability to load itself with output weights that “balance” the input. This
balancing act can be viewed as a computation. There is just one rule that drives
the whole computing process: the weights on the left and right pans of the individual

balances should be made equal. Note that the machine is designed in such a way
that the balancing act would happen automatically by virtue of physical laws: i.e.,
the machine is self-regulating.3 In [1] we have shown that all computations can be
ultimately expressed using one primitive operation: balancing; this sort of intuition
suffices to conceptualize/implement any computation performed by a conventional
computer. Armed with the computing = balancing intuition, we can see basic com-
puting operations in a different light.

The rest of the paper is organized as follows: Section 2 gives a brief introduction to
the proposed computational model; Section 3 introduces symbolic representations of
balance machines and uses these to solve a variety of computing problems; Section 4
discusses the notion of bilateral computing; Sections 5 and 6 demonstrates the power

1The farmer assumes that the sheep would not have gained considerable weight in a single day,
after grazing!

2The machine is not necessarily a single balance; it can be a combination of two or more balances.
3If the machine cannot eventually balance itself, it means that the particular instance does not

have a solution.

2

Figure 1: A physical balance.

of the new computing formalism by solving two NP–complete problems, namely,
Set Partition and Knapsack respectively; Section 7 concludes the paper.

2 The Balance Machine model

At the core of the proposed natural computational model are components that re-
semble a physical balance. In ancient times, the shopkeeper at a grocery store would
place a standard weight in the left pan and would try to load the right pan with
a commodity whose weight equals that on the left pan, typically through repeated
attempts. The physical balance of our model, though, has an intrinsic self-regulating
mechanism: it can automatically load (without human intervention) the right pan
with an object whose weight equals the one on the left pan. See Figure 2 for a
possible implementation of the self-regulating mechanism.

In general, unlike the one in Figure 2, a balance machine may have more than
just two pans. There are two types of pans: pans carrying fixed weights which remain
unaltered by the computation, and pans with variable liquid weights that are changed
by activating the filler–spiller outlets. Some of the fixed weights represent the inputs,
and some of the variable ones represent outputs. The following steps constitute a
typical computation by a given balance machine:

(i) Plug in the desired inputs by loading weights to pans. Pans with
variable weights can be left empty or assigned with arbitrary weights.
This defines the initial configuration of the machine.

(ii) Allow the machine to balance itself: the machine automatically adjusts
the variable weights till left and right pans of the individual balance(s)
become equal.

(iii) The weights of liquid collected in the output pans denote the “output”
of the computation.

3

X Y

1 2

X + Y

“filler” outlet

“spiller” outlet

(fluid) source

push buttons

variable weightfixed weight

Figure 2: A self-regulating balance. The source is assumed to have an arbitrary amount of a

liquid–like substance. When activated, the filler outlet lets liquid from the source into the right

pan; the spiller outlet, on being activated, allows the right pan to spill some of its contents. The

balancing is achieved by the following mechanism: the spiller is activated if at some point the right

pan becomes heavier than the left (i.e., when push button (2) is pressed) to spill off the extra liquid;

similarly, the filler is activated to add extra liquid to the right pan just when the left pan becomes

heavier than the right (i.e., when push button (1) is pressed). Thus, the balance machine can “add”

(sum up) inputs x and y by balancing them with a suitable weight on its right: after being loaded

with inputs, the pans would go up and down till they eventually find themselves balanced.

3 Symbolic representations of balance machines

It might be convenient if we develop some kind of a pictorial or textual representation
of balance machines, rather than having to conjure an image of real physical balances
like the one shown in Figure 2 while computing with them. In this Section we develop
symbolic representations of balance machines and use them to solve a variety of
computing problems.

See Figure 3 for one pictorial, textual representation of a machine that adds two
quantities. In the textual representation, the keyword balance represents a balance
with left and right pans. The variable names to the left and the right of the comma
represent weights on the left and right pans respectively. Those beginning with small
letters represent fixed weights and the ones starting with capital letters, variable
weights. Note that there can be more than one variable on each side of the comma,
connected together by the ‘+’ sign which simply denotes a “grouping” of weights that
are attached to the same side of the balance. More details regarding syntax will be
given shortly by way of examples and, the syntax is formally described at the end of
this section using context–free grammar rules.

4

+

+

. . .

represents two (or more) pans

represent fixed weightssmall letters, numerals

capital letters represent variable weights

Symbol Meaning

weights on both sides of this “bar”
should balance

whose weights add up

(these weights need not balance each other)

balance(a + b, A).

a

A

b

Figure 3: Pictorial, textual representations of a simple balance machine that performs addition.

In what follows, we give examples of a variety of balance machines that carry
out a wide range of computing tasks—from the most basic arithmetic operations to
solving linear simultaneous equations. Balance machines that perform the operations
increment, decrement, addition, and subtraction are shown in Figures 4, 5, 6, and 7,
respectively. Legends accompanying the figures detail how they work.

Balance machines that perform multiplication by 2 and division by 2 are shown in
Figures 8, 9, respectively. Note that in these machines, one of the weights/pans takes
the form of a balance machine4 which demonstrates a kind of recursion.

We now introduce another technique of constructing a balance machine: having
a common weight shared by more than one machine. Another way of visualizing this
situation is to think of pans belonging to two different machines being placed one over
the other. We use this idea to solve a simple instance of linear simultaneous equations.
See Figures 10 and 11 which are self–explanatory. In the textual representation a
semicolon has been used to separate the individual balances; weights/pans that are
shared among the individual machines bear the same variable names.

Having shown how to construct balance machines for a few computing problems,
we wish to state that we can in fact construct, using balance machines, all primitive

4The weight contributed by a balance machine is assumed to be simply the sum of the individual
weights on each of its pans. The weight of the bar and the other parts is not taken into account for
the sake of simplicity.

5

1

+

x

Z

balance(x + 1, Z).

Figure 4: Increment operation. Here x represents the input and Z represents the output. The

machine computes increment(x). Both x and ‘1’ are fixed weights clinging to the left side of the

balance machine. The machine eventually loads into Z a suitable weight that would balance the

combined weight of x and ‘1’. Thus, eventually Z = x + 1, i.e., Z represents increment(x).

+

1X

z

balance(X + 1, z).

Figure 5: Decrement operation. Here z represents the input and X represents the output. The

machine computes decrement(z). The machine eventually loads into X a suitable weight so that

the combined weight of X and ‘1’ would balance z. Thus, eventually X + 1 = z, i.e., X represents

decrement(z).

+

yx

Z

balance(x + y, Z).

Figure 6: Addition operation. The inputs are x and y and Z represents the output. The machine

computes x + y. The machine loads into Z a suitable weight, so that the combined weight of x and

y would balance Z. Thus, eventually x + y = Z, i.e., Z would represent x + y.

6

+ z

x Y

balance(x + Y, z).

Figure 7: Subtraction operation. Here z and x represent the inputs and Y represents the output.

The machine computes z − x. The machine loads into Y a suitable weight so that the combined

weight of x and Y would balance z. Thus, eventually x + Y = z, i.e., Y would represent z − x.

a B
A

balance(balance(a, B), A).

Figure 8: Multiplication by 2. Here a represents the input and A represents the output. The

machine computes 2a. The combined weights of a and B should balance A: a + B = A; also, the

individual weights a and B should balance each other: a = B. Therefore, eventually A will assume

the weight 2a.

a
A B

balance(balance(A, B), a).

Figure 9: Division by 2. The input is a and let A represent the output. The machine “exactly”

computes a/2. The combined weights of A and B should balance a so that A + B = a; also, the

individual weights A and B should balance each other: A = B. Therefore, eventually A will assume

the weight a/2.

7

+ +

1 2

43

8

2

Y1X1 Y2X2

X1 Y1 Y2

x + y = 8; x − y = 2

X2

balance(X1 + Y1, 8); balance(Y2 + 2, X2);

balance(Y1, Y2).balance(X1, X2);

Figure 10: Solving simultaneous linear equations. Balance machines (1) and (2) realize the equa-

tions in a straightforward manner. Note that both X1 and X2 represent the same variable x, and

therefore must be made equal; this also applies to Y1 and Y2. The constraints X1 = X2 and Y1 = Y2

will be enforced by balance machines (3) and (4). Observe the sharing of pans between them. The

individual machines work together as a single balance machine.

+ +8

2X

X

x − y = 2x + y = 8;

YY

balance(X + Y, 8); balance(Y + 2, X).

Figure 11: Solving simultaneous linear equations (easier representation). This is a simpler repre-

sentation of the balance machine shown in Figure 10. Machines (3) and (4) are not shown; instead,

we have used the same (shared) variables for machines (1) and (2).

8

hardware components that serve as the building blocks of a general purpose universal
digital computer: logic gates, memory cells (flip-flops), and transmission lines [1].

A formal description of the syntax of the textual notation used for representing
balance machines is given below, using context–free grammar rules:

Statement → Balances.

Balances → Balance;Balances | Balance

Balance → balance(Weight, Weight)
Weight → Weight + Weight | NonnegativeReal | V ariable | Balance

4 Bilateral computing

An important property of balance machines is that they are bilateral computing de-
vices. See [2] where the notion of bilateral computing was first proposed. Typically
bilateral computing devices can compute both a function and its (partial) inverse,
using the same mechanism. For instance, the same underlying balancing mechanism
is used in both increment and decrement operations (see Figures 4 and 5), except for
the fact that we change fixed weights to variable ones and vice versa. Also, compare
machines that (i) add and subtract (see Figures 6 and 7) and (ii) multiply and divide
by 2 (see Figures 8 and 9).

There is a fundamental asymmetry in the way we normally compute: while we are
able to design circuits that can multiply quickly, we have relatively limited success in
factoring numbers; we have fast digital circuits that can “combine” digital data using
AND/OR operations and realize Boolean expressions, yet no fast circuits that can
determine the truth value assignment satisfying a Boolean expression. Why should
computing be easy when done in one “direction”, and not so when done in the other
“direction”? In other words, why should inverting certain functions be hard, while
computing them is quite easy? It may be because our computations have been based
on rudimentary operations like addition, multiplication, etc. that force an explicit
distinction between “combining” and “scrambling” data, i.e. computing and inverting

a given function. On the other hand, a primitive operation like balancing does not
do so. It is the same balance machine that does both addition and subtraction: all
it has to do is to somehow balance the system by filling up the empty variable pan
representing output; whether the empty pan is on the right (addition) or the left
(subtraction) of the balance does not particularly concern the balance machine! In
the bilateral scheme of computing, there is no need to develop two distinct intuitions—
one for addition and another for subtraction; there is no dichotomy between functions
and their (partial) inverses.

We can mathematically characterize a bilateral computing system as follows: Con-
sider a surjective (not necessarily bijective) function f : X → Y and the set of func-
tions G = {g : Y → X | f(g(y)) = y, ∀y ∈ Y }. A bilateral computing system is one
which can implement f as well as some g ∈ G, using the same intrinsic “mechanism”
or “structure”.

9

In the sections that follow we show how two classic NP–complete problems can
be solved under a bilateral computing scheme, using balance machines.

5 The Set Partition problem

Set Partition, a well–known hard computing problem which is NP–complete [3] can
be stated as follows:
Input: A set S of positive numbers.

Question: Can S be “split” into two disjoint subsets S1, S2 such that S1∪S2 = S and
sum(S1) = sum(S2), where sum(S1) and sum(S2) represent the sum of the elements
in S1 and that of the elements in S2, respectively?

In what follows we will try to rephrase the problem in such a way that one could use
the “Balance Machine vocabulary” to address it.

Consider a set S = {x1, x2, . . . xn} of cardinality n. Let us suppose, we can

partition it into disjoint sets S1 and S2 as required. The existence of a partition can
be pictured as follows: imagine two sets of “pockets”—n pockets on the left side and
n on the right side of a balance, say, which are meant to hold the elements of S; the
elements from S can be seen as being distributed/scattered across the pockets—some
are held by left side pockets, and the rest on the right (of course, some pockets will be
left empty). The pockets on the left, taken together, and those on the right weigh the
same. Note that every element in S will be found in one of the pockets, either in one
of the left ones or in those on the right, never on both sides. To make things simple
and orderly, we can safely assume that the first element in S will be found either in
the first left side pocket or in the first right side pocket (i.e., one of them will always
be empty), the second element in S will be found either in the second left pocket or
in the second right pocket, and so on. This scheme of picturing the partition can be
formally expressed as follows.

Let variables l1, l2, . . ., ln and r1, r2, . . ., rn represent the left and the right pockets
respectively. Then, every element xi ∈ S will be held by either li or ri, i.e. one of the
following conditions will be true:
A) li = xi and ri = 0.
B) li = 0 and ri = xi.
The following condition will also be true since we can partition S:
C) l1 + l2 + . . . + ln = r1 + r2 + . . . + rn.

Conversely, consider a set S of cardinality n (whether it is partitionable is not
known yet): If one can generate n left and n right pockets for which there exists an
assignment, obeying condition (A) or (B), such that l1+l2+. . .+ln = r1+r2+. . .+rn,
then there should exist a way to partition S—into disjoint sets S1 and S2. This is
because l1 + l2 + . . . + ln can be seen as constituting sum(S1) and r1 + r2 + . . . + rn

as sum(S2).

10

Thus, the problem of deciding if a given set can be partitioned or not, can be recast
as the problem of generating required number of left and right pockets/variables and
checking if an assignment satisfying conditions (A) or (B), and (C), exists. And, this
“new” version of the problem is more suitable for solving with balance machines. A
possible solution is discussed below:

Given a set S = {x1, x2, . . . xn} of cardinality n, we use a special type of bal-
ance machines to check if S can be partitioned or not. The machines have the
following properties:
(i)The filler–spiller outlets let out liquid only in discrete “drops”.
(ii) There is a maximum weight which each pan can hold.

balance(L1 + L2 + . . . + Ln, R1 + R2 + . . . + Rn);
balance(L1 + R1, x1);
balance(L2 + R2, x2);
...
balance(Ln + Rn, xn).

Note that the maximum weight which pans representing variables Li and Ri can
hold is xi, and that they are filled up in “drops”, each weighing xi. This creates
an “all or nothing” situation for the pans, thus satisfying either condition (A) or
(B). When there is a way to partition the set, the balances would stop, assigning
variables L1, L2, . . ., Ln, R1, R2, . . ., Rn with suitable values that constitute one such
partition; when such a partition is impossible, the balances would keep “swinging”
up and down, thus trying out various possible assignments forever, and do not come
to a halt5.

6 The 0/1 Knapsack problem

In this Section we attempt to solve yet another NP–complete problem using bal-
ance machines— the 0/1 Knapsack [3], which can be defined as follows:

Input: Objects representing “weights” and their corresponding “values”: (w1, v1),
(w2, v2), . . ., (wn, vn), a knapsack capacity w and target value t.

Question: Is there an A ⊆ {1, 2, ..., n} such that
∑

i∈A wi ≤ w and
∑

i∈A vi ≥ t?

Let us initially consider a slightly modified version of the problem: we shall force
∑

i∈A wi = w and
∑

i∈A vi = t. We can use an approach quite similar to the one used
to solve the Set Partition problem.

Use n pockets x1, x2, . . . , xn to represent weights and another set of n pockets
y1, y2, . . . , yn to represent their corresponding values (unlike set partition, we do not
have “left” and “right” pockets). The following conditions are to be met with:
A) A pocket is either empty, or contains a weight/value: (xj = 0 or xj = wj) and
(yj = 0 or yj = vj).

5We do not know of a way to actually detect this situation.

11

B) If a weight–pocket is empty, then so is the corresponding value–pocket:
xj = 0 ⇒ yj = 0 .

C) If a weight–pocket contains a weight, then the corresponding value–pocket will
contain its value: xj = wj ⇒ yj = vj .
D) The weight–pockets should together weigh w and the value–pockets should weigh t:
x1 + x2 + . . . + xn = w and y1 + y2 + . . . + yn = t .

We make use of the special type of balance machines used in the case of Set Par-
tition.

balance(X1 + X2 + . . . + Xn, w);
balance(Y1 + Y2 + . . . + Yn, t);
balance(X1 + Y1, Sum1);
balance(X2 + Y2, Sum2);
...
balance(Xn + Yn, Sumn).

Note that the maximum weights which pans representing variables Xi, Yi and
Sumi can hold are wi, vi and wi + vi respectively and that they are are filled up
only in “drops”, each weighing wi, vi and wi + vi respectively. This “all or nothing”
restriction helps satisfy (A), (B) and (C). When there is a solution, i.e. a subset
satisfying the given conditions, the balances would stop, assigning variables X1, X2,
. . ., Xn, Y1, Y2, . . ., Yn with values that constitute one such solution; when such a
partition is impossible, the balances would keep “swinging” up and down, thus trying
out various possible assignments forever, and do not come to a halt.

In fact, we can solve the original version of the 0/1 Knapsack Problem if we replace
the first two balances with the following:

balance(Extra1 + X1 + X2 + . . . + Xn, w);
balance(Y1 + Y2 + . . . + Yn, t + Extra2);

Now, due to the inclusion of Extra1 on the left side, the quantity X1 +X2 + . . .+Xn

could afford to be even less than w, since Extra1 can fill itself up with whatever it
takes to balance w. Likewise Extra2 allows us to obtain more than the target value t.

7 Conclusions

We have introduced a formalism for computing based on balance machines. Com-
puting using this formalism requires us to think differently and recast a computing
problem as: “What values should x, y, z, etc. take so as to balance this and that
and that?”. We have demonstrated how to think in this fashion for two classic
NP–Complete problems. Once recast in the manner just mentioned, a natural phys-
ical system such as a set of balances working together in parallel can spontaneously
work out the answer (if it exists). Unlike a digital computer these machines do not
seem to need a “program” detailing how to arrive at a solution. All we need to do is
to code the constraints in the form of balances, and let them do the job.

12

The kind of parallelism one sees in balance machines is different from conventional
parallelism. We get some sort of a “bilateral parallelism” which is worth further
exploration in the future. Though we have not analyzed the time characteristics
of balance machines, we believe that they will outperform digital computers when
applied to NP–Complete problems, owing to their inherent bilateral parallelism.

References

[1] J. J. Arulanandham, C. S. Calude, M. J. Dinneen. Balance machines: Computing
= balancing, Lecture Notes in Comput. Sci. 2933, Springer Verlag, Berlin, 2004,
36–48.

[2] J.J. Arulanandham, C.S. Calude, M.J. Dinneen. Solving SAT with bilateral com-
puting, Romanian Journal of Information Science and Technology 6, 1–2 (2003),
9–18.

[3] M. Garey, D. Johnson. Computers and intractability: a guide to the theory of

NP-completeness, Freeman, San Francisco, 1979.

13

