
CDMTCS
Research
Report
Series

Supplemental Papers for
DLT’04

C. S. Calude1, E. Calude2

and M. J. Dinneen1 (Editors)

1University of Auckland,

New Zealand

2Massey University at Albany,

New Zealand

CDMTCS-252

November 2004

Centre for Discrete Mathematics and

Theoretical Computer Science

Preface

These are the papers for the poster talks to be given at the Eighth International Conference

on Developments in Language Theory (DLT’04) to be held at Auckland, New Zeland on De-
cember 13–17, 2004. The conference is jointly organized by Massey Universty at Albany and
the CDMTCS (New Zealand). The conference, organised under the auspicies of the European
Association for Theoretical Computer Science (EATCS), is supported by the New Zealand Royal
Society.

On Regular Language Factorisation: A Complete

Solution for Unary Case

Sergey Afonin1,2, Elena Hazova2, and Alexander Shundeev1,2

1 Moscow State University, Institute of Mechanics
Moscow, Russia

2 Center for Scientific Telecommunications,
Russian Academy of Sciences

Moscow, Russia
{serg, shundeev}@msu.ru

Abstract. In this paper the problem of regular language decomposition as a concatenation
of given regular languages is considered. We prove that the problem is decidable in unary
case when all the languages are in single-letter alphabet. This result may be used to give a
negative answer in some cases of the general problem.

1 Introduction

Language factorisation problem, i.e. the problem of representing a given regular
language as a concatenation of other (regular) languages has a long history. The
classical results, such as Krohn-Rhodes decomposition theorem for transformation
semigroups [4], or language factorisation into a finite number of stars and primes [5]
guarantees the existence of such decompositions. These works, however, deal with
“unrestricted” case of the problem, when factors are arbitrary languages of cer-
tain classes (i.e. stars and primes). The problem of interest is: how a given regular
language can be represented in terms of a fixed set of arbitrary languages.

This problem was motivated by the semi-structured data processing problem.
Semistructured data naturally arise in many areas, including integration of data from
heterogeneous sources, processing text documents with semantic markup, etc [11,
17]. A powerful mathematical model for semi-structured data is an edge-labeled
directed graph [16]. Nodes of the graph correspond to objects in the subject area, and
edges are relations between them. In this model the relationships between objects
are represented as paths in the database graph B and the following problem typically
arise: for given regular language Q (query), find all the pairs (u, v) of B nodes such
that there exist a labeled path between u and v in B and its labels comprise a word
in Q [15, 1]. Although this problem has polynomial complexity, the whole graph B

may need to be searched, which is inefficient.
One possible method towards increasing efficiency is using views [9, 7]. Let us

assume that we know the search results for the queries, corresponding to regular
languages E = {E1, . . . , Ek}. The question is, can this data be used to help execution
of an arbitrary query Q? This is the language substitution problem. As it was noted
in [2], the efficiency of query processing (especially parallel processing) significantly
depends on query structure and concatenation of Ei can be effectively evaluated.

The layout of the paper is as follows. Section 2 introduces the basic concepts and
formulates the problem of “constrained” rewriting. A brief survey of related work

2 S. Afonin, E. Hazova and A. Shundeev

is given in section 3. In section 4 the problem is considered in its general case. A
complete solution for the case of single-letter alphabet presented in section 5. The
conclusion discusses the results and directions of future work.

2 Preliminaries

An alphabet is a finite non-empty set Σ of symbols. A finite sequence of symbols
from Σ is called a word in Σ. The empty word is denoted ε.

Any set of words is called a language in Σ. Σ∗ denotes the set of all words
in a given alphabet, ∅ is an empty language (containing no words). The union of
languages L1 and L2 is the language L1 + L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}.
The language L1L2 = {w ∈ Σ∗ | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2} is called a
concatenation of L1 and L2. Lk = LLk−1 is L to the power k. By definition, L to the
power zero is the empty word: L0 = {ε}. The Kleene closure of L is the language
L∗ = ∪∞

k=0L
k. A language is regular if it can be obtained from letters of the alphabet,

empty language, and {ε} using a finite number of operations of concatenation, union
and closure.

Let ΣE = {E1, E2, . . . , Ek} be a fixed set of regular languages in Σ, and Q ⊆ Σ∗.
Let ΣE = {e1, . . . , ek} be a view alphabet, such that Σ∩ΣE = ∅. Define the language
mapping

LΣ : ΣE → P(Σ∗)

as LΣ(ei) = Ei. The subscript index indicates the alphabet of image language. This
mapping can be naturally extended to language morphism LΣ : P(Σ∗

E
) → P(Σ∗).

For (possibly non-regular) language P ⊆ Σ∗

E
, let

LΣ(P) =
⋃

w∈P

LΣ(w). (1)

Definition 1. Let H(A) be a class of regular languages in an alphabet A. Q′ is an
H-rewriting of Q ⊆ Σ∗ with respect to E if (1) Q′ ∈ H(ΣE) and (2) LΣ(Q′) = Q.

Let us denote the class of languages that consist of a single word as Hc(A), the
class of languages that can be obtained from symbols of A using a finite number of
concatenations and closures as H∗(A), and the class of arbitrary regular languages
in A as HR(A).

This work deals with a Hc-rewriting. The main problem of interest is:

Problem 1. For a given regular language Q ⊆ Σ∗ and a fixed set E = {E1, . . . , Ek}
of regular languages in Σ, find a word w in ΣE such that LΣ(w) = Q:

Q = Ei1Ei2 . . . Ein (2)

3 Related works

There are several variations of the problem 1 considered in the literature. In general,
they can be divided into two classes: (1) when the set E is fixed, and (2) when

On Regular Language Factorisation: A Complete Solution for Unary Case 3

elements of E are unknown. Star and primes decomposition [5] is an example of the
problem with unknown elements of E. For given language L one should find a word
w ∈ Σ∗

E
and the set E such that LΣ(w) = L and elements of E are either stars, or

prime languages in Σ. Another example is the finite substitution problem [12]: for
given languages K ⊆ Σ∗

E
(the alphabet ΣE is fixed) and L ⊆ Σ∗ find finite languages

Ei, such that LΣ(K) = L.
To our best knowledge the problem with fixed set E has been only considered

for HR-rewritings [6, 8] and Hc-rewriting of finite language [14]. In [6] the problem
of finding a so-called ΣE-maximal HR-rewriting is solved. The language Q′ ⊆ Σ∗

E

is called a ΣE-maximal rewriting of Q ⊆ Σ∗, if LΣ(Q′) ⊆ Q and Q′ contains, as a
language in ΣE, all other rewritings. That work propose an algorithm to find ΣE-
maximal rewriting. Due to the fact that a ΣE-maximal rewriting Q′ is not necessarily
exact (i.e. LΣ(Q′) ⊆ Q), [6] proposes an algorithm to test whether a rewriting is
exact. Both algorithms are shown to have exponential complexity.

The decidability of Hc-rewriting for finite languages, which was considered in [14]
follows from the fact that each component of decomposition (2) increase the length
of the longest word, so the length of (2) is bounded by the length of the longest
word in Q.

Another related area is language equations [13]. An interesting relation exists
between language factorisation and language equations [13]. Consider the equation
L = EX, where L and E are given regular languages. The questions are: whether
a solution exists, whether it is regular if L and E are regular, whether a maximal
solution exists and whether the equation is decidable. These questions were positively
answered in [10]. It was also shown that if the equation L = EX has a solution then
it has at least one minimal solution (F is a minimal if no proper subset of F is a
solution) but it is unclear how such a solution may be computed and how many
minimal solutions exist.

The question that relates language decomposition and equation: Is it possible to
build the decomposition by a number of “prefix removals”? If all the equations of
the form L = (Ei1Ei2 . . . Eim)X have a finite number of solutions then the problem 1
is decidable.

A recent work [3] proves the decidability of building an unambiguous decomposi-
tion of a language into L = EX+Y , i.e. each word in L can be uniquely decomposed
in a right way. This is related to minimal solution for L = EX since if a decompo-
sition of the form (X, ∅) exists then X is a minimal solution but in that paper only
a “simple” case of one-word Y was considered.

4 Factorisation for arbitrary alphabet

Let us consider the problem of factorisation of a regular language into a concatena-
tion of given ones in general case. Let us note that if none of the languages from E

contain empty word the problem is decidable because the decomposition can not be
longer than the shortest word in Q. It is also decidable when all of the languages
from E are finite (with or without the empty word). The length of decomposition (2)
of a (finite) language Q is limited because each component increase the length of

4 S. Afonin, E. Hazova and A. Shundeev

the longest word. If the languages Ei may contain empty word the question becomes
“more complex”. As it was noted in [14] only an exponential algorithm is known
for the decomposition problem of finite language and we do not know whether it is
decidable in the general case.

Reduction to star elimination problem. According to [6], it is decidable whether
there exist the language Q′ ∈ HR(ΣE) such that LΣ(Q′) = Q. It is well known that
any regular language can be represented as finite union of languages in H∗. Let

Q′ =
d⋃

i=1

Ri, (3)

where Ri ∈ H∗(ΣE) be such decomposition. A word w ∈ Σ∗

E
such that LΣ(w) = Q

exists if and only if LΣ(Ri) = Q for some i. Hence the original problem can be
reformulated as follows.

Problem 2. Given a regular language Q ∈ Σ∗, a set of regular languages E =
{E1, . . . , Ek} in Σ, and a regular language R ∈ H∗(ΣE) such that LΣ(R) = Q
one should decide whether there exist a word w ∈ R such that LΣ(w) = Q.

Example 1. Let Q = a + aaa(a)∗ and E = {(aa)∗, a, (aaa)∗}. The maximal HR-
rewriting of Q wrt E is the language

Q′ = e2 + (e1 + e3 + e2e2(e1 + e2 + e3) + e2(e1 + e3))(e1 + e2 + e3)
∗

One of the H∗(ΣE)-components of Q′ is

R = e1(e
∗

1(e3e
∗

3e1)
∗)∗e2(e

∗

1e
∗

3)
∗

and Lσ(R) = Q. This language contains the word w = e1e3e1e2. It is easy to verify
that LΣ(w) = Q. �

Our solution is based on the finite power property of regular languages. For any
language L ⊆ Σ∗ one can verify whether there exist k > 0 such that L∗ = Lk. The
minimal number k, L∗ = Lk is called the finite power of language L and denoted by
FPP (L). If no such number exists when FPP (L) = ∞.

It is evident what if all star languages from R has finite power property then
all stars can be removed. Consider, for an instance, (e3e

∗

3e1)
∗ fragment of R from

the above example. Since LΣ(e3) is a star language then e∗3 = e3. Thus, (e3e
∗

3e1)
∗ =

(e3e3e1)
∗. The language e3e3e1 is a star also, so (e3e

∗

3e1)
∗ = (e3e3e1). Unfortunately,

there exist regular languages L1, L2, and L3 such that:

– FPP (L2) = ∞;
– L1L

∗

2L3 = L1L
k
2L3 for some k.

Let us consider one-letter alphabet Σ = {a}, and languages L1 = (aaa)∗, L2 =
(aa + ε), L3 = (aaaaa)∗. The language L1L

∗

2L3 contains all words over Σ, except a.
Since L2 is a finite language FPP (L2) = ∞. From the other hand

L1L
2
2L3 = L1L

∗

2L3.

On Regular Language Factorisation: A Complete Solution for Unary Case 5

This example demonstrates that finite power property can not be directly applied
to the problem 2. We conject, however, that this generalised finite power property
(then prefix and suffix languages are given) is crucial for language decomposition.
More preciesly,

Conjecture 1. A regular language R of the form R = L1L
∗

2L3L
∗

4L5 is equivalent
to L1L

k2

2 L3L
k4

4 L5 iff k2 and k4 satisfy the eqations R = L1L
k2

2 (L3L
∗

4L5) and R =
(L1L

∗

2L3)L
k4

4 L5, respectively.

It is worth noting that generalised finite power property is decidable using the same
technique as for original one.

5 Unary case

In this section we prove what the problem 2 is decidable for arbitrary regular lan-
guages in Σ = {a}.

Let us first introduce the notation. First, since a language L in one-letter alphabet
may contain only one word of length n, we will not distinguish a word and its length.
Moreover, we will define a word and its length by the same symbol. Consequently,
a set of words F is thought as the set of numbers.

Any regular language in Σ = {a} can be represented as

L = F +
⋃

z∈Z

zi(a
t)∗, (4)

where F and Z are finite sets of words. The finiteness of Z follows form the structure
of the deterministic automaton for L: each state has only one outgoing edge.

Lemma 1. A regular language L 6= {ε} in one-letter alphabet Σ = {a} has finite
power property iff (1) L is infinite, and (2) ε ∈ L.

Proof. ⇒. If ε /∈ L then ε /∈ Lk for any k > 0 and L has no finite power property
because ε ∈ L∗. If L is finite, then Lk is finite for any k > 0, but L∗ is infinite so L
has no finite power property.

⇐. Consider the representation (4) for the language L. Without loss of generality
let us assume that F = {f} and Z = {z}. Let w be a word in L∗. The length of w
may be represented as

|w| = jf + pz + it, (5)

where j, p, and i are natural numbers and i 6= 0 only if p 6= 0. Note that w ∈ Lj+p.
We prove now that there exist bounded numbers ĵ and p̂ such that for any j, p, and i

jf + pz + it = ĵf + p̂z + ît, (6)

thus w ∈ L
bj+bp.

Let lcm(n, m) be the least common multiple for n and m, i.e. lcm(n, m) = mink{k
mod n = 0 and k mod m = 0}.

6 S. Afonin, E. Hazova and A. Shundeev

jf =

(
lcm(f, z)

f
j̃ + ĵ

)
f = lcm(f, z)j̃ + ĵf = p′z + ĵf.

Choose j̃ and ĵ from the condition:

0 6 ĵ <
lcm(f, z)

f
. (7)

When (5) may be rewritten as:

|w| = j̃f + (p + p′)z + it. (8)

Now,

(p + p′)z =

(
lcm(z, t)

z
p̃ + p̂

)
z = p̂z + lcm(z, t)p̃ = p̂z + ti′.

Choosing p̃ and p̂ from the condition:

0 6 p̂ <
lcm(z, t)

z
(9)

we get:
|w| = ĵf + p̂z + (i + i′)t, (10)

where ĵ, p̂ are bounded by 7 and 9, and i′ may be arbitrary large. Note that if both p
and p′ are equals to 0, then i′ = 0. Thus, w ∈ Lk, where k = ĵ + p̂ = lcm(f,z)

f
+ lcm(z,t)

z
.

If |F | > 1 then

FPP (L) 6 max
f∈F

[
lcm(f, z)

f
+

lcm(z, t)

z

]
. (11)

�

Lemma 2. For any regular languages L ⊆ Σ∗ and M ⊆ Σ∗ in one-letter alphabet
Σ the equation

L∗M∗ = Lk1Mk2 , (12)

holds for some natural k1 and k2 iff:

1. ε ∈ M, ε ∈ L;
2. one of the languages L or M is infinite.

Proof. The proof of if part is the same as for the lemma 1.
If both M and L are infinite the statement immediately follows from the lemma 1.

Assume that M is finite. Note, that if ε ∈ M, ε ∈ L; then

L∗M∗ = (L + M)∗.

The infinite language L + M has finite power property, k = FPP (L + M). It is
evident that L∗M∗ = LkMk. �

On Regular Language Factorisation: A Complete Solution for Unary Case 7

Corollary 1. For any system of regular languages {Ll}
n
l=1 in one-letter alphabet Σ

there exists k1 6= 0, k2 6= 0, ..., kn 6= 0 such that:

L∗

1L
∗

2...L
∗

n = Lk1

1 Lk2

2 ...Lkn

n , (13)

iff:

1. ε ∈ Ll, for all l = 1, 2, ..., n;
2. at least one of the languages Ll is infinite.

Now consider the case when one of the languages has no star operation: LM ∗.
If M is infinite then according to the lemma 1 LM ∗ equals to LMk for some k. If
both languages are finite then there is no finite power property. The following lemma
deals with the case when L is infinite and M is finite.

Lemma 3. Let L = G + ∪r
i=1zi(a

t)∗ be an infinite language, and F be a finite
language in Σ = {a}. The equation

LF ∗ = LF k (14)

holds for some k > 0 iff it holds for

k0 = (max{t ∪ F})2 +
∑

f∈F

lcm(f, t)

f
. (15)

Proof. Let F = {f1, f2, . . . , fn}. The general form for (the length of) a word w ∈ LF ∗

is
either 1) |w| = (gs) + (j1f1 + j2f2 + . . . + jnfn),
or 2) |w| = (zs) + it + (j1f1 + j2f2 + . . . + jnfn).

(16)

The sum of jq equals to the power of F . We have to prove that there exist ĵ1, ĵ2, . . . , ĵn

such that
∑n

q=1 ĵq 6 k0 and for all w ∈ LM ∗

|w| = gs + ĵ1f1 + ĵ2f2 + . . . + ĵnfn), or

|w| = zs + it + ĵ1f1 + ĵ2f2 + . . . + ĵnfn.
(17)

For all words w ∈ LF ∗ of the form 16.2 we can apply the technique from the
lemma 1, so we have

jl <
1

fl

lcm(fl, t) for all l = 1, . . . , n. (18)

In order to prove the statement in the case 16.1 consider the equation

x0t + (x1 − j1)f1 + (x2 − j2)f2 + . . . + (xn − jn)fn = gs − zm. (19)

We prove now that LF ∗ = LF k for some k if and only if for all gs ∈ G there exists
zm ∈ Z such that this equation has a solution in Z

+.
Suppose that LF ∗ = LF k for some k but the equation (19) has no integer solution

for some gs ∈ G. Consider a word w1w2 ∈ LM∗ such that:

8 S. Afonin, E. Hazova and A. Shundeev

(1) w1 = gs, and
(2) |w1w2| > max G + k max F .
These conditions guarantee that w1w2 has no representation of the form w′

1w
′

2, where
w′

1 ∈ G and w′

2 ∈ F k. But w1w2 ∈ LF k by assumption, so

|w1w2| = zm + it + ĵ1f1 + ĵ2f2 + . . . + ĵnfn (20)

for some ĵ1, ĵ2, . . . , ĵn, and (i, ĵ1, ĵ2, . . . , ĵn) is a solution for (19). A contradiction.
Now suppose that for all gs there exist zm such that (19) has a solution.

Rewrite (19) as

x0t + x1f1 + x2f2 + . . . + xnfn = gcd(t, f1, . . . , fn)W, (21)

where W =
gs − zm

gcd(t, f1, . . . , fn)
+

j1f1 + j2f2 + . . . + jnfn

gcd(t, f1, . . . , fn)
.

Both parts of (21) can be reduced by gcd(t, f1, . . . , fn), so (19) is equivalent to

x0t̂ + x1f̂1 + x2f̂2 + . . . + xnf̂n = W. (22)

The equation (22) has a solution, say (x0
0, x

0
1, . . . , x

0
n), because (19) has. Then for

any α1, . . . , αn ∈ Z the set

(x0
0 − α1f̂1 − α2f̂2 − . . . − αnf̂n, x0

1 + α1t̂, x
0
2 + α2t̂, . . . , x

0
n + αnt̂)

is also a solution of (22). Let us choose α1, . . . , αn from the conditions

0 6 x0
l + αlt̂ 6 t, l = 1, . . . , n.

Then x0
0 − α1f̂1 − α2f̂2 − . . . − αnf̂n > 0 if W > t̂(f̂1 + f̂2 + . . . + f̂n). The later

condition holds if

j1f1 + j2f2 + . . . + jnfn > (max(t, f1, f2, . . . , fn))2 . (23)

Summing up (23) and (18) we get (15). �

Now consider the problem 1.

Theorem 1. Let Q and E = {E1, . . . , Ek} be regular languages in Σ = {a}. The
problem of regular language factorisation for Q and E is decidable.

Proof. Let Q′ be the ΣE-maximal rewriting for Q (see 3). If LΣ(Q′) 6= Q, than Q
can not be represented in the form 2. Suppose that LΣ(Q′) = Q.

Consider the decomposition (3) for Q′. Let R be a component of (3) such that
LΣ(R) = Q. If no such R exist than there is no solution for Q and E. Since (L∗

1L2)
∗ =

L∗

1L
∗

2 for any languages in Σ we have to consider only the case when R is a language
of star height 1.

Due to commutative property of languages in one-letter alphabet and the equality
L∗

1L
∗

2 = (L1 + L2)
∗ the general form of R is LM ∗, where M is the union of all star

languages in R and L is the concatenation of all “non-star” languages in R. If M
is infinite then according to the lemma 1 LM ∗ = LMk for some k. If M is finite
than the solution exists only if LM ∗ = LMk0 , where k0 satisfy the condition of the
lemma 3. �

On Regular Language Factorisation: A Complete Solution for Unary Case 9

6 Conclusion

In this paper the problem of representing a regular language as a concatenation
of given ones was considered. A complete solution for a specific case of one-letter
alphabet was developed. This result may be used to give a negative answer in some
cases of the general problem. Consider a language morphism f : Σ → {a} and
reduce the problem into a one-letter case, when only lengths of words are taken into
account. If corresponding problem for one-letter alphabet has no solution then the
original problem has no solution also because the regular languages have lengths of
words that do not allow Hc-decomposition. The problem in the general case remains
open.

References

1. Abiteboul, S., and Vianu, V. Regular path queries with constraints. In Proc. of the sixteenth ACM
SIGACT SIGMOD SIGART Sym. on Principles of Database Systems (PODS 97) (1997), pp. 122–133.

2. Afonin, S., Shundeev, A., and Roganov, V. Semistructured data search using dynamic paralleli-
sation technology. In Proceedings of the 26th International Convention MIPRO-2003, Opatija, Croatia
(2003), pp. 152–157.

3. Anselmo, M. A non-ambiguous decomposition of regular languages and factorizing codes. J. Discrete
Applied Mathematics 126, 2-3 (2003), 129–165.

4. Arbib, M. Algebraic Theory of Machines, Languages, and Semigroups. Academic Press, 1968.
5. Brzozowski, J. A., and Cohen, R. On decompositions of regular events. Journal of the ACM 16,

1 (Jan. 1969), 132–144.
6. Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Rewriting of regular expressions

and regular path queries. Journal of Computer and System Sciences 64 (May 2002), 443–465.
7. Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y. Answering regular path queries

using views. In ICDE (2000), pp. 389–398.
8. Conway, J. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
9. Halevy, A. Y. Theory of answering queries using views. SIGMOD Record (ACM Special Interest

Group on Management of Data) 29, 4 (2000), 40–47.
10. Kari, L., and Thierrin, G. Maximal and minimal solutions to language equations. Journal of

Computer and System Sciences 53 (December 1996), 487–496.
11. Karvounarakis, G., Magganaraki, A., Alexaki, S., Christophides, V., Plexousakis, D.,

Scholl, M., and Tolle, K. Querying the semantic web with rql. Comput. Networks 42, 5 (2003),
617–640.

12. Kirsten, D. Desert automata i. a burnside problem and its solution. In Proceedings of the 21st
International Symposium on Theoretical Aspects of Computer Science STACS-2004 (2004).

13. Leiss, E. Language Equations. Springer-Verlag, 1999.
14. Mateescu, A., Salomaa, A., and Yu, S. On the decomposition of finite languages. Tech. Rep.

TUCS-TR-222, 8, 1998.
15. Mendelzon, A. O., and Wood, P. T. Finding regular simple paths in graph databases. In Pro-

ceedings of the 15th Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA),
Amsterdam (1989).

16. Quass, D., Widom, J., Goldman, R., Haas, K., Luo, Q., McHugh, J., Nestorov, S., Rajara-

man, A., Rivero, H., Abiteboul, S., Ullman, J. D., and Wiener, J. L. LORE: A Lightweight
Object REpository for semistructured data. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (Montreal, Quebec, Canada, 4–6 June 1996), H. V. Jagadish and
I. S. Mumick, Eds., p. 549.

17. Vasenin, V. A., and Afonin, S. A. To the problem of building an integrated system of university
distributed information resources. In Proceedings of the Finnish Data Processing Week Conference
FDPW-2001 (2001), pp. 152–177.

Communication Complexity Classes

for Distributed Generation of Languages

Liliana Cojocaru

Rovira i Virgili University of Tarragona
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

liliana.cojocaru@estudiants.urv.es

Abstract. In this paper we present new insights into the nature of languages generated by
Cooperating Distributed Grammar Systems (CDGS) with regular, linear and context-free
components. The generative power of these systems is investigated within the framework of
the communication complexity theory. We obtain several communication complexity classes,
depending on the types of the system components, modes of derivation, weak and strong fair-
ness conditions. We deal with trades-off between time, space and communication complexity
in order to characterize the generative process of languages.

1 Introduction

Usually, complexity theory is concerned with the complexity measurement of com-
putations in terms of time and space. In 1979, Yao [20] introduced another method of
measuring the computation based on the communication within the system. To eval-
uate a process, by ignoring the number of steps (time) and the size of the memory
(space) used during the computation, he introduced a model in which two play-
ers (processors or abstract computers) each having access to a partial part of the
input, try to collaboratively evaluate a function with the least amount of commu-
nication between them. The communication complexity measure was defined as the
minimum number of bits of information exchanged between the two players at any
input. Works in communication complexity were motivated by the design and anal-
ysis of VLSI (Very Large Scale Integrated) circuits and distributed computation. It
turned out to be an interesting tool for proving lower bounds in the study of small
complexity classes.

Approaches to classes of languages from Chomsky hierarchy within the frame-
work of communication complexity can be found in [17], [16], [15] and [10]. In [15] it
is shown that regular languages have small (constant) communication complexity,
while context-free languages need linear communication complexity. In [10] and [16]
it is proved that there exist non-recursively enumerable languages that are recogniz-
able within 0 communication complexity, so that hard languages according to the
Chomsky hierarchy can be simple according to communication complexity. Lower
bounds in communication complexity for several particular languages of Chomsky
hierarchy are described in [17], while in [10] and [16] several area-time trades-off
results for Chomsky hierarchy are approached within the framework of VLSI com-
munication complexity.

Investigations related to the communication complexity of distributed grammar
systems can be found in several papers, e.g. [11], [12], [13], [14]. The authors of them

2 L. Cojocaru

focus on the communication complexity of Parallel Communicating Grammar Sys-

tems (PCGS). They considered two kinds of communication complexity measures.
The first one is the communication structure of PCGS, i.e. the shape of the commu-
nication graph, consisting of directed communication links between the grammars,
while the second one is a communication complexity measure, i.e. the number of
exchanged messages during the computational process. Several hierarchies of classes
are obtained through the above complexity measures in [11] and [12], along with
several lower bound results. In [14] is shown that k + 1 communications are more
powerful than k communications, so that an infinite hierarchy of constant com-
munication complexity for PCGS without any restrictions on their communication
graph, exists. The price of obtaining non-regular languages, over one letter alphabet,
is payed with Ω(log n) communication complexity.

This paper is devoted to the communication complexity of Cooperating Dis-
tributed Grammar Systems, with regular, linear and context-free components, but
concerns also other computational resources used by the system, such as time and
space. We deal with trades-off between these measures in order to control the gen-
erative process tackled by CDGS.

For the case of CDGS we propose two types of communication structures. The
first structure is determined by the communication graph of CDGS, which is a di-
rected graph where the vertices are labeled by the CDGS components and the di-
rected edges correspond to pairs (Ga, Gb), a 6= b, of grammars that communicate
with each other. The communication is done through those nonterminals that ap-
pear on the right side of a production of Ga and on the left side of a production of
Gb, according to the protocol of cooperation used by the system. We refer to these
nonterminals as communicational nonterminals. The second structure is a protocol
tree determined by the interconnection between the system components, i.e. the
way in which they bring consecutive contributions on the sentential form during the
language generation process. For each language L generated by a CDGS we define
a new kind of control language, called communicational Szilard language viewed as
the set of all communicational control words of L. If γc

w is a communicational control

word of a certain word w ∈ L, then the derivation tree of γc
w is the communicational

protocol tree attached to w. A communication complexity measure, i.e., how many
times the system components communicate with each other using a minimal num-
ber of communicational nonterminals, is defined and studied depending on modes
of derivation, weak and strong fairness conditions.

2 Preliminaries

Grammar Systems have been introduced in [3] and [4], as a mathematical formaliza-
tion of the blackboard model of problem solving. CDGS are sets of grammars that
work sequencially on a common sentential form, according to a specified protocol of
cooperation. At each moment only one grammar is active. Which component of the
system is active at a given moment, and when a grammar stops to be active, is de-
cided by the protocol of cooperation. This protocol consists in stop conditions such
as modes of derivation (how many times a rewriting rule of the same component can

Communication Complexity Classes 3

be applied), in weak fairness conditions (each component has to be activated almost
the same number of times) or in strong fairness conditions (each component has to
be activated almost the same number of times, by taking into account the number
of internal productions that are applied for each grammar). For more results the
reader is reffered to [5] and [9]. Formally a CDGS is defined as follows:

Definition 1 A Cooperating Distributed Grammar System of degree r, r ≥ 1
is a construct of the form: Γ = (N, T, S, P1, . . . , Pr), where the sets N and T are
disjoint finite alphabets, the nonterminal and the terminal alphabet, respectively.
S ∈ N is the system axiom, and P1, P2, . . . , Pr are finite sets of rewriting rules over
N ∪ T .

A CDGS can be equivalently rewritten as Γ = (N, T, S,G1, . . . , Gr) in which Gi =
(N, T, S, Pi), for all i, 1 ≤ i ≤ r, are Chomsky grammars, called the components

of Γ . For X ∈ {REG,LIN,CF} we denote by CDGSrX, r ≥ 1, CD grammar
systems with r components, that have regular, linear and context-free components,
respectively. The language generated by these systems depends on the way in which
the internal rules of each component bring their own contribution on the sentential
form. This can be done with respect to several modes of derivation, recalled below:

Definition 2 Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS, x, y ∈ (N ∪ T)∗, and
i ∈ {1, ..., r}. The terminating derivation (denoted by ⇒t

Pi
), the k-steps deriva-

tion (denoted by ⇒=k
Pi

), at most k-steps derivation (denoted by ⇒≤k
Pi

), at least

k-steps derivation (denoted by ⇒≥k
Pi

), and the *-mode of derivation (denoted
by ⇒∗

Pi
), represent modes of derivations that allow for each component Pi to con-

secutively activate each rule: as many times as possible, exactly k times, at most k
times, at least k times, and arbitrarily many times, respectively.

Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS and M = {t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1}.
Definition 3 The language generated by Γ in f-mode, f ∈M is defined as:
Lf (Γ) = {w ∈ T ∗|S = w0 ⇒f

Pi1
...⇒f

Pim
wq = w,m ≥ 1, 1 ≤ ij ≤ r, 1 ≤ j ≤ m}.

For X ∈ {REG,LIN,CF}, f ∈ M we denote by CDrX(f), r ≥ 1, the family of
languages generated by CDGS with r components, that have only regular, linear,
and context-free rules activated in the f -mode of derivation.

Besides modes of derivation other restrictions that control the generative process
are given by fairness conditions. Informally, these conditions require that all com-
ponents of the system have approximately the same contribution on the common
sentential form. They have been introduced in [7], in order to control and to increase
the generative capacity of grammar systems. Formally they are defined as follows:

Definition 4 Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS, and
D: S = w0 ⇒=n1

Pi1
w1 ⇒=n2

Pi2
w2...⇒=nq

Pim
wq = w

be a derivation in f -mode, where Pij performs nj steps, 1 ≤ j ≤ m. For any
1 ≤ p ≤ r, we set

ψD(p) =
∑

ij=p

1 and ϕD(p) =
∑

ij=p

nj

4 L. Cojocaru

- the weak maximal difference between the contribution of two components involved

in the derivation D is defined as:
dw(D) = max{|ψD(i) − ψD(j)| |1 ≤ i, j ≤ r},

- the strong maximal difference between the contribution of two components is:
ds(D) = max{|ϕD(i) − ϕD(j)| |1 ≤ i, j ≤ r}.

Let u ∈ {w, s}, x ∈ (N ∪ T)∗, f ∈M and
du(x, f) = min{du(D)| where D is a derivation of x in f -mode},

for a fixed natural number q ≥ 0,
- the weakly q-fair language generated by Γ in the f -mode is defined as:

Lf (Γ,w − q) = {x|x ∈ Lf (Γ) and dw(x, f) ≤ q}
- the strongly q-fair language generated by Γ in the f -mode as:

Lf (Γ, s− q) = {x|x ∈ Lf (Γ) and ds(x, f) ≤ q}.

For X ∈ {REG,LIN,CF} and f ∈ M , M = {t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1} we
denote by CDrX(f, w − q) and CDrX(f, s − q), r ≥ 1, the family of weakly and
strongly q-fair languages, respectively, generated by CDGS with r components, that
have regular, linear, and context-free components in the f -mode of derivation.

3 Communication versus protocols of collaboration

In this section a mathematical formalization of the communicational process per-
formed during the distributed generation of languages, for the case of CDGS, is pre-
sented. In order to investigate the communicational phenomenon that is going on
during the generative process, we propose a new kind of Szilard language, called com-

municational Szilard language, and two communication structures. The first struc-
ture is given by the communication graph of the CDGS, while the second structure,
called communicational protocol tree, depends on the protocol of collaboration be-
tween the system components, and it is strictly related to the structure of the com-
municational Szilard language. Another measure deals with the number of commu-
nicational steps spent during the computational process. We call it communication

complexity. We use these measures in order to divide the families of languages gener-
ated by these systems into classes of communication. Let Γ = (N, T, S,G1, . . . , Gr)
be a CDGS and M = {t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1}.

Definition 5 We say that two grammars Ga and Gb, a 6= b, communicate with
each other, during the generative process of a word w ∈ Lf(Γ), f ∈ M , if there
exists at least one nonterminal that appears on the right side of a production of Ga

and of the left side of a production of Gb, rewritten at least one time during the
derivational process in the f -mode. We call these nonterminals communicational

nonterminals. The rules through which the communication is performed, i.e. rules
that have on their right side at least one communicational nonterminal, are called
communicational rules.

Definition 6 Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS. The control word of
w, with respect to the system components applied in f -mode, f ∈ M , for a ter-
minal derivation: S = w0 ⇒f

Pi1
w1 ⇒f

Pi2
w2... ⇒f

Pim
wq = w is defined as

Communication Complexity Classes 5

γw = Pi1Pi2 ...Pim . The Szilard language associated to the derivation in the f -
mode, in Γ is: Sz(Γ, f) = {γw|w ∈ Lf(Γ), f ∈M}.

We denote by SZ(f) the family of Szilard languages Sz(Γ, f) for any grammar sys-
tem Γ , in the f -mode of derivation, f ∈M . For more properties of these languages
the reader is referred to [8].

Definition 7 Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS. The communicational

control word of w, that is a control word built with respect to the communicational
nonterminals used during a terminal derivation of the form S = w0 ⇒f

Pi1
w1 ⇒f

Pi2

w2... ⇒f
Pim

wq = w, in f -mode, f ∈ M , is defined as γc
w = P n1

i1 P
n2

i2 ...P
nq

im , where nj,
is the number of communicational nonterminals rewritten during the application of
rules of the component Pij , 1 ≤ j ≤ m, during a particular step of communication.
The communicational Szilard language associated to a terminal derivation in
the f -mode, in Γ is defined as:

Szc(Γ, f) = {γc
w|w ∈ Lf (Γ), f ∈M}.

We denote by SZC(f) the family of communicational Szilard languages Szc(Γ, f) for
any grammar system Γ , in f -mode of derivation. Note that in the case of grammar
systems with regular and linear components the languages Sz(Γ, f) and Szc(Γ, f)
are equal. Furthermore, the same property takes place in the case of CDGS with
non-linear context-free rules for which each communicational rule has only one com-
municational nonterminal. They can be different only in the case of grammar systems
that contain at least one non-linear communicational rule having on its left side at
least two communicational nonterminals activated in = k, ≥ k, where k ≥ 2, or t
mode of derivation.

Definition 8 The communication graph of a language Lf(Γ) generated by a
CD grammar system Γ in the f -mode of derivation, f ∈ M , is a directed graph
in which the vertices are labeled by the CDGS components that communicate with
each other. Each directed edge, from a node labeled by Ga to another node labeled
by Gb, a 6= b, corresponds to a communication step from the component Ga to
the component Gb, done during the derivational process, i.e., there exists at least
one nonterminal that appears on the right side of a production from Ga and of the
left side of a production from Gb, rewritten at least one time during the generative
process in the f -mode.

Definition 9 The communicational protocol tree attached to a word w ∈
Lf (Γ), f ∈ M is the derivation tree attached to the communicational control word
of w, i.e. γc

w, in the f -mode.

Note that the number of sons of a given node in the communicational protocol
tree depends on the type of the rule through which the communication is per-
formed. In the case of regular or linear rules, a grammar Ga communicates with
another grammar Gb through only one nonterminal, so that the corresponding pro-
tocol tree will be a simple tree (each node has only one son). In the case of non-linear

6 L. Cojocaru

context-free rules the number of sons equals the number of communicational non-
terminals from the right side of the communicational rule. Consequently, the shape
of the communicational protocol tree depends not only on modes of derivation, or
on the type of the rule. It depends also on the number of communicational nonter-
minals that exist on the right side of a communicational rule. Therefore, there can
be grammar systems with non-linear context-free rules for which each communica-
tional (context-free) rule has only one communicational nonterminal. In this case the
protocol tree will be a simple tree, too. The communicational protocol tree might
not be a simple tree, only in the case of CDGS for which there exists at least one
non-linear context-free rule that has, on its right side, at least two communicational
nonterminals.

Next a communication complexity measure that represents the number of com-
munications between different components, during the generative process, by using a
minimal number of communicational nonterminals in a specified mode of derivation,
is defined. Let Γ = (N, T, S, P1, . . . , Pr) be a CDGS, and D a derivation in Γ , such
that D : S ⇒f

Pi1
w1 ⇒f

Pi2
w2...⇒f

Pim
wq = w.

Definition 10 We denote by Com(D) =
∑r

p=1 ψD(p), where ψD(p) =
∑

ij=p1, the
number of communication steps used during the derivation D.
The communication complexity of a word w, w ∈ Lf(Γ) is defined as:

Com(w, Γ) = min{Com(D)|D : S ⇒∗ w}.
The communication complexity of Γ over all words of length n is:

ComΓ (n) = sup{Com(w, Γ)|w ∈ Lf (Γ), |w| = n}.
The class of languages that can be generated within communication g by
a CDGS, is defined as: COM(g) =

⋃
Γ{Lf(Γ)|ComΓ = O(g)}.

Let Γ be a CDGS, and D be a (minimal) terminal derivation of w, where
w ∈ Lf (Γ), f ∈ M , M = {t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1}. We denote by |γw(D)|
and |γc

w(D)| the length of the derivation of the control word |γw|, and of the com-
municational control word |γc

w|, associated to w, respectively. In terms of trees, the
length of a derivation represents the number of internal nodes of the derivation tree.
Informally, we use the Szilard language to control the number of communication
steps performed during the generative process, while the communicational Szilard
language is used to control the growth of the length of the generated word between
two communication steps done during the derivational process. Formally, the con-
nection between these two languages is presented in the next theorem, proved in
[1].

Theorem 1 For each grammar system Γ that has only useful components1 and
w ∈ Lf (Γ), we have:
1. |γw(D)| = Com(w, Γ),
2. there exist two positive constants a and b such that a|γc

w(D)| ≤ |w| ≤ b|γc
w(D)|.

1 Each component brings contributions on the sentential form, directly through terminal symbols (in the
case of regular or linear rules), or indirectly through non-terminal symbols (in the case of context-free
components).

Communication Complexity Classes 7

4 Trades-off between time, space, and communication

complexity

4.1 CDGS with regular and linear components

Theorem 2 For each grammar system CDGSrX, with X ∈ {REG,LIN} and
r ≥ 2, there exists a CDGS with only one component that will generate the same
language, independently of modes of derivation.

Corollary 1 CD∗X = X, forX ∈ {REG,LIN}, independently of modes of deriva-
tion.

Corollary 2 The communication complexity of CD∗X(f), X ∈ {REG,LIN}, f ∈
{t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1} is 0.

Corollary 3 LIN ⊆ COM(0).

It is well known that the communication complexity divides languages into small
complexity classes. The above results show that the communicational process of
CDGS is a lazy one. So that the process of communication in these systems is not so
powerful as it has been proved to be for the case of PCGS, where several hierarchies
of very (small) complexity classes have been found. Due to the fact that fairness
conditions increase the generative power of a grammar system, the above theorem
and corollaries do not hold for the case of q-fair languages. A CDGS with arbitrary
number of components cannot be ”compressed” into a single grammar that generates
the same q-fair language, by preserving the mode of derivation, too. Even for these
types of languages in the case of a constant communication, the class of weakly q-fair
languages generated by CDGS with regular or linear components coincides with the
languages generated by the same grammar without any weak fairness condition, so
that due to Corollary1 we have:

Corollary 4 CDr,cX(f, w− q) ⊆ COM(0) and CDr,cX(f, s− q) ⊆ COM(c) where
X ∈ {REG,LIN} and c is the constant number of communicational steps performed
during the derivation.

Corollary 5 The communication complexity of weakly/strongly q-fair languages,
Lf (Γ,w− q)/Lf (Γ, s− q), f ∈ {t}∪{≤ k,= k,≥ k|k ≥ 1}, generated by CDGS∗X,
X ∈ {REG,LIN}, for which the communication graph is a tree or a dag is 0/con-
stant.

Nevertheless the above results do not hold for the case of strongly q-fair lan-
guages generated by CDGS with non-constant communication. Next we show that
if the communication is not constant then the communication complexity of q-fair
languages cannot be more than linear.

Theorem 3 CDrX(f, w − q) ∪ CDrX(f, s− q) ∈ COM(n).

8 L. Cojocaru

Proof. In the case of grammar systems with regular and linear rules the Szilard
and the communicational Szilard languages are equal. With respect to Theorem 1,
for any word w that belongs to the weakly or strongly q-fair language, we have:
|γw(D)| = Com(w, Γ) = |γc

w(D)| , where D is a minimal derivation of w. Hence,
sup{|γw(D)|| w ∈ Lf (Γ, u− q), |w| = n} = sup{Com(w, Γ)| w ∈ Lf(Γ, u− q), |w| =
n} = ComΓ (n) = sup{|γc

w(D)||w ∈ Lf(Γ, u−q), |w| = n} = O(n), where u ∈ {w, s}.
2

In [1] and [2] we proved that fairness conditions can be checked in linear time
and space by a multitape Turing machine, and in linear space and quadratic time
by one tape Turing machine, see Theorem 4 and 5. For the definitions of one tape
or multitape Turing machine, the reader is referred to [19].

Theorem 4 Let Γ be a CDGSrX, for X ∈ {REG,LIN}. The weakly q-fair lan-
guage generated by Γ , i.e., Lf (Γ,w − q), can be accepted by a nondeterministic
Turing machine with r + 1 tapes in linear time and space. Moreover the next rela-
tion hold:

SpaceT (n) ∈ O(ComΓ), T imeT ∈ O(ComΓ).

Theorem 5 Let Γ be a CDGSrX, for X ∈ {REG,LIN}. The weakly q-fair lan-
guage generated by Γ , i.e. Lf (Γ,w − q), can be accepted by a nondeterministic
Turing machine with one tape in linear space and quadratic time, i.e.

SpaceT ∈ O(n), T imeT ∈ O(n2).

4.2 CDGS with context-free components

Results related to the generative power of CDGS with arbitrarily components and
context-free rules can be found in [5]. In the next theorem we succinctly present
them2.

Theorem 6 1. CD∗CF (f) = CF , for f ∈ {∗,= 1,≥ 1} ∪ {≤ k|k ≥ 1},
2. CD3CF (t) = CD∗CF (t) = ETOL,
3. CD1CF (f1) ⊂ CD2CF (f1) ⊆ CDrCF (f1) ⊆ MAT , where
r ≥ 3 and f1 ∈ {= k,≥ k|k ≥ 2}.

Corollary 6 CF ⊆ COM(0); CDr,cCF (f, w − q) ∈ COM(0), where f ∈ {∗,=
1,≥ 1} ∪ {≤ k|k ≥ 1}, and c is the constant number of communication steps spent
during the computation.

Corollary 7 The communication complexity of Lf(Γ,w−q), f ∈ {∗,= 1,≥ 1}∪{≤
k|k ≥ 1} generated by CDGS∗CF , for which the communication graph is a tree or
a dag is 0.

Corollary 8 CD∗LIN(f)∪CD∗CF (f1)∪CD∗,cLIN/CF (f/f1, w−q) ⊂ COM(0),
CD∗,cCF (f2, w − q) ∪ CD∗,cX(f, s − q) ⊂ COM(c), X ∈ {REG,LIN,CF}, for
f ∈ {t, ∗} ∪ {≤ k,= k,≥ k|k ≥ 1}, f1 ∈ {∗,= 1,≥ 1} ∪ {≤ k|k ≥ 1} and
f2 ∈ {t} ∪ {= k,≥ k|k ≥ 1}.
2 For the definition of ETOL and MAT languages the reader is referred to [18].

Communication Complexity Classes 9

For the case of non-constant communication we have.

Theorem 7 For each grammar system Γ with context-free components, and w ∈
Lf (Γ), there exists a bijection h : N → N such that |γc

w(D)| = h(|γw(D)|), where
D is the the (minimal) terminal derivation of w. γw(D) and γc

w(D) are the length
of the derivation of the control word γw, and of the communicational control word
γc

w, associated to w, respectively.

Proof. Let γc
w = P n1

i1 P
n2

i2 ...P
nk

ik
be the communicational control word attached to w.

The derivation tree of this word is the communicational protocol tree attached to w.
The number of sons at each level in this tree depends recursively on the number of
sons of the previous levels, because communicational rules from different components
can be applied recursively, by using each time the same type of rules, that increases
(linearly or exponentially) the number of communicational nonterminals used during
the derivation. Consequently, at the end of the generative process the sum n1 +n2 +
... + nk, will be a linear, polynomial or exponential function that depends on the
length of the generated string. 2

Next we describe several situations in which the function h is linear, polynomial or
exponential.

In the case of CDGS for which all communicational rules contain only one com-
municational nonterminal, or in the case of CDGS that have at least one com-
municational rule with at least two communicational nonterminals, activated in
= 1,≥ 1, ∗,≤ k modes of derivation, the function h is the identity function (because
the Szilard language and the communicational Szilard language are equal).

In the case of CDGS that have at least one communicational rule with at least
two communicational nonterminals, each of these rules being recursively activated
by only one communicational nonterminal, in the t mode of derivation or = k, ≥ k
(k ≥ 2) mode of derivation, the function h is a polynomial function.

In the case of CDGS for which all communicational rules contain at least two
communicational nonterminals, each of the communicational nonterminals being
recursively activated by the same rule during the generative process the function
h will be an exponential function. This is the case of t modes of derivation, for
instance.

To illustrate the above remarks, next we briefly present several examples that
deal with these situations.

Example 1 Let Γ1 = ({S, S ′, A, A′, B, B′}, {a, b, c}, S, P1, P2, P3) be a CDGS
with the components: P1 = {S → S ′, S ′ → AB,B′ → B},

P2 = {A→ aS ′b, B → cB′},
P3 = {A→ ab, B → c}.

The language generated by Γ1, in the f mode of derivation, where f ∈ {= 1,≥
1, ∗} is: Lf (Γ1) = {anbcm1bcm2bcmn |n ≥ 1, mi ≥ 1, 1 ≤ i ≤ n}. The Szilard and the
communicational Szilard languages are Sz(Γ1) = Sz(Γ1) =
{P1(P2P1)

nP3(P2P1)
m1−1P3(P2P1)

m2−1P3...(P2P1)
mn−1P3|n ≥ 1, mi ≥ 1, 1 ≤ i ≤ n}.

In this case h(x) = x, i.e. the identity function.

10 L. Cojocaru

The language generated by Γ1, in the f mode of derivation, where f ∈ {t,=
2,≥ 2} is: Lf(Γ1) = {anbcbc2...bcn−1|n ≥ 1}. The Szilard language is Sz(Γ1) =
{(P1P2)

n−1P1P3|n ≥ 1}, while the communicational Szilard language is Szc(Γ1) =
{P1P

2
2P

2
1P

3
2P

3
1 ...P

n−1
2 P n−1

1 P n
3 |n ≥ 1}. For a certain word w ∈ Lf(Γ1) the corre-

sponding control word γw from Sz(Γ1) has the length of the derivation |γw(D)| =
n+ 1, while the length of the derivation of γc

w from Szc(Γ1) is |γc
w(D)| = n2 − 1. So

that h(x) = x2 − 1.

Example 2 Let Γ2 = ({S, S ′, A, A′, B, B′}, {a}, S, P1, P2, P3) be a CDGS
with the components: P1 = {S → S ′, S ′ → AB},

P2 = {A→ aS ′a, B → aS ′},
P3 = {A→ aa, B → a}.

The language generated by Γ2, in the f mode of derivation, where f ∈ {t,= 2,≥
2} is: Lf (Γ2) = {a3(2n−1)|n ≥ 1}. The Szilard language is Sz(Γ2) = {P1(P2P1)

n−1P3 |
n ≥ 1}, while the communicational Szilard language is
Szc(Γ2) = {P1(P

21

2 P 21

1)(P 22

2 P 22

1)...(P 2n−1

2 P 2n−1

1)P 2n

3 |n ≥ 1}.
For a certain word w ∈ Lf (Γ2) the corresponding control word γw from Sz(Γ1) has
the length of the derivation |γw(D)| = 2n, while the length of the derivation of the
communicational control word γc

w ∈ Szc(Γ1) is |γc
w(D)| = 2(20+21+22+...+2n−1)+

2n − 1 = 3(2n − 1), so that h(x) = 3(2x/2 − 1).

In the sequel we will refer to the function h as the �characterization function of
the communicational Szilard language Szc(Γ, f). The next theorem shows how this
function can be used to obtain communication complexity classes for the case of
non-constant communication.

Theorem 8 The class of languages generated by CDGSrCF in f -mode of deriva-
tion, f ∈ {t} ∪ {= k,≥ k|k ≥ 2}, for which the characterization function of the
Szc(Γ, f) language is linear, polynomial of rank p or exponential with the base p,
has the communication complexity in O(n), O(p

√
n), or O(logpn), respectively.

Proof. With respect to Theorem 1, for any word w ∈ Lf (Γ), we have
|γw(D)| = Com(w, Γ) and |γc

w(D)| = O(|w|).
With respect to Theorem 7, there exists a generative bijection h : N → N , such
that |γc

w(D)| = h(|γw(D)|). Consequently, for a word w ∈ Lf(Γ) of length n we
have O(n) = h(ComΓ (n)), so that ComΓ (n) = h−1(O(n)). Therefore, if h is a linear
function then ComΓ (n) ∈ O(n), in the case that h is a polynomial function of rank
p, then ComΓ (n) ∈ O(p

√
n), while in the case that h is an exponential function of

base p, then ComΓ (n) ∈ O(logpn). 2

As a direct consequence of Theorem 6 and Theorem 8, we have :

Corollary 9 ETOL and MAT languages can be generated withinO(p
√
n) andO(logpn)

communication complexity.

Furthermore, next results have been proved in [1] and [2].

Communication Complexity Classes 11

Theorem 9 The class of languages generated by a CDGSrCF in f -mode of deriva-
tion, f ∈ {t} ∪ {= k,≥ k|k ≥ 2}, are generated by a nondeterministic Turing
machine, with r + 1 tapes, within SpaceT ∈ O(ComΓ) and T imeT ∈ Θ(n).

Corollary 10 The class of languages generated by a CDGSrCF in f -mode of deriva-
tion, f ∈ {t} ∪ {= k,≥ k|k ≥ 2} for which the characterization function of the
Szc(Γ, f) is linear, polynomial of rank p, or exponential with the base k, are rec-
ognizable by a nondeterministic Turing machine, with r + 1 tapes, within SpaceT

O(n), O(p
√
n), or O(logpn), respectively, and in T imeT ∈ Θ(n).

Theorem 10 The class of q-fair languages generated by a CDGSrCF in f -mode
of derivation, f ∈ {t} ∪ {= k,≥ k|k ≥ 1} for which the characterization function
of Szc(Γ, f) is linear, polynomial of rank p, or exponential with the base p, are
recognizable by a (k + 1)-tape nondeterministic Turing machine in SpaceT ∈ O(n),
O(p

√
n), or O(logpn), respectively, and T imeT ∈ Θ(n).

5 Conclusion

In this paper several results obtained so far in the domain of the communication
complexity of distributed generation of languages have been presented. We conclude
that in the case of CDGS with regular and linear components the communication be-
tween the system components can be neglected, it has no efficiency in building com-
munication complexity classes. This is not the case for CDGS with regular or linear
components, with fairness conditions. In the case of non-constant communication,
weakly and strongly q-fair languages, requires linear communication complexity. The
communication fails too, in the case of languages generated by CDGS with context-
free components, in the f mode of derivation, f ∈ {∗,= 1,≥ 1} ∪ {≤ k|k ≥ 1},
or in the case of weakly q-fair languages generated by CDGS with constant com-
munication. The communication is preserved in the case of CDGS with context-
free rules, non-constant communication, weakly and strongly q-fair condition and
in f ∈ {t} ∪ {= k,≥ k|k ≥ 1} mode of derivation. Moreover, in this last situa-
tion several communication complexity classes have been reached depending on the
characterization function of the communicational Szilard language associated to a
CDGS.

References

1. L. Cojocaru. On the Time, Space, and Communication Complexity of Cooperating Distributed Gram-
mar Systems. In Proceedings of Grammar Systems Week 2004, E. Csuhaj-Varjú and Gy. Vaszil Ed.,
pp. 101-113, Budapest, Hungary, July 5-9, 2004.

2. L. Cojocaru. On the Time, Space, and Communication Complexity of q-fair Languages. In Prepro-
ceedings of the 6th Descriptional Complexity of Formal Systems Workshop, DCFS 2004, pp. 154-163,
London, Ontario, Canada, July 26-28, 2004.

3. E. Csuhaj-Varjú, J. Dassow. On cooperating/distributed grammar systems. Journal of Information
Processing and Cybernetics EIK 26, 49-63, 1990.

4. E. Csuhaj-Varjú, J. Kelemen. Cooperating grammar systems: a syntactical framework for the black-
board model of problem solving. In Proceedings AICSR’89, I. Plander, Ed. North Holland, Amsterdam,
121-127, 1989.

12 L. Cojocaru

5. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A Grammatical Approach to
Distribution and Cooperation, Gordon and Breach, 1994.

6. J. Dassow, Gh. Păun, G. Rozenberg, Grammar Systems. Handbook of Formal Languages, Volume II,
Chapter 4, edited by G. Rozenberg and A. Salomaa, Springer, Berlin, 155-213, 1997.

7. J. Dassow, V. Mitrana. Fairness in Grammar Systems. Acta Cybernetica 12, 331-345, 1996.
8. J. Dassow, V. Mitrana, Gh. Păun. Szilard Languages Associated to Cooperating Distributed Grammar

Systems. Studii si Cercetari Matematice, 45, 403-413, 1993.
9. M. Gheorghe, Gh. Păun. Further remarks on cooperating distributed grammar system. Bull. Math.

Soc. Sci. Math. Roumanie. 34(82), 232- 245, 1990.
10. J. Hromkovič. Relation between Chomsky hierarchy and communication complexity hierarchy. Acta

Mathematica University Comenian. 48-49, 311-317, 1988.
11. J. Hromkovič, J. Kari, L. Kari, D. Pardubská. Two lower bounds on distributive generation of lan-

guages. Fundamenta Informatica, 25, 271-284, 1996.
12. J. Hromkovič, J. Kari, L. Kari, Some hierarchies for the communication complexity measures of coop-

erating grammar systems. Theoretical Computer Science, 127, 123-147, 1994.
13. D. Pardubská, On the power of communication structure for distributed generation of languages. In

Developments in Language Theory at the Crossroads of Mathematics, Computer Science and Biology,
Editors G. Rozenberg and A. Salomaa, Turku, Finland, 12-15, July, 1993.

14. D. Pardubská, The Communication complexity hierarchy of parallel parallel communicating systems.
IMYC’92, 1992.

15. J. Hromkovik. Communication Complexity and Parallel Computing. Springer-Verlag Berlin Heidelberg,
1997.

16. G. Jiràskovà. Chomsky Hierarchy and Communication Complexity. Journal of Information Processing
and Cybernetics: EIK 25, 4, 157-164.

17. E. Kushilevitz, N. Nisan. Communication Complexity. Cambridge University Press, 1997.
18. Handbook of Formal Languages, Vol. 1, Words, Language, Grammar. G. Rozenberg, A. Salomaa Ed.,

Springer-Verlag Berlin Heidelberg, 1997.
19. I. Sudkamp. Languages and Machines. An Introduction to the Theory of Computer Science. Addison-

Wesley Ed., 1997.
20. A. C. Yao. Some complexity questions related to distributed computing. In Proceedings of the 11th

Annual ACM Symposium on Theory of Computing (STOC), 209-213, 1979.

A Full Range of Continuum-Many

Non-Context-free Languages with Strong

Iteration

Sándor Horváth and Manfred Kudlek

1 Department of Computer Science, Eötvös Loránd University,
Budapest, Hungary

email : horvath@cs.elte.hu
2 Fachbereich Informatik, Universität Hamburg, Germany

email : kudlek@informatik.uni-hamburg.de

Abstract. We show that the cardinality of languages fulfilling all strong iteration lemmata
for context-free languages, and having either an exponential, polynomial, or super-polynomial
but sub-exponential density, is the cardinality of the continuum. In the last case we could
prove this only for non-erasing iteration so far.

1 Introduction

In [1, 3, 4] it has been shown that there are continuously many languages fulfill-
ing various iteration lemmata for context-free languages. However, languages with
exponential density were given only. Exponential density is maximal. It is interest-
ing to investigate also the cardinality of languages fulfilling iteration lemmata for
context-free languages for polynomial and super-polynomial (but sub-exponential)
densities. The question can be put also for polynomials of arbitrary but fixed degree
k (there exist recursively enumerably many), as well as for arbitrary but fixed
super-polynomial functions (there exist continuously many).

2 Definitions

Let N = {0, 1, 2, · · ·} denote the set of non-negative natural numbers. Let X be any
alphabet, and L ⊆ X∗ a language over X.

The density νL : X∗ −→ N is defined by νL(s) = |L ∩ Xs| for s ∈ N.

In the sequel we shall consider only the alphabet X = {a, b} since other alphabets
can easily be encoded in binary.

Consider an arbitrary set of numbers H ⊆ N.

Strong iteration lemmata for context-free languages are such with distinguished

and excluded positions [2], more exactly as follows.
Let δ(z) denote the number of distinguished positions in a word z, and ε(z) the

number of excluded positions in z. Note that an excluded position might also be a
distinguished one. Then the following strong iteration lemmata hold.

Proposition 1 : (Generalized Bader Moura Lemma)

2 S. Horváth and M. Kudlek

Let L be a context-free language. Then there exists an integer n = n(L) ≥ 2,
depending only on the language L, such that for any z ∈ L with δ(z) > nε(z)+1 there
exist u, v, w, x, y such that z = uvwxy with

(1) ε(vx) = 0 and
either δ(u) > 0, δ(v) > 0, δ(w) > 0
or δ(w) > 0, δ(x) > 0, δ(y) > 0,

(2) δ(vwx) ≤ nε(w)+1

(3) ∀i ≥ 0 : uviwxiy ∈ L.

Proposition 2 : Let L be a context-free language. Then there exists an integer
n = n(L) ≥ 2, depending only on the language L, such that for any z ∈ L with
δ(z) > n · max(ε(z), 1) there exist u, v, w, x, y such that z = uvwxy with

(1) ε(vx) = 0 and
either δ(u) > 0, δ(v) > 0, δ(w) > 0
or δ(w) > 0, δ(x) > 0, δ(y) > 0

(2) δ(vwx) ≤ n · (ε(w) + 1)
(3) ∀i ≥ 0 : uviwxiy ∈ L.

2.1 Exponential Density

Define L′
H = {(ab)n|n ∈ H}, L = {a, b}∗ · {aa, bb} · {a, b}∗, and LH = L′

H ∪ L.
Then the density of LH is νLH

(s) = Ω(2s),
i.e. ∃c > 0 ∃s0 ∈ N ∀s ≥ s0 : νLH

(s) ≥ c · 2s.
This follows immediately from |{w ∈ L | |w| = s}| ≥ 1

4
2s = 2s−2 for s ≥ 2.

To fulfill iteration lemmata, e.g. with distinguished positions, consider some z =
z0c1z1c2 · · · cmzm ∈ LH with m ≥ 1, |z| long enough, zj 6= λ for 1 ≤ j ≤ m, and
cj ∈ {a, b}. There will always be sufficiently many distinguished positions among
the cj.

If z ∈ L′
H then erasing and iteration of a distinguished position gives z ′ ∈ L since

either aa or bb is produced.
For z ∈ L the same holds, for in that case a distinguished position not in the

part {aa, bb} can be chosen.
H1 6= H2 implies LH1

6= LH2
, and conversely.

Clearly, if H1 6= H2 then L′
H1

6= L′
H2

, and therefore LH1
6= LH2

.
On the other hand, if LH1

6= LH2
then L′

H1
6= L′

H2
, and therefore H1 6= H2.

Therefore we conclude

Theorem 1 : The cardinality of languages with exponential density, fulfilling all
strong iteration lemmata for context-free languages, is the cardinality of the contin-
uum, 2ℵ0 .

2.2 Polynomial Density

Consider two linearly independent vectors, e.g. 〈1, 2〉, 〈2, 1〉, and an arbitrary set
H ⊆ N. Define the language

A Full Range of Continuum-Many Non-Context-free Languages with Strong Iteration 3

LH = {abnab2na | n ∈ N} ∪ {abk+2mabm+2ka | k ∈ H, m ∈ N \ {0}}.
Note that the two parts of LH are disjoint.

LH represents the set N · {〈1, 2〉} ∪ (H · {〈1, 2〉}+ (N \ {0}) · {〈2, 1〉}).
Since the two vectors 〈1, 2〉, 〈2, 1〉 are linearly independent, any element 〈p, q〉

∈ {k1〈1, 2〉+k2〈2, 1〉 | k1, k2 ∈ N} has a unique representation of the form k1〈1, 2〉+
k2〈2, 1〉.

Therefore, if H1 6= H2 then there is e.g. 〈k1, k2〉 ∈ H2 \H1 with unique represen-
tation. But then abk1+2k2abk2+2k1 ∈ LH2

\ LH1
.

Thus H1 6= H2 implies LH1
6= LH2

, and conversely.

It is obvious that the density is at most linear :

νLH
(s) = O(s), i.e. νLH

(s) ≤ c·s for some c > 0. This follows from |z| = 3·(n+1)
or |z| = 3 · (k + m + 1) for z ∈ LH , and that there are only s possibilities 〈k, m〉
with s = 3 · (k + m + 1), and only one possibility with s = 3 · (n + 1).

Let L be an arbitrary language with density νL at least linear. Define the language
L′

H = {a} · L ∪ {b} · LH . L′
H has a density νL′

H
of the same order as νL.

Furthermore, {a}·L∩{b}·LH = ∅, and |az|ab ≤ |z|ab +1, |az|ba = |z|ba for z ∈ L,
and |bz|ab = |z|ab, |bz|ba = |z|ba + 1 for z ∈ LH .

Therefore also L′
H1

6= L′
H2

iff H1 6= H2.

In the sequel we shall define languages Ld with polynomial densities νLd
. of

arbitrary degree d.

Let Ld = {z ∈ {a, b}+ | |z|ab + |z|ba ≤ d}. Then it is easily seen that the density
is

νLd
(s) = 2 ·

d
∑

j=0

(

s − 1
j

)

for s > 0. This is a polynomial in s of degree d.

Now, for arbitrary but fixed d, consider the language Ld instead of L, and LHd =
{a} · Ld ∪ {b} · LH .

To fulfill iteration lemmata, e.g. with distinguished positions, consider some z =
z0c1z1c2 · · · cmzm ∈ LHd with m ≥ 1, |z| long enough, zj 6= λ for 0 ≤ j ≤ m, and
cj ∈ {a, b}. There will always be sufficiently many distinguished positions among
the cj.

If z ∈ {a}·Ld then erasing or iteration does not increase the number of subwords
ab and ba, yielding z′ ∈ {a} · Ld.

If z ∈ {b} · LH then there are sufficiently many distinguished positions b in z,
either in the second block or in the third.

If z ∈ {babnab2na | n ∈ N} then erase or iterate with (b, b2) in the first and
second block of b, yielding z′ ∈ {babnab2na | n ∈ N}.

If z ∈ {babk+2mabm+2ka | k ∈ H, m ∈ N \ {0}} then iterating with (b2, b) yields
z′ ∈ {babk+2mabm+2ka | k ∈ H, m ∈ N \ {0}}. Erasing with (b2, b) either yields
z′ ∈ {babk+2mabm+2ka | k ∈ H, m ∈ N \ {0}} or z′ ∈ {babnab2na | n ∈ N}.

Thus we get

4 S. Horváth and M. Kudlek

Theorem 2 : The cardinality of languages with polynomial density, fulfilling all
strong iteration lemmata for context-free languages, is the cardinality of the contin-
uum, 2ℵ0 .

2.3 Super-polynomial and Sub-exponential Density

In the following density functions being super-polynomial and sub-exponential will
be considered. The function log stands for logarithm with base 2.

Such a function e.g. is slog(s), since

lim
s→∞

slog(s)

sd
= lim

s→∞
slog(s)−d = lim

s→∞
2log(s)(log(s)−d) = ∞

and lim
s→∞

2s

slog(s)
= lim

s→∞
2s−(log(s))2 = ∞ .

This follows from

lim
s→∞

(log(s)(log(s)− d) = ∞ , lim
s→∞

(s − (log(s))2) = ∞ .

Now consider the functions f, g given by f(s) = blog(s)c and g(s) = dlog(s)e.
Since log(s) is monotone in s, with lims→∞log(s) = ∞, both functions are monotone
step functions, with the property that their values are increased exactly by 1 at 2i

(i ≥ 1).
Clearly, log(s) − 1 ≤ f(s) ≤ g(s) ≤ log(s) + 1.
Let K ⊆ N. Define new step functions fK, gK by
fK(s) = f − 1 for 2i ≤ s < 2i+1 if i ∈ K, fK(s) = i for 2i ≤ s < 2i+1 if i 6∈ K,

and gK(s) = i+2 for 2i ≤ s < 2i+1 if i ∈ K, gK(s) = i+1 for 2i ≤ s < 2i+1 if i 6∈ K.
By this definition the number of functions fK, gK has the cardinality of the

continuum, 2ℵ0 .
Obviously, all functions fK, gK are monotone, with lims→∞ fK(s) = ∞, and

fulfilling log(s) − 2 ≤ fK(s) ≤ gK(s) ≤ log(s) + 2.

Other super-polynomial and sub-exponential functions are, e.g.

s
√

s, ss
1

k , logks, (log(s))k with log1(s) = log(s), logk+1(s) = log(logk(s)), and
k ≥ 1.

For these analogous step functions can be defined.

Now consider the language LH defined in the poynomial case. It has linear den-
sity. Instead of Ld consider languages

Lf = {z ∈ {a, b}∗ | |z|ab + |z|ba ≤ fK(|z|)} for some K ⊆ N, e.g. K = ∅.
Then the density is

νLf
(s) = 2 ·

f(s)
∑

j=0

(

s − 1
j

)

.

Since

(

s − k

k

)k

≤
(s − k)k

k!
≤

k
∑

j=0

1

j!
(s − j)j ≤

k
∑

j=0

(

s − 1
j

)

A Full Range of Continuum-Many Non-Context-free Languages with Strong Iteration 5

and
k
∑

j=0

(

s − 1
j

)

≤
k
∑

j=0

1

k!
(s − 1)j ≤ (s − 1)k ·

k
∑

j=0

1

j!
≤ 3 · (s − 1)k

it follows that 2 ·
(

s−f(s)
f(s)

)f(s)
≤ νLf

(s) ≤ 6 · (s − 1)f(s).

Now

lim
s→∞

2 ·
(

s−f(s)
f(s)

)f(s)

sd
≥ 2 · lim

s→∞

(

s−f(s)
f(s)

)f(s)

sf(s)
= 2 · lim

s→∞

(

s − f(s)

sf(s)

)f(s)

= 2 · lim
s→∞

(

s

f(s)
−

f(s)

s

)f(s)

= ∞

since

lim
s→∞

f(s) = ∞ , lim
s→∞

s

f(s)
= ∞ , lim

s→∞

f(s)

s
= 0 ,

and

lim
s→∞

2s

6 · (s − 1)f(s)
≥ lim

s→∞

1

6
·

2s

sf(s)
= lim

s→∞

1

6
·

2s

2log(s)f(s)

≥ lim
s→∞

1

6
·

2s

2log(s)(log(s)+1)
= lim

s→∞

1

6
· 2s−log(s)−(log(s))2 = ∞ ,

since

lim
s→∞

(s − log(s) − (log(s))2) = ∞ .

Therefore, νLf
is super-polynomial and sub-exponential.

Now define L′
H = {a} · Lf ∪ {b} · LH . L′

H has the same density as Lf . Then the
same arguments as in the case for polynomial density can be applied, except that
erasing may yield words z 6∈ L′

H .

Theorem 3 : The cardinality of languages with super-polynomial and sub-exponential
density, fulfilling all strong iteration lemmata for context-free languages, but without
erasing, is the cardinality of the continuum, 2ℵ0.

Furthermore, for continuum many such functions there exist continuum many
languages, fulfilling all strong iteration lemmata for context-free languages, but with-
out erasing.

6 S. Horváth and M. Kudlek

References

1. L. Boasson, S. Horváth : On Languages Satisfying Ogden’s Lemma. RAIRO Informatique Théorique,
12, pp. 201-202, 1978.

2. P. Dömösi, M. Kudlek : Strong Iteration Lemmata for Regular, Linear, Context-free, and Linear In-

dexed Languages. LNCS 1684, pp 226-233, 1999.
3. S. Horváth : The Family of Languages Satisfying Bar-Hillel’s Lemma. RAIRO Informatique Théorique,

12, pp. 193-199, 1978.
4. S. Horváth : A Comparison of Iteration Conditions on Formal Languages. In : Proc. Colloq. Algebra,

Combinatorics and Logic in Comp. Sci. (Győr, Hungary, 1983), Colloq. Math. Soc. J. Bolyai. 42, J.
Bolyai Math. Soc., Budapest, and North-Holland, Amsterdam, pp. 193-199, 1986.

On Black Hole Languages

Manfred Kudlek and Roxana Melinte

1 Fachbereich Informatik, Universität Hamburg
email : kudlek@informatik.uni-hamburg.de

2 Fachbereich Informatik, Universität Hamburg
email : melinte@informatik.uni-hamburg.de

Abstract. A new method of generating languages from rewriting systems, inspired by home
states of reachability sets of Petri nets, is introduced. The generative power of, and decid-
ability problems for various rewriting systems are investigated.

1 Introduction

The concept of home state has been introduced for Petri nets in [3]. A home state
or home marking is a marking reachable from any reachable marking. A home space
is a set of reachable markings such that from any reachable marking a marking in
the home space can be reached (see also [8, 2, 7]).

We generalize this idea to arbitrary binary rewriting systems with reachability
interpreted as derivability, considering the set of all home states, and introduc-
ing in this way a new method to generate languages from rewriting systems. Thus
we consider Right Regular, Semi-Thue, Normal, and Lindenmayer systems as word
rewriting, as well as Multiset rewriting systems being equivalent to Vector Addition
systems. The latter are just another way to describe the reachability sets of P/T
nets where the basic operation is addition instead of catenation.

Such home markings are unavoidable objects, with respect to derivation. We call
the unique set of all such objects a black hole since the term unavoidable is already
used in another sense.

In this article we investigate the generative power of this new generative method
for different rewriting systems, the relation of corresponding language families to
other ones, as well as decidability problems related to them, like membership, empti-
ness, finiteness, inclusion, and equivalence.

2 Definitions

In the sequel we consider various rewriting systems and use a uniform notation
to classify them. REG,CF,CS,RE denote the families of regular, context-free,
context-sensitive, and recursively enumerable languages, respectively. For all basic
definitions of formal languages see [10]. Letters u, v stand for variables. taking values
from Σ∗.

A (Right) Regular System is a rewriting system G = (Σ, {ω}, P) with produc-
tions of the form αu→βu, (α, β) ∈ Σ+ ×Σ∗. Such a system is denoted by IR where
I means interaction. If |α| ≤ |β| holds for all productions, then the system is called
monotone or propagating, denoted by the letter P , giving a system PIR. If |α| = 1

for all productions, then the system is called context-independent or context-free and
is denoted by O, giving systems OR or POR.

Corresponding families of sentential form languages are denoted by POR,OR,

IR,PIR. Note that IR ⊂ REG holds.

A Semi-Thue System is a rewriting system G = (Σ, {ω}, P) with productions
of the form uαv→uβv, (α, β) ∈ Σ+ × Σ∗. Analogous to Right Regular systems
notations POS, OS, PIS, IS are introduced, as well as for corresponding language
families POS,OS,PIS, IS. Note that OS ⊂ CF and IS ⊂ RE hold.

A (context-independent) Lindenmayer System is a rewriting system G = (Σ, {ω},
P) with productions (a, α) ∈ Σ×Σ∗. A rewriting step x = a1 · · ·an→β1 · · ·βn = y is
defined by (ai, βi) ∈ P for 1 ≤ i ≤ n. Analogous to Right Regular systems notations
POL, OL are introduced, as well as for corresponding language families POL,OL.

A (context-independent) Table Lindenmayer System is a rewriting system of
the form G = (Σ, {ω}, T) where T = {P1, · · · , Pk} is the set of tables, such that each
of Gj = (Σ, {ω}, Pj) is an OL system. A rewriting step x = a1 · · ·an→β1 · · ·βn = y

is defined by (ai, βi) ∈ Pj for 1 ≤ i ≤ n and some 1 ≤ j ≤ k (i. e. one table is used
only). In this case notations PTOL, TOL are introduced, and also PTOL,TOL.
For more information on L systems see [9].

Multiset rewriting systems are defined in the following way (see also [4–6]). A
multiset µ is just a vector µ = (m1, · · · , ms) ∈ IN s.

If µ = (m1, · · · , ms), µ′ = (m′

1, · · · , m
′

s) then µ + µ′ = (m1 + m′

1, · · · , ms + m′

s),
µ v µ′ iff mj ≤ m′

j for 1 ≤ j ≤ s. If µ v µ′ then µ′ − µ = (m′

1 − m1, · · · , m
′

s − ms).
The length or norm of a multiset µ is defined by |µ| =

∑s
j=1 mj.

Vector addition plays the role of word catenation. Note that the set of all multi-
sets is a commutative monoid since addition is commutative, with neutral element
0 = (0, · · · , 0).

Multisets can be represented by words over an alphabet Σ = {a1, · · · , as} in the
form am1

1 · · ·ams

s . In other words, we deal with the commutative monoid Σ⊕ (see [4]
).

Analogous to word rewriting systems multiset rewriting systems can be defined,
in particular multiset grammars analogous to Semi Thue systems, using productions
(α, β) (α, β ∈ IN s) for rewriting : µ→µ′ iff α v µ and µ′ = (µ − α) + β. In
this way context-free, monotone, and arbitrary multiset grammars can be defined (
see [4]), denoted by mPOS, mOS, mPIS, mIS, respectively. Corresponding families
of multiset languages are denoted by mPOS, mOS, mPIS, and mIS. Note that
mOS ⊆ mCF = SLin where SLin denotes the family of semilinear sets.

In all cases the set of sentential forms is defined by S(G) = {x ∈ Σ∗ | ω→∗ x}.
If a subset ∆ ⊆ Σ of nonterminal symbols is specified the language generated

by G is defined by L(G) = S(G) ∩ ∆∗. In this case the letter E is used to denote
language classes, e.g. EOL,ETOL.

A black hole is a z ∈ S(G) with the property ∀x ∈ S(G) : x→∗ z.
The set of black holes is defined by

B(G) = {z ∈ S(G) | ∀x ∈ S(G) : x→∗ z}.
Trivially, B(G) ⊆ S(G).

We shall use the letter B to denote families of languages defined by black holes,
yielding BOR, BIR, BOS, BIS, BON, BIN, BOL, BTOL, mBOS, mBIS.

Define a relation ∼
G

by (x, y) ∈ ∼
G

⇔(x→∗ y ∧ y→∗ x). Obviously, then ∼
G

is an
equivalence relation, and B(G) is one of the equivalence classes.

A trap T is an equivalence class of ∼
G

with T ⊆ S(G).

3 Basic Results

Lemma 31 : If z→∗ y for z ∈ B(G) then y ∈ B(G).

Proof. Let z ∈ B(G) and z→∗ y. Then for any x ∈ S(G) holds x→∗ z, and therefore
also x→∗ y, implying y ∈ B(G).

Corollary 31 : B(G) is a complete graph with respect to →∗ , and it is an equivalence
class of ∼

G

.

2

Lemma 32 : If B(G) 6= ∅ then →∗ is confluent on S(G).

Proof. Let x, y ∈ S(G). Then ω→∗ x and ω→∗ y. By the definition of B(G) it follows
that for any z ∈ B(G) holds x→∗ z and y→∗ z. Therefore, →∗ is confluent on S(G).

Lemma 33 : If →∗ is Noetherian on S(G) then |B(G)| ≤ 1.

Proof. If |B(G)| > 1 then there exist z1, z2 ∈ B(G) with z1 6= z2. Since B(G) is a
complete graph there would be an infinite sequence with →∗ , a contradiction.

Lemma 34 : If λ ∈ S(G) then either B(G) = ∅ or B(G) = {λ}.

Proof. Obviously λ→∗ λ. Either x→∗ λ for all x ∈ S(G) implying B(G) = {λ}, or there
exists a x ∈ S(G) with ¬(x→∗ λ). In that case B(G) = ∅ since ¬(λ→∗ y) for y 6= λ.

4 Regular Systems

In this section we consider rewriting systems of regular type with context-independent,
monotone, and arbitrary rewriting productions.

First we present some examples of OR systems yielding sets S(G) and B(G) of
different cardinalities.

Example 41 : G = ({a, b}, {b}, {b→ba}) ∈ POR.
S(G) = {b}{a}∗, B(G) = ∅.

This example also shows that the number of equivalence classes of ∼
G

is infinite,
since bak 6∼ bam for k 6= m.

Example 42 : G = ({a}, {a}, {a→λ, a→aa}).
S(G) = {a}∗, B(G) = {λ}.

Example 43 : G = ({a, b, c, d, e, f}, {f}, {f→a, a→ba, b→bb, b→λ, a→c,

c→d, d→e, e→c}) ∈ OR.
S(G) = {b}∗{a} ∪ {c, d, e, f}, B(G) = {c, d, e}.

Example 44 : G = ({a, b}, {b}, {b→ab, a→aa, a→λ}) ∈ OR.
S(G) = B(G) = {a}∗{b}.

Example 45 : G = ({a, b, c, d}, {d}, {d→ab, a→aa, a→λ, d→cb, c→cc,

c→a, b→ab}) ∈ OR.
S(G) = {d} ∪ {a, }∗{c}+{b} ∪ {a}∗{b}, B(G) = {a}∗{b}.

Example 46 : G = ({a, b, c}, {a}, {a→aa, a→bc, b→bb, b→λ, c→c}) ∈ OR

S(G) = {a}+ ∪
⋃

∞

k=0{b}
∗{cak}, B(G) = ∅.

There are infinitely many infinite traps {b}∗{cak}, k ≥ 0.

Lemma 41 : If G = (Σ, {ω}, P) is regular then B(G) is a regular set. More pre-
cisely, B(G) ∈ OR, hence BOR ⊆ OR.

Proof. Let G = (Σ, {ω}, P) be a regular rewriting system. If B(G) = ∅ then B(G)
is regular. In case B(G) 6= ∅ let z ∈ B(G). Define a new regular rewriting system
G′ = (Σ, {z}, P). Since B(G) is a complete graph with respect to →∗ it follows that
S(G′) = B(G), and therefore B(G) ∈ OR.

Lemma 42 : POR 6⊆ BOR.

Proof. Consider L = {a}+{b}. Clearly, L = L(G) ∈ POR by the regular system
G = ({a, b}, {ab}, {a→aa}). But L ∈ BOR is possible only if amb→∗ ab which can be
achieved only by a production a→λ, also yielding b ∈ L, a contradiction.

Lemma 43 : PIR 6⊆ BIR.

Proof. Consider L = {a}+{b} ∪ {a}{c}+. Clearly, L = L(G) ∈ PIR by the system
G = ({a, b, c}, {ab}, {ab→ac, ab→aab, aa→aaa, ac→acc}). But L 6∈ BIR.

Lemma 44 : OR 6⊆ BIR.

Proof. Consider L = {a}∗ ∈ OR by G = ({a}, {a}, {a→λ, a→aa}). But L 6∈ BIR.

Lemma 45 : BIR 6⊆ OR.

Proof. Consider the language L = {a}+{b}{a}∗. L ∈ BIR by the regular system
G = ({a, b}, {ab}, {a→aa, aa→a, ab→aba, aba→ab}). Clearly, L 6∈ OR.

In the sequel let G = (Σ, {ω}, P) be an OR system. Define Σ0 = {a ∈ Σ | a→∗ λ}
and Σ1 = Σ \ Σ0. Furthermore, define the function ρ1 on Σ∗ by ρ1(y) = by2 if
y = y1by2 with y1 ∈ Σ∗

0 , b ∈ Σ1, and y2 ∈ Σ∗. Note that this is well defined.

Lemma 46 : Let B(G) 6= ∅ and B(G) 6= {λ}. Then there exists a k > 0 such that
x = x1ax2 with x1 ∈ Σ∗

0 , a ∈ Σ1, and x2 ∈ Σk−1 for all x ∈ B(G).

Proof. Since B(G) 6= ∅ there exists an x0 ∈ B(G) of minimal length, say |x0| = k.
Assume that there is a y ∈ B(G) with y = y1ρ1(y), y1 ∈ Σ∗

0 , b ∈ Σ1, and |ρ1(y)| > k.
Now y→∗ ρ1(y)→∗ x0. But since |ρ1(y)| > k it follows that b→∗ λ, a contradiction.

Lemma 47 : Let B(G) 6= ∅ and B(G) 6= {λ}. Then y = y1by2 with y1 ∈ Σ∗

0 , b ∈ Σ1,
and |y2| < k for all y ∈ S(G) where k is the constant from Lemma 46.

Proof. Assume y = y1by2 with y1 ∈ Σ∗

0 , b ∈ Σ1, and |by2| > k. Again, y→∗ ρ1(y)→∗ x0

must hold, yielding the same contradiction as in Lemma 46.

Lemma 48 : Let B(G) 6= ∅ and B(G) 6= {λ}. If N is the constant from the iteration
lemma for S(G) (note that S(G) ∈ REG), then k ≤ N .

Proof. Assume k > N . By Lemma 46 there exists an x0 ∈ B(G) with x0 = ax1,
a ∈ Σ1, and |ax1| = k. Since k > N the iteration lemma for S(G) yields infinitely
many y ∈ S(G) with y = by2, b ∈ Σ1, and y1 ∈ Σ∗. Thus there exists a y ∈ S(G)
with y = by2 with b ∈ Σ1, y2 ∈ Σ∗ and |by2| > k, a contradiction to Lemma 47.

Theorem 41 : The emptiness problem for BOR is decidable, i.e. for any G ∈ OR

it is decidable whether B(G) = ∅.

Proof. Since the membersip problem for OR ⊂ REG is decidable, λ ∈ S(G) is
decidable. If λ ∈ S(G) then B(G) = {λ}. Thus assume λ 6∈ S(G).

Construct the set D = {x ∈ S(G) ∩ Σ1Σ
∗| |x| ≤ N}. Since the membership

problem for OR is decidable this can be done effectively. Obviously, |D| < ∞.
Now, for all x ∈ D it is decidable whether y→∗ x for all y ∈ D since the reachability

problem for OR ⊂ REG is decidable. Let C = {x ∈ D| ∀y ∈ D : y→∗ x}. Clearly, C

can be constructed effectively.
Since S(G) ∩ Σ1Σ

∗ ∈ REG it is decidable whether there exists an x ∈ S(G) ∩
Σ1Σ

∗ with |x| > N . This follows by the decidability of the finiteness problem for
S(G) ∩ Σ1Σ

∗.
If there exists an x ∈ S(G) ∩ Σ1Σ

∗ with |x| > N then B(G) = ∅ by Lemma 48
since the iteration lemma for S(G) yields infinitely many y ∈ S(G) ∩ Σ1Σ

∗.
Thus assume S(G) ∩ Σ1Σ

∗ = D. Now, for all y ∈ S(G) holds y→∗ ρ1(y) ∈ D.
If B(G) 6= ∅ then ρ1(x) ∈ C for x ∈ B(G) since y→∗ x→∗ ρ1(x) for all y ∈ D. This
implies C ⊆ B(G) and C 6= ∅.

On the other hand, if C 6= ∅ then obviously C ⊆ B(G) since any x ∈ C is
reachable from any y ∈ S(G) by y→∗ ρ1(y)→∗ x. This implies B(G) 6= ∅.

Hence C = ∅ iff B(G) = ∅.
Therefore the emptiness problem for BOR is decidable.

Theorem 42 : The membership problem for BOR is decidable.

Proof. By Theorem 41 an OR system G′ = (Σ, {x}, P) with S(G′) = B(G) can be
constructed effectively, taking some x ∈ C in the case B(G) 6= ∅. Since B(G) ∈ REG

the membership problem is decidable.

Theorem 43 : The finiteness problem for BOR is decidable.

Proof. As in Theorem 42 construct an OR system G′ with S(G′) = B(G). Since the
finiteness problem for REG is decidable, it is decidable for BOR, too.

Theorem 44 : The equivalence problem for BOR is decidable.

Proof. By Theorem 42 for G1, G2 ∈ OR systems G′

1, G
′

2 ∈ OR can be constructed
such that S(G′

1) = B(G1) and S(G′

2) = B(G2). Then the statement follows from
the decidability of the equivalence problem for REG.

Theorem 45 : For any G = (Σ, {ω}, P) ∈ OR with B(G) 6= ∅
a G′ = (Σ, {x}, P) ∈ OR can be constructed effectively such that S(G′) =

B(G′) = B(G).

Proof. This follows from Theorem 42.

5 Semi-Thue Systems

In this section we consider rewriting systems of Semi-Thue type with context-
independent, monotone, and arbitrary productions with catenation as underlying
operation.

Lemma 51 : If G = (Σ, {ω}, P) is context-free then B(G) is context-free. More
precisely, B(G) ∈ OS, hence BOS ⊆ OS.

Proof. Let G = (Σ, {ω}, P) be a context-free rewriting system. If B(G) = ∅ then
B(G) is context-free. In case B(G) 6= ∅ let z ∈ B(G). Define the context-free
rewriting system G′ = (Σ, {z}, P). Since B(G) is a complete graph with respect to
→∗ it follows that S(G′) = B(G), and therefore B(G) ∈ OS.

Note that the rewriting system G′ in the previous lemma has not been con-
structed but only its existence has been proved.

Lemma 52 If G = (Σ, {ω}, P) is monotone then B(G) is finite.

Proof. Assume |B(G)| = ∞. Then there exist z1, z2 ∈ B(G) with |z1| < |z2|. But
z2→

∗ z1 contradicts the monotonicity of G. Therefore |B(G)| < ∞.

Lemma 53 : If G = (Σ, {ω}, P) is arbitrary then B(G) is arbitrary, too. More
precisely, B(G) ∈ IS, hence BIS ⊆ IS.

Proof. Let G = (Σ, {ω}, P) be an arbitrary rewriting system. If B(G) = ∅ then
B(G) is context-free. In case B(G) 6= ∅ let z ∈ B(G). Define the arbitrary rewriting
system G′ = (Σ, {z}, P). Since B(G) is a complete graph with respect to →∗ it
follows that S(G′) = B(G), and therefore B(G) ∈ IS.

Note that the rewriting system G′ in the previous lemma too has not been
constructed but only its existence has been proved.

The following examples exhibit OS systems with different cardinalities for S(G)
and B(G).

Example 51 : G = ({a, b}, {b}, {b→ba}) ∈ OS.
S(G) = {b}{a}∗, B(G) = ∅.

Example 52 : G = ({a, b, c, d, e}, {a}, {a→bc, b→bb, b→λ, a→c, c→d,

d→e, e→c}) ∈ OS.
S(G) = {a} ∪ {b}∗{c, d, e}, B(G) = {c, d, e}.

Example 53 : G = ({a, b, c, d}, {d}, {d→bc, d→ba, b→ba, c→a, c→cc,

a→λ}) ∈ OS.
S(G) = {d} ∪ {b}{a, c}∗ ∪ {b}{a}∗, B(G) = {b}{a}∗.

Example 54 : G = ({a, b, c, d, e, f, g, h, k, p, q, r, s}, {s},
{s→abc, ab→adeb, eb→be, ec→fcc, bf→fb, af→aa,

df→fb, abb→ghb, hb→bh, hc→k, bk→kb, gk→λ

s→pqr, q→qq, q→λ, pr→abc}) ∈ IS

S(G) ∩ {a}∗{b}∗{c}∗ = B(G) ∩ {a}∗{b}∗{c}∗ = {anbncn|n > 0}.

Lemma 54 : BOS ⊂ CF.

Proof. BOS ⊂ CF follows from Lemma 51 since OS ⊂ CF.

Lemma 55 : REG 6⊆ BIS

Proof. Consider L = {a}+{b} ∪ {a}{c}+ as in Lemma 43.

Lemma 56 : POS 6⊆ BIS.

Proof. Consider L = {d} ∪ {a}+{b} ∪ {a}{c}+. Clearly, L ∈ POS by the system
G = ({a, b, c, d}, {d}, {d→ab, d→ac, b→ab, c→cc}). But L 6∈ BIS since there must
hold acm→∗ d yielding also ack+m→∗ dck ∈ L, a contradiction.

Theorem 51 : For G ∈ IS it is undecidable whether B(G) = ∅, i.e. the emptiness
problem for BIS is undecidable.

Proof. Consider a Post correspondence problem (PCP) on {a, b} given by the
pairs {(αj, βj) ∈ {a, b}∗ × {a, b}∗|1 ≤ j ≤ n}. It may be assumed that all αj, βj are
non-empty.

Construct the IS system G = ({a, b, c, d, e, f, $}, {$c$}, P) with productions
P = {c→αjcβ

R
j (1 ≤ j ≤ n), xcx→d, xdx→d, ydz→e (y 6= z), yd$→e$,

$dy→$e, ycz→e (y 6= z), xe→e, ex→e, e→c, d→fdf,
fdf→ffdff, (x, y, z ∈ {a, b})}

where uR denotes the mirror image of u.
Then the PCP has a solution iff B(G) = ∅.

Lemma 57 : For given G ∈ IS and w ∈ Σ∗ it is undecidable whether w ∈ B(G),
i.e. the membership problem for BIS is undecidable.

Proof. Consider the system in Theorem 51. Obviously, c ∈ B(G) iff the PCP has
no solution, implying the undecidability of the word problem for BIS.

Lemma 58 : If G ∈ BPIS then the following holds :
∀x, y ∈ B(G) : |x| = |y|.

Proof. Assume that there exist x, y ∈ B(G) with |x| < |y|. Since y→∗ x there must
exist a production α→β ∈ P with |α| > |β|, a contradiction.

In the sequel let G = (Σ, {ω}, P) be an OS system. Define Σ0 = {a ∈ Σ | a→∗ λ}
and Σ1 = Σ \Σ0. Furthermore, let π1 : Σ∗→Σ∗

1 denote the projection on Σ1, defined
by π1(y) = a1 · · ·am if y = y0a1y1 · · ·amym with yi ∈ Σ∗

0 (0 ≤ i ≤ m) and aj ∈ Σ1

(1 ≤ j ≤ m).

Lemma 59 : Let B(G) 6= ∅. Then there exists a k > 0 such that |x|Σ1
= k for all

x ∈ B(G).

Proof. Since B(G) 6= ∅ there exists an x0 ∈ B(G) of minimal length, say |x0| = k.
Now assume that there is a y ∈ B(G) with |y|Σ1

> k, i.e. |π1(y)| > k. Now
y→∗ π(y)→∗ x0. But since y = a1 · · ·am this implies that aj→

∗ λ for some j, a con-
tradiction to the minimality of k.

Lemma 510 : Let B(G) 6= ∅. Then |y|Σ1
≤ k for all y ∈ S(G) where k is the

constant from Lemma 59.

Proof. Assume |y|Σ1
> k for some y ∈ S(G). Again, y→∗ π1(y)→∗ x0 must hold, yield-

ing the same contradiction as in Lemma 58.

Lemma 511 : Let B(G) 6= ∅. If N is the constant from the iteration lemma for
S(G) (note that S(G) ∈ CF), then k ≤ N .

Proof. Assume k > N . By Lemma 59 there exists an x0 ∈ B(G) with x0 ∈ Σ∗

1 and
|x0| = k. Since k > N the iteration lemma for S(G) yields infinitely many y ∈ S(G)
with y ∈ Σ∗

1 . Thus there exists a y ∈ S(G) with |y|Σ1
> k, a contradiction to Lemma

59.

Theorem 52 : The emptiness problem for BOS is decidable, i.e. for any G ∈ OS

it is decidable whether B(G) = ∅.

Proof. Construct the set D = {x ∈ S(G) ∩ Σ+
1 | |x| ≤ N}. Since the membership

problem for OS is decidable this can be done effectively. Obviously, |D| < ∞.
Now, for all x ∈ D it is decidable whether y→∗ x for all y ∈ D since the reachability

problem for OS ⊂ CF is decidable. Let C = {x ∈ D| ∀y ∈ D : y→∗ x}. Clearly, C

can be constructed effectively.
Since S(G)∩Σ∗

1 ∈ CF it is decidable whether there exists an x ∈ S(G)∩Σ∗

1 with
|x| > N . This follows by the decidability of the finiteness problem for S(G) ∩ Σ∗

1 .
If there exists an x ∈ S(G) ∩ Σ∗

1 with |x| > N then B(G) = ∅ by Lemma 510
since the iteration lemma for (G) yields infinitely many y ∈ S(G) ∩ Σ∗

1 .
Thus assume S(G) ∩ Σ∗

1 = D. Now, for all y ∈ S(G) holds y→∗ π1(y) ∈ D. If
B(G) 6= ∅ then π1(x) ∈ C for x ∈ B(G) since y→∗ x→∗ π1(x) for all y ∈ D. This
implies C ⊆ B(G) and C 6= ∅.

On the other hand, if C 6= ∅ then obviously C ⊆ B(G) since any x ∈ C is
reachable from any y ∈ S(G) by y→∗ π1(y)→∗ x. This implies B(G) 6= ∅.

Hence C = ∅ iff B(G) = ∅.
Therefore the emptiness problem for BOS is decidable.

Theorem 53 : The membership problem for BOS is decidable.

Proof. By Theorem 52 an OS system G′ = (Σ, {x}, P) with S(G′) = B(G) can be
constructed effectively, taking some x ∈ C in the case B(G) 6= ∅. Since B(G) ∈ CF

the membership problem is decidable.

Theorem 54 : The finiteness problem for BOS is decidable.

Proof. As in Theorem 53 construct an OS system G′ with S(G′) = B(G). Since the
finiteness problem for CF is decidable, it is decidable for BOS, too.

Theorem 55 : For any G = (Σ, {ω}, P) ∈ OS with B(G) 6= ∅ a G′ = (Σ, x, P) ∈
OS can be constructed effectively such that S(G′) = B(G′) = B(G).

Proof. This follows from Theorem 53.

6 Lindenmayer Systems

Also here we just present some examples yielding infinite black hole sets.

Example 61 : Let G = ({a, b, c, d}, {b}, {a→dd, a→λ, b→ca, c→b, d→a}) ∈ OL.
Then S(G) = B(G) = {b}{dd}∗∪{ca}{aa}∗ since by induction we have b→ca→b

and b→∗ bd2k→ca2k+1 = cakak+1→bd2k+1→ca2k+3→∗ b.

Example 62 : Let G = ({a, b}, {ba}, {{a→aa, b→b}, {a→λ, b→ba}}) ∈ TOL.
Then S(G) = B(G) = {ba2k

| k ≥ 0} since ba→∗ ba2k

→ba.

Example 63 : Let G = ({a, b}, {ba}, {{a→aa, b→b},
{a→a3, b→b}, {a→λ, b→ba}}) ∈ TOL.

Then S(G) = B(G) = {ba2k3m

| k, m ≥ 0} since ba→∗ ba2k

→∗ ba2k3m

→ba. Note that
B(G) 6∈ EOL.

Lemma 61 : POL 6⊆ BTOL

Proof. Consider G = ({a}, {a}, {a→aa}).
Obviously L = S(G) = {a2k

| k ≥ 0} ∈ POL.
Assume L = B(G′) ∈ BTOL with G′ = (}a}, {ω}, T). Then there exists a table

Pj ∈ T with a→λ ∈ Pj. Otherwise B(G′) = ∅. But this implies λ ∈ S(G′) from
which follows B(G′) = {λ}, a contradiction.

Lemma 62 : POR 6⊆ BTOL , POS 6⊆ BTOL

Proof. Consider G = ({a}, {a}, {a→aa}) ∈ POR (or ∈ POS).
Obviously L = S(G) = {ak | k > 0} ∈ POR (or ∈ POS).
Assume L = B(G′) ∈ BTOL with G′ = (}a}, {ω}, T). Then there exists a table

Pj ∈ T with a→λ ∈ Pj. Otherwise B(G′) = ∅. But this implies λ ∈ S(G′) from
which follows B(G′) = {λ}, a contradiction.

Lemma 63 : BTOL 6∈ EOL.

Proof. Consider G from Example 63.

7 Multiset Rewriting Systems

In this section we present some results on generative power and decidability.

First we give an example, actually the commutative version of example 5.3.

Example 71 : G = ({a, b}, {b}, {b→ba}) ∈ mOS.
S(G) = {b} ⊕ {a}⊕, B(G) = ∅.

Example 72 : G = ({a, b, c, d}, {d}, {d→bc, d→ba, b→ba, c→a, c→cc,

a→λ}) ∈ mOS.
S(G) = {d} ∪ {b} ⊕ {c} ⊕ {a, c}⊕ ∪ {b} ⊕ {a}⊕, B(G) = {b} ⊕ {a}⊕.

Lemma 71 : If G ∈ mBPIS then the following holds :
∀x, y ∈ B(G) : |x| = |y|.

Proof. This is shown exactly as in Lemma 57.

Theorem 71 : For any G ∈ mIS holds B(G) ∈ mCF, i.e. mBIS ⊆ mCF.

Proof. This follows from [1], Corollary 4.11, stating that each equivalence class (
there called strongly connected component) of ∼

G

is semilinear.

It should be remarked that the proof of the previous theorem is not constructive
for the semilinear set.

Analogous to Lemmata 58 to 510, and Theorems 52 to 54, we can state the
following lemma and theorem, where the proofs are similar to those from Section
5, words replaced by multisets. The definitions of Σ0, Σ1, and π1 are analogous
to those for words. For the context-independent case the proofs are alternatives to
those given below for the general case.

Lemma 72 : Let B(G) 6= ∅. Then the following facts hold :
1. There exists a k > 0 such that |x|Σ1

= k for all x ∈ B(G).
2. |y|Σ1

≤ k for all y ∈ S(G) where k is the constant from 1.
3. If N is the constant from the iteration lemma for S(G) (note that S(G) ∈

mCF), then k ≤ N .

2

Theorem 72 :
1. The emptiness problem for mBOS is decidable, i.e. for any G ∈ mOS it is

decidable whether B(G) = ∅.
2. The membership problem for mBOS is decidable.
3. The finiteness problem for mBOS is decidable.

2

The following results have been proved in [1]. There S(G) is denoted by RN(M),
the reachability set of the P/T net N with initial marking M , and B(G) by CN(M).

Theorem 73 : The membership problem for mBIS is decidable, i.e. for given G ∈
mIS and y ∈ Σ⊕ it is decidable whether y ∈ B(G).

Proof. This is stated in [1], Corollary 4.12. Another proof is in [2] as a corollary of
Theorem 2.

Theorem 74 : 1. The finiteness problem for mBIS is decidable, i.e. for given G ∈
mIS it is decidable whether |B(G)| < ∞.

2. The inclusion problem for mBIS is decidable, i.e. for given G, G′ ∈ mIS it
is decidable whether B(G) ⊆ B(G′).

3. The equivalence problem for mBIS is decidable, i.e. for given systems G, G′ ∈
mIS it is decidable whether B(G) = B(G′).

Proof. This is stated in [1], Corollary 4.12.

Theorem 75 : For given G ∈ mIS it is decidable whether B(G) = S(G).

Proof. This is [1], Theorem 5.3.

Theorem 76 : The emptiness problem for mBIS is decidable, i.e. for given G ∈ IS

it is decidable whether B(G) = ∅.

Proof. This follows from Theorem ?? with B(G′) = ∅.

Theorem 77 : For G ∈ mIS with B(G) 6= ∅ a G′ ∈ mIS can be constructed
effectively, such that S(G′) = B(G′) = B(G).

Proof. This is [1], Theorem 5.4.

8 Open Problems

More results on Normal and Lindenmayer systems, as well as closure properties of
black hole classes, will be presented in a forthcoming article. Open are characteri-
zation and decidability properties for IR and IS systems, in particular to construct
a G′ ∈ mIS with S(G′) = B(G′) = B(G) for given G ∈ mOS. We also conjecture
that BOS ⊆ REG.

Acknowledgement

We thank Matthias Jantzen for fruitful discussions on the topic.

References

1. T. Araki, T. Kasami : Decidable Problems on the Strong Connectivity of Petri Net Reachability Sets.
TCS 4, pp 99-119, 1977.

2. D. Frutos Escrig, C. Johnen : Decidability of Home Space Property. Technical Report LRI 503, 1989.
3. M. Hack : Analysis of Production Schemata by Petri Nets. MIT, Project MAC, TR-94, 1972. Correc-

tions to ‘Analysis of Production Schemata by Petri nets’. MIT, Project MAC, Computation Structure
Note No. 17, 1974.

4. M. Kudlek, C. Mart́ın Vide, Gh. Păun : Toward FMT (Formal Macroset Theory). Multiset Processing,
eds. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, LNCS 2235, pp 123-133, 2001.

5. M. Kudlek, V. Mitrana : Normal Forms of Grammars, Finite Automata, Abstract Families, and Closure
Properties of Macrosets. Multiset Processing, eds. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa,
LNCS 2235, pp 135-146, 2001.

6. M. Kudlek, V. Mitrana : Closure Properties of Multiset Language Families. FI 49 (1-3), pp 191-203,
2002.

7. R. Melinte, O. Oanea, I. Olga, F. L. Ţiplea : The Home Marking Problem and Some Related Concepts.
Acta Cybernetica 15 3, pp 467-478, 2002, and Proc. PROMISE’2002 LNI P-21, ed. J. Desel, pp 104-
115, Springer, 2002.

8. G. Memmi, J. Vautherin : Analysing Nets by the Invariant Method. Advances in Petri Nets 1986, part
1, eds. W. Brauer, W. Reisig, G. Rozenberg, pp 300-336, 1987.

9. G. Rozenberg, A. Salomaa : The Mathematical Theory of L Systems. Academic Press, 1980.
10. A. Salomaa : Formal Languages. Academic Press, New York, London, 1973.

Restoration of Punctured Languages

Gerhard Lischke

Institute of Informatics, Faculty of Mathematics and Informatics
Friedrich Schiller University Jena, D-07743 Jena, Germany

email: lischke@minet.uni-jena.de

Abstract. Punctured languages are languages whose words are partial words in such sense
that the letters at some positions are unknown. Considering such languages is motivated by
molecular biology of nucleic acids. We investigate to which extent restorations of punctured
languages is possible if the number of unknown positions or the proportion of unknown
positions per word, respectively, is bounded, and we study their relationships for different
boundings.

1 Introduction

The concept of partial words have been introduced by Berstel and Boasson in 1998
[2]. It was motivated of molecular biology of nucleic acids. DNA molecules which
are the carriers of the genetic information in almost all organisms can be seen as
finite strings over a 4-element alphabet namely the nucleotides adenine, cytosine,
guanine, and thymine. Processes in molecular biology can be seen as operations
on such strings [6]. Thereby in nature often occures that the strings are imperfect
and mismatches may result. But alignment of genes or strings is still possible if the
mismatches are not very frequent. To study their influence the positions in question
are regarded as unknown or holes, and to speak about partial words.

Berstel and Boasson ([2], see also [3]) introduce a partial word w of length n
over an alphabet X as a partial function w from {1, ..., n} into X. If D(w) denotes
the domain of w, then Hol(w) =Df {1, ..., n} \ D(w) is the set of holes of w. To
each partial word w of length n over X is associated its companion w♦ which is
the following total function from {1, ..., n} into the augmented alphabet X♦ =Df

X ∪ {♦}:

w♦(i) =Df

{

w(i) if i ∈ D(w)
♦ if i ∈ Hol(w)

.

The new symbol ♦ /∈ X is viewed as a “do not know” symbol.
Because of w 7→ w♦ is a bijection, and for simplifying our considerations, in the

following we identify a partial word w and its companion w♦ with the ordinary, total
word w♦(1)w♦(2) · · ·w♦(n) over X♦, and we shall not use the functional approach
to partial words (see Definition 1 below).

The extent of influence of gene defects and the ability to restore defect genes
are of invaluable importance to modern medicine. If, for instance, a set of DNA
words fulfilling a certain property, has changed a little bit after some time or under
some influence, it is important to know whether the desired property still holds.
The original set may be seen as punctured with holes like in partial words, and the
question is, to a language of which kind it may be restored. In Section 2, after re-
calling the most important notions for words and languages, we introduce punctured

2 G. Lischke

languages over X as sets of partial words over X. A puncturing over X is a function
from X∗ into X∗

♦ which is length preserving and “puts the holes into the words”.
A (conventional) language L is called a restoration of a punctured language L′ if
there exists a puncturing f such that f(L) = L′. We are interested in the relation-
ship between classes of languages and possibilities of restorations after puncturing
these languages. Thereby we restrict ourselves mainly to the classes of the Chomsky
hierarchy. It plays an important role whether and in which way the number or the
proportion of holes per word is bounded. In Section 2 we also define several classes
of punctured languages which are worth considering, and we define their restoration
classes. With six observations we’ll state some general properties.

Section 3 summarizes some useful lemmata. In Section 4 we show that there
exist punctured regular languages with at most k holes per word which cannot be
restored to languages which are restored from punctured enumerable sets with at
most k′ holes per word where k′ < k. Calling two languages to be k-similar if,
simply spoken, their words differ by at most k letters this means, that there exist
languages which are k-similar to regular languages but not k′-similar to enumerable
languages. From this we conclude that the restorations of the punctured languages
from each class of the Chomsky hierarchy create a strict hierarchy with respect to the
maximal number of holes per word. We also show that each context-free language is
a restoration of a punctured regular language with unbounded number of holes but
not for bounded number of holes. In contrast to this, there exist context-sensitive
languages which are not restorations of punctured context-free languages, and not
all enumerable languages are restorations of punctured context-sensitive languages,
even with unbounded number of holes.

In Section 5 we consider punctured languages where the number of holes per
word is not bounded by a constant but the proportion of holes per word is bounded.
The most theorems from Section 4 remain valid with modified proofs if the ratio of
holes is smaller than 1

2
. If this ratio is ≥ 1

2
we only can prove some weaker results

and some open problems still remain. The weaker results include consideration of
slender languages, that are languages for which the number of words of the same
length is bounded from above by a constant.

2 Notation, definitions, and general observations

Because it is not meaningful to consider punctured languages over a one-letter al-
phabet (any “unknown” symbol would not really be unknown in this case), for the
rest of the paper we fix an alphabet X of having at least two symbols, furthermore
we can assume X = {a, b}. As usual (see, e.g., [5,7,12]), X∗ denotes the free monoid
generated by X or the set of all words over X. The empty word we denote by e. A
(formal) language (over X) is a subset L of X∗, L ⊆ X∗. ⊂ between sets denotes
the strict inclusion.

For a word w ∈ X∗, |w| denotes the length of w, and for 1 ≤ i ≤ |w|, w[i] is the
letter at the i-th position of w. For x ∈ X and w ∈ X∗, |w|x =Df |{i : w[i] = x}| is
the number of occurences of the letter x in the word w.

Restoration of Punctured Languages 3

For a set M , |M | denotes the cardinality of M , and P(M) denotes the set of
all subsets of M . For a natural number k (k ∈ IN), wk denotes the concatenation
of k copies of the word w. w∗ denotes the set {wk : k ∈ IN}, w+ denotes the set
{wk : k ∈ IN \ {0}}, and w∗q the set {pkq : k ∈ IN}.

For a set L of words let length(L) =Df {|w| : w ∈ L}. Two languages L1 and L2

are length-equivalent, L1 ∼l L2, if length(L1) = length(L2).

Definition 1. A partial word or a punctured word over X is an element from
X∗

♦, where X♦ =Df X ∪ {♦}. A punctured language is a subset of X∗
♦. For a partial

word w ∈ X∗
♦, Hol(w) =Df {i : 1 ≤ i ≤ |w| ∧ w[i] = ♦} is the set of holes of w. For

a natural number k, w is called k-punctured if |Hol(w)| ≤ k. For a positive rational

number δ < 1, w is called δ-punctured if |Hol(w)|
|w|

≤ δ (or w = e).

Definition 2. The partial word u is said to be contained in the partial word v,
or v is a restoration of u, denoted by u ⊂ v, if |u| = |v| ∧ ∀i(1 ≤ i ≤ |u| ∧ u[i] 6=
♦ → u[i] = v[i]).

This notation is adopted from [2] where it is justified by the functional point
of view for partial words. If u ⊂ v and there are holes in u but not in v then we
understand v as a possible extension or restoration of the partial word u, and u
obtained by puncturing from v.

Definition 3. f is a puncturing over X if f is a function from X∗ into X∗
♦ such

that f(w) ⊂ w for each w ∈ X∗.

Definition 4. Let L1 be a punctured language and L2 be a (conventional) lan-
guage (both over X). L2 is a restoration of L1, or L1 is extendable to L2, denoted by
L1 ↗ L2, if there exists a puncturing f such that f(L2) = L1.

Observation 1. If L1 ↗ L2 then L1 ∼l L2.

Now we define classes of punctured languages which are worth considering.

Definition 5. Let L be a class of languages, i.e., L ⊆ P(X∗), k a natural number,
and δ < 1 a positive rational number. We define:

L♦ =Df {L : L ⊆ X∗
♦ ∧ ∃L′(L′ ∈ L ∧ L ↗ L′)},

Lk−♦ =Df {L : L ∈ L♦ ∧ ∀w(w ∈ L → |Hol(w)| ≤ k)},

Lδ−♦ =Df {L : L ∈ L♦ ∧ ∀w(w ∈ L \ {e} → |Hol(w)|
|w|

≤ δ)}.

δ is also called the puncturedness coefficient for the languages in Lδ−♦.

If L� is one of the classes defined before then

L+
� =Df {L : L ∈ L� ∧ ∀L′(L ↗ L′ → L′ ∈ L)}.

4 G. Lischke

Remark. To avoid special exceptional cases, in the following L should be an
infinite class containing infinite languages.

Observation 2. For each L ⊆ P(X∗), 1 ≤ k < k′, and 0 ≤ δ < δ′ < 1:

L = L0−♦ ⊆ L+
k−♦ ⊆ Lk−♦ ⊂ Lk′−♦ ⊂

⋃

l∈IN

Ll−♦ ⊂ L♦, L+
k−♦ ⊆ L+

k′−♦ ⊆ L+
♦ ⊆ L♦,

L ⊆ L+
δ−♦ ⊆ Lδ−♦ ⊂ Lδ′−♦ ⊂ L♦, L♦ ∩ P(X∗) = L.

Proof. The strict inclusions are true because of differences between the maximal
numbers of holes. To illustrate possible equalities look, for instance, at the classes
L = {L : L ⊆ a∗} ∈ P({a, b}∗) and L = {L : L ∼l L′} for some L′, respectively. �

In general there exist languages L1, L2, L3 such that L1 ∈ L, L2 /∈ L, L3 ∈ L�,
L3 ↗ L1, and L3 ↗ L2. Then L3 /∈ L+

�. L+
� is the class of all languages punctured

in the sense of � which are only extendable to languages from L. On the other
hand, L∩

� and R(L�) from the next definition are the classes of languages from L
which are resistent with respect to �-puncturing and the full extent from L after
�-puncturing and restoration, respectively. In the just mentioned case, L2 ∈ R(L�)
would follow.

Definition 6. For � ∈ {♦, k − ♦, δ − ♦} we define:

L∩
� =Df {L : L ∈ L ∧ ∀L′∀L′′(L′ ∈ L� ∧ L′ ↗ L ∧ L′ ↗ L′′ → L′′ ∈ L)},

R(L�) =Df {L : L ⊆ X∗ ∧ ∃L′(L′ ∈ L� ∧ L′ ↗ L)}.

The classes R(L�) are called restoration classes of punctured languages.

Observation 3. For each L ⊆ P(X∗), 1 ≤ k < k′, 0 < δ < δ′ < 1, and

� ∈ {♦, k − ♦, δ − ♦}:

L∩
� ⊆ L = R(L+

�) ⊆ R(Lk−♦) ⊆ R(Lk′−♦) ⊆ R(L♦) and

L ⊆ R(Lδ−♦) ⊆ R(Lδ′−♦) ⊆ R(L♦).

In the following we want to restrict our investigations mainly to relationships
between L and restoration classes R(L�).

Observation 4. {{♦n : n ∈ length(L)} : L ∈ L} ⊆ L♦ and therefore

R(L♦) = {L : L ⊆ X∗ ∧ ∃L′(L′ ∈ L ∧ L ∼l L′)}.

Now let L ∈ R(Lk−♦). Then there exist L′ ∈ L and a set L′′ of k-punctured
words such that L′′ ↗ L and L′′ ↗ L′, and there are two puncturings f and g such
that f(L) = g(L′) = L′′. This means that for each u ∈ L there exists v ∈ L′ such
that f(u) = g(v) is k-punctured, and for each v ∈ L′ there exists u ∈ L with the
same property. The words u and v have the same length and differ in at most k

Restoration of Punctured Languages 5

positions. This gives cause for the following definition being based on the Hamming
distance in coding theory [4].

Definition 7. For two words u and v of the same length let
h(u, v) =Df |{i : 1 ≤ i ≤ |u| ∧ u[i] 6= v[i]}|.

For a natural number k, two words u and v are called to be k-similar, denoted by
u

k̃−sim
v, if |u| = |v| and h(u, v) ≤ k.

For a positive rational number δ < 1, u and v are called to be δ-similar, u
δ̃−sim

v,
if
|u| = |v| and h(u,v)

|u|
≤ δ.

Two languages L1, L2 ⊆ X∗ are called to be k-similar, denoted by L1 k̃−sim
L2, if

∀u∃v(u ∈ L1 → v ∈ L2 ∧ u
k̃−sim

v) ∧ ∀v∃u(v ∈ L2 → u ∈ L1 ∧ u
k̃−sim

v).

L1 δ̃−sim
L2 is defined appropriately for 0 < δ < 1.

Observation 5. R(Lk−♦) = {L : L ⊆ X∗ ∧ ∃L′(L′ ∈ L ∧ L
k̃−sim

L′)} for

k ∈ IN.

R(Lδ−♦) = {L : L ⊆ X∗ ∧ ∃L′(L′ ∈ L ∧ L
δ̃−sim

L′)} for 0 < δ < 1.

From now on we restrict ourselves to the classes of the Chomsky hierarchy. Their
definitions and basic properties are well-known from the literature (see, e.g., [5,7,12]).
We’ll use the following abbreviations.

Definition 8. REG, CF , CS and RE denote the classes of all regular, context-
free, context-sensitive and recursively enumerable languages (over X), respectively.
We call them Chomsky classes. LIN denotes the class of all linear languages.

We close this section by an observation regarding to the classes L+
� and L∩

�.
By �-similarity we mean the relations ∼l, k̃−sim

, and
δ̃−sim

, respectively, if � is
equal to ♦ or to k − ♦ or to δ − ♦, respectively.

Observation 6.

For each L ⊆ P(X∗), k ≥ 1, 0 < δ < 1, and � ∈ {♦, k − ♦, δ − ♦}:

1) L∩
� = L ⊂ L+

� = L� if and only if L is closed under �-similarity.

2) L∩
� ⊂ L ⊂ L+

� ⊂ L� if and only if L is not closed under �-similarity and

there

exist L ∈ L� which has each restoration in L.

This is true for each class from Definition 8.

3) L∩
� = ∅ ∧ L = L+

� ⊂ L� if and only if each L ∈ L� \ L has a restoration

outside from L.

6 G. Lischke

3 Helpful facts

In this section we summarize some basic properties which we shall use in the follow-
ing sections. Their proofs are well-known and can be found in the standard literature
(e.g., [5,7,12]).

Lemma 1. REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Definition 9. For a language L, T (L) =Df {a|p| : p ∈ L} is the tally projection

of L. If L is a class of languages, then T (L) =Df {T (L) : L ∈ L}.

Lemma 2. Each of the Chomsky classes and also LIN are closed under tally

projection.

Lemma 3. T (REG) = T (LIN) = T (CF) ⊂ T (CS) ⊂ T (RE). Especially,

every context-free language over a one-letter alphabet is regular.

Lemma 4. For every regular language L there exists a natural number m such

that every w ∈ L with |w| > m is of the form w1w2w3 where: |w1w2| < m, w2 6= e,
and w1w

i
2w3 ∈ L for all i ∈ IN.

Lemma 5. For every context-free language L there exists a natural number m
such that every w ∈ L with |w| > m is of the form w1w2w3w4w5 where: |w2w3w4| <
m, w2w4 6= e, and w1w

i
2w3w

i
4w5 ∈ L for all i ∈ IN.

4 Restoration of k-punctured classes

Because puncturing maintains the inclusionship between languages and classes, it
follows from Lemma 1 and Observation 2:

Theorem 1. For k ∈ IN, 0 < δ < 1 and � ∈ {♦, k − ♦, δ − ♦}:
REG� ⊂ LIN� ⊂ CF� ⊂ CS� ⊂ RE�.

Corollary 1. R(REG�) ⊆ R(LIN�) ⊆ R(CF�) ⊆ R(CS�) ⊆ R(RE�).

Obviously, any language class is contained in each of its restoration classes, see
Observation 3. Now we consider whether this inclusion is strict. First, consider k-
puncturing for k ∈ IN.

Theorem 2. Let k and k′ be natural numbers such that 0 ≤ k′ < k. Then there

exist L ∈ R(REGk−♦) \ R(REk′−♦).

Using Observation 5 this means that there exist languages which are k-similar
to regular languages but not k′-similar to any recursively enumerable language if
k′ < k.

Restoration of Punctured Languages 7

Proof. Let T be such a set which is not recursively enumerable and T ⊆ a∗, and
define L =Df {pa2k : p ∈ T} ∪ {pb2k : p ∈ a∗ \ T}. Then L

k̃−sim
a∗akbk. Because of

a∗akbk ∈ REG and Observation 5, L ∈ R(REGk−♦). Assume L ∈ R(REk′−♦). Then
L ˜k′−sim

S for some S ∈ RE, and each w ∈ S must be k′-similar to some word from L

and therefore it has the form pu where |u| = 2k and either u has more than k letters
a or less than k letters a. Enumerating S and considering only words having a suffix
of length 2k with more than k letters a and outputting the appropriate remaining
prefixes whereby all possibly occuring letters b are converted to a enumerates T .
This contradicts the nonenumerability of T . �

It follows with Corollary 1 and Observation 3 that the restoration classes of each
of the Chomsky classes create a strict hierarchy with respect to the maximal number
of holes per word:

Corollary 2. For L ∈ {REG, LIN, CF, CS, RE} and 0 ≤ k′ < k:

R(Lk′−♦) ⊂ R(Lk−♦).

It is worth to mention also some more concrete languages which demonstrate the
strict inclusion:

{anbna2k : n ∈ IN} ∪ {ambnb2k : m, n ∈ IN ∧ m 6= n} ∈ R(REGk−♦) \ R(REGk′−♦)
can be shown using Lemma 4,

{anbnan+2k : n ∈ IN} ∪ {albmanb2k : ¬(l = m = n)} ∈ R(REGk−♦) \ R(CFk′−♦)
can be shown using Lemma 5.

Next we show that each context-free language is a restoration of a punctured
regular language with unbounded number of holes but not for bounded number of
holes. The first part of this statement is a corollary from the following more general
theorem.

Theorem 3. Let L and L′ be two language classes which are closed under tally

projection. Then L′ ⊆ R(L♦) if and only if T (L′) ⊆ L.

Proof. First, assume T (L′) ⊆ L and L′ ∈ L′. Then L′ ∈ R(L♦) because of
L′ ∼l T (L′), T (L′) ∈ L, and by Observation 4.
Now, assume T (L′) 6⊆ L and let L′ ∈ T (L′) \ L. Then L′ ∈ L′. If L′ ∈ R(L♦) then,
by Observation 4, L′ ∼l L for some L ∈ L. Then also T (L) ∈ L, but T (L) = L′ /∈ L.
�

Corollary 3. CF ⊂ R(REG♦).

Proof. The inclusion follows immediately by Theorem 3 and Lemmas 2 and 3.
The strict inclusion follows with Observation 3 and Lemma 1 from Theorem 2. �

8 G. Lischke

Theorem 4. CF 6⊆ R(REGk−♦) for any fixed k ∈ IN, even more :

LIN 6⊆
∞
⋃

k=0

R(REGk−♦).

Proof. We consider L′ =Df {anbn : n ∈ IN} ∈ LIN and show that L′ /∈
R(REGk−♦) for fixed k ≥ 0. Let us assume the opposite. Then, by Observation
5, there exists L ∈ REG with L

k̃−sim
L′.

For each w ∈ L there exits w′ ∈ L′ with w
k̃−sim

w′ and therefore |w|a ≤ |w|b + 2k.

For L there exists m according to Lemma 4. Let w ∈ L such that |w| > 2·(k +1)·m.

By Lemma 4, w has the form w1w2w3 where |w1w2| < m < |w|
2(k+1)

, w2 6= e, and

w1w
i
2w3 ∈ L for each i.

Case 1). b occures in w2. Then with i = k + 1 we get a contradiction because of

|w1w
k+1
2 | < (k + 1)·m < |w|

2
≤

|w1wk+1

2
w3|

2
and therefore |w1w

k+1
2 |b ≤ k (there cannot

be more than k letters b in the first half of a word which is k-similar to a word from
L′) but on the other hand |wk+1

2 |b ≥ k + 1 because of b in w2.
Case 2). w2 ∈ a+. Because of w1w

i
2w3 ∈ L it follows that

|w1w
i
2w3|a = |w1w3|a + i·|w2| ≤ |w1w

i
2w3|b + 2k = |w1w3|b + 2k. For i > 2k + |w1w3|

this yields to a contradiction which proves the theorem. �

Corollary 4.
∞
⋃

k=0

R(REGk−♦) = R(
∞
⋃

k=0

REGk−♦) ⊂ R(REG♦).

In contrast to Corollary 3 appropriate results are not true higher up in the
Chomsky hierarchy. This immediately follows from Theorem 3 by Lemma 3 (Remark
that T (L′) ⊆ L is equivalent to T (L′) ⊆ T (L), if L is closed under tally projection.).

Corollary 5. CS 6⊆ R(CF♦), RE 6⊆ R(CS♦).

5 Restoration of δ-punctured classes

Now we consider punctured languages where the number of holes per word is not
bounded by a constant but the ratio of the number of holes per word to the length
of the word is bounded. Besides our observations in Section 2, we stated first simple
results for such classes in Theorem 1 and Corollary 1. An analog result to Theorem
2 we can only prove if δ′ < δ

2
. For δ′ ≥ δ

2
we get Theorem 6 below.

Theorem 5. Let δ and δ′ be rational numbers such that 0 < δ < 1 and 0 ≤ δ ′ < δ
2
.

Then there exist L ∈ R(REGδ−♦) \ R(REδ′−♦).

Proof. Let δ = r
s

for natural numbers r < s, and let T be such a set which is not
recursively enumerable and T ⊆ a+. We define:
L =Df {ans : an ∈ T} ∪ {an·(s−r)bnr : an /∈ T}. Then L

δ̃−sim
{ans : n ∈ IN} and

therefore L ∈ R(REGδ−♦). Assume L ˜δ′−sim
S for some S ∈ RE. The suffix of length

nr of any word w ∈ S with |w| = ns either has at most δ ′ ·|w| < δ
2
|w| = nr

2
letters b

or more than nr
2

letters b. Enumerating all words from S with a length ns for n ∈ IN

Restoration of Punctured Languages 9

and less than the half letters b in their suffix of length nr, yields to an enumeration
of T . �

Theorem 6. Let δ and δ′ be rational numbers such that 0 < δ
2
≤ δ′ < δ < 1 and

δ′ < 1
2
. Then there exist L ∈ R(LINδ−♦) \ R(REδ′−♦).

Proof. Let T and δ = r
s

be the same as in the former proof, and let t be the
minimum of {s − r, r}. We define:
L =Df {an·(s−t)bntanrbn·(s−r) : an ∈ T} ∪ {bnran·(s−r)bn·(s−t)ant : an /∈ T}. Then
L

δ̃−sim
{ansbns : n ∈ IN} and therefore L ∈ R(LINδ−♦). Assume L ˜δ′−sim

S for some

S ∈ RE. Then for each w ∈ S with a length 2ns, either h(w, an(s−t)bntanrbn(s−r)) <
min{2nr, ns} (if an ∈ T) or h(w, bnran(s−r)bn(s−t)ant) < min{2nr, ns} (if an /∈ T).
(Both of them isn’t possible because of h(an(s−t)bntanrbn(s−r), bnran(s−r)bn(s−t)ant) =
min{4nr, 2ns}.) This yields to an enumeration of T . �

Corollary 6. For L ∈ {LIN, CF, CS, RE} and 0 ≤ δ′ < δ < 1 and δ′ < 1
2

R(Lδ′−♦) ⊂ R(Lδ−♦), and further R(REGδ′−♦) ⊂ R(REGδ−♦) if δ′ < δ
2
.

On the analogy of Theorem 4 we show

Theorem 7. LIN 6⊆
⋃

0≤δ< 1

2

R(REGδ−♦).

Proof. We consider L′ =Df {anbn : n ∈ IN} ∈ LIN and assume L′

δ̃−sim
L for

some fixed δ with 0 ≤ δ < 1
2

and for some L ∈ REG. Again by Lemma 4, every
sufficiently long w ∈ L has the form w = w1w2w3 where w2 6= e and zi ∈ L for
each i, if we define zi =Df w1w

i
2w3. Because of L′ ∼l L, w2 has an even length

l ≥ 2, and zi δ̃−sim
z′i for a uniquely determined z′i = anibni ∈ L′. Choose i such

that |w1| < ni and |w3| < ni. This means, the centre of the word zi is within wi
2.

Then for each j ∈ IN, the centre of zi+2j is by j · l = j · |w2| positions to the right
from the centre of zi. The word left from the centre of zi+2j must be similar to
ani+jl, and the word right from this centre must be similar to bni+jl. Therefore
h(zi+2j , z

′
i+2j) = h(zi, z

′
i) + j ·|w2|b + j ·|w2|a = h(zi, z

′
i) + j ·|w2| = h(zi, z

′
i) + jl. We

have |zi+2j| = 2ni + 2jl, and therefore lim
j→∞

h(zi+2j ,z′i+2j)

|zi+2j |
= 1

2
> δ. This contradicts

to L′

δ̃−sim
L. �

Now, Theorem 4 and Corollary 4 appear as consequences from Theorem 7.

Whether LIN 6⊆ R(REGδ−♦) is true or not for δ ≥ 1
2

remains open. We assume
that for 1

2
≤ δ < 1, LIN ⊆ R(REGδ−♦) but CF 6⊆ R(REGδ−♦).

One level higher, CS 6⊆
⋃

0≤δ<1

R(REGδ−♦) is true because of Corollary 5.

Restricting to slender context-free languages the situation again becomes clear.

10 G. Lischke

A language L is called to be slender if there is a natural number k such that
|{w : w ∈ L ∧ |w| = n}| ≤ k for every n ≥ 0.

These languages are interesting from the theoretical point of view (see, e.g., [8-11]),
but they also have important applications in cryptography [1].
If L is a class of languages, then SLL denotes the class of slender languages in L
[10].

Theorem 8. SLLIN = SLCF ⊂ R(REG 1

2
−♦).

Proof. Ilie [8] and Raz [11] have shown that a context-free language is slender if
and only if it is a union of paired loops. That means, for some m ≥ 1 there exist

words ui, vi, wi, xi, yi for i = 1, . . . , m such that L =
m
⋃

i=1

{uiv
n
i wix

n
i yi : n ≥ 0}. As

a consequence of this result, SLLIN = SLCF [8]. Also, slenderness of a context-free
language is decidable, and a given slender context-free language can be effectively
written as a union of paired loops [9]. Now let L ∈ SLCF be a union of paired loops,

i.e., L =
m
⋃

i=1

Li, Li = {uiv
n
i wix

n
i yi : n ≥ 0} for i = 1, . . . , m. It is easy to see that each

paired loop Li is 1
2
-similar to a regular language, and so is L: Let Li = {pn : n ∈ IN},

where pn =Df uiv
n
i wix

n
i yi. For each ν ∈ X(= {a, b}), |pn|ν = |uiwiyi|ν + n·|vixi|ν.

Thus there exists n0 ∈ IN such that either for each n ≥ n0, |pn|a ≥ |pn|b, or for each
n ≥ n0, |pn|b > |pn|a. Let L′

i =Df {pn : n < n0} ∪ {a|pn| : n ≥ n0} if |pn|a ≥ |pn|b
for n ≥ n0, and L′

i =Df {pn : n < n0} ∪ {b|pn| : n ≥ n0} if |pn|b > |pn|a for n ≥ n0.
Then Li

1̃
2
−sim

L′
i and L′

i ∈ REG. The strict inclusion is true because of there exist

non-slender languages in R(REG 1

2
−♦). �

Again, in contrast to Theorem 8 we have by Theorem 3 (classes of slender lan-
guages are closed under tally projection):

Corollary 7. SLCS 6⊆ R(CF♦), SLRE 6⊆ R(CS♦).

6 Conclusion

Starting from processes in molecular biology we came to the notions of punctured
languages and their restoration. Apart from elementary relationships between var-
ious different classes of punctured languages and their extents we restricted our
investigations mainly to relationships between language classes L and their restora-
tion classes after puncturing. A restoration class R(L�) may be interpreted in two
different ways: as the class of all languages which may be restored from languages
from L after �-puncturing or as the class of all languages which are similar to lan-
guages from L in a �-adequate sense. We have seen that, for each class L from the
Chomsky hierarchy, the classes of languages which are similar to languages from L
create a strict hierarchy with respect to the similarities determined by the number
of differences between words and also with respect to the similarities determined by
the ratio of the number of differences per word to the length of the word. For regular

Restoration of Punctured Languages 11

languages, the latter is true if the gap between the similarities is great enough. Fur-
ther we have seen that there exist linear languages which are not k-similar to any
regular language for any k ∈ IN and which are not δ-similar to any regular language
for any δ < 1

2
. Whether such languages exist for 1

2
≤ δ < 1 remains open. If they

exist then they must be non-slender.

Acknowledgment. I am grateful to Peter Leupold for our discussions which aroused
my interest in partial words and for supplying me some basic material, and to Sándor
Horváth who found a mistake in my former proof of Theorem 6.

References

[1] M.Andrasiu, J.Dassow, G.Păun, A.Salomaa, Language-theoretic problems arising from Richelieu

cryptosystems, Theoretical Computer Science 116 (1993), 339–357.
[2] J.Berstel, L.Boasson, Partial words and a theorem of Fine and Wilf, Theoretical Computer Science

218 (1999), 135–141.
[3] F.Blanchet-Sadri, D.K.Luhmann, Conjugacy on partial words, Theoretical Computer Science 289

(2002), 297–312.
[4] R.W.Hamming, Error detecting and error correcting codes, Bell System Techn. Journ. 29 (1950),

147–160.
[5] M.A.Harrison, Introduction to formal language theory, Addison-Wesley, Reading (Mass.), 1978.
[6] T.Head, G.Păun, D.Pixton, Language theory and molecular genetics, in G.Rozenberg,

A.Salomaa (Eds.), Handbook of formal languages, Vol. 2, Springer-Verlag, Berlin-Heidelberg, 1997,
295–360.

[7] J.E.Hopcroft, J.D.Ullman, Introduction to automata theory, languages, and computation, Addison-
Wesley, Reading (Mass.), 1979.

[8] L.Ilie, On a conjecture about slender context-free languages, Theoretical Computer Science 132 (1994),
427–434.

[9] L.Ilie, On lengths of words in context-free languages, Theoretical Computer Science 242 (2000), 327–
359.

[10] G.Păun, A.Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995), 257–270.
[11] D.Raz, Length considerations in context-free languages, Theoretical Computer Science 183 (1997),

21–32.
[12] G.Rozenberg, A.Salomaa (Eds.), Handbook of formal languages, Vol. 1, Springer-Verlag, Berlin-

Heidelberg, 1997, Chapter 1 and Chapter 2.

A Normal Form for Regular Expressions

Benedek Nagy

Department of Computer Science, Institute of Informatics, University of Debrecen,
Debrecen, Hungary

Research Group on Mathematical Linguistics, Rovira i Virgili University,
Tarragona, Spain

nbenedek@inf.unideb.hu

Abstract. The normal forms play important roles in many branches of computer science.
In this paper, we present a normal form for regular expressions. We analyze a subclass of
the regular languages, namely the union-free regular languages. These languages can given
by regular expressions without the operation union. In a union-free language the words look
like each other, each word contains the shortest word of the language in scattered way.
We show that each regular language can be a finite union of union-free languages. This
decomposition is not unique, but some of them contain the minimum number of union-free
languages. Therefore the union-complexity of a regular language can be defined. Using this
decomposition one can write the regular expressions to normal form.

Keywords: normal form, union-free languages, regular expressions, regular lan-
guages

1 Introduction

The normal forms of expressions are useful and widely used, for example in logic. In
the normal form we have an ordering of the operations of the language. Using tree
form of the expression we can say that all quantors are in a higher level than all of the
Boolean operators (prefix form for first order logical expressions). Analogically we
can use disjunctive (conjunctive) normal forms for Boolean expressions in which all
the disjunctions (conjunctions) are higher level than the conjunctions (disjunctions),
and the negations can be only the nodes which are leaves but one.

In formal language theory the normal forms are usually used for special forms of
grammars (such as Chomsky-, Greinbach-, Pentonnen-, Révész- etc. normal forms).
In this paper we detail the regular languages and their description by not grammars,
but regular expressions. The regular languages are the most common, well-known
and well-applicable languages. They are the simplest languages in the Chomsky-
hierarchy. They can be described by regular expressions. In this paper we will con-
sider a special subclass of the regular languages. A regular language can contain
words which are completely different. This can happen if the regular expression of
the language contains the operation union (in regular expression we use +). For
example a + b∗. The operation union (+) is very powerful, when we allow infinite
sums the expressions can describe all the type 0 (i.e. the whole recursive enumerable
class) languages in Chomsky-hierarchy. We will investigate the languages which can
be described regular expression without +. The words of a language of this union-free
family have the same ”shape”. In [2] the algebraic properties of union-free languages

2 B. Nagy

were examined, in this paper we use another approach. We use these, union-free reg-
ular languages to decomposition of regular languages. In this paper, based on this
decomposition, we will give a normal form for regular expressions, in which all of
the unions are higher level then the concatenations and the Kleene-stars.

The structure of the paper is as follows. In Section 2 we describe some normal
forms used in logic. After this, in the next section we define and analyze the prop-
erties of union-free languages. In Section 4 we show how the regular languages can
be decomposed into finite union of union-free languages, the result of this decom-
position is a kind of normal form. Some properties of this normal form will also be
analyzed. In the last section we summarize our results and we show some interesting
open questions.

2 Normal forms in logic

As we mentioned before the normal forms of expressions are very important in
both of theoretical and practical computer science. In this section we recall normal
forms of logic. We show the normal forms (prenex, disjunctive (conjunctive) normal
forms) and the way to get them. The tree representation of expressions are also
widely known and used. They show the structure of the expressions.

The Boolean variables and their negation are literals. A logical formula is called
an elementary conjunction (clause), if it is a conjunction of literals. The disjunction
of elementary conjunctions is a disjunctive normal form. Similarly, an elementary
disjunction is a disjunction of literals. A conjunction of elementary disjunctions is a
conjunctive normal form.

Well-known that for each Boolean formula there is an equivalent formula in
conjunctive normal form and in disjunctive normal form, too. Moreover these normal
forms are not unique, i.e. usually there are more formulae in disjunctive (conjunctive)
normal form for a given one.

There are more ways to get these normal forms starting with a formula. One way
is to use the truth-table of the formula, and based on these values one can construct
a formula which is equivalent to the original one. The second way is to use logical
equivalences. Replacing a part (a subformula) of a formula by an equivalent part the
result is equivalent to the original. These equivalences can be found in any textbook
on mathematical logic (see for instance [1]). Some examples: A ⊃ B ≡ ¬A ∨ B,
¬(A ∨ B) ≡ ¬A ∧ ¬B, ¬¬A ≡ A etc.

For first order logic, the so-called prenex form is used as normal form. A formula
is in prenex form if all the quantors are in the beginning of the formula and their
effect go to the whole formula. Each formula has an equivalent formula in prenex
form. There is an algorithm to get equivalent prenex form for a given formula using
logical equivalences. These equivalences move the quantors to higher level of the
expression-tree. For instance, ¬∃xA(x) ≡ ∀x¬A(x), ¬∀xA(x) ≡ ∃x¬A(x). Using
them the negation and the quantor change their place in the tree (moreover the
quantor changes to the opposite quantor). At A ∧ ∃xB(x) ≡ ∃x(A ∧ B(x)) the
quantor moves higher than the conjunction etc.

A Normal Form for Regular Expressions 3

These normal forms are widely used and one can understand how they works
and why they are important. In the tree-form of the expressions the normal forms
are special trees. For example, in the tree of a prenex formula all quantors are in
higher level than the other operators and literals. After this sideview we are going
back to formal language theory, and show a normal form of regular expressions.

3 The union-free languages

In this section we recall the definitions of regular expression and regular languages
[3, 4]. We define the union-free languages as well. We start this section with the basic
definitions.

3.1 Basic definitions

In the next definition we use the well-known regular operators, such as union, con-
catenation and Kleene-star (+, ·, ∗ respectively).

Definition 1. The finite expressions are regular expressions using the letters of the
alphabet and symbols +, ·, ∗ in the following way.
The letters of the alphabet (with the empty word (signed by λ) and the empty set
(empty language)) are regular expressions.
If r, q are regular expressions then r + q, r · q and r∗ are regular expressions as well.
Note, that the brackets can be used in regular expressions to show the order of the op-
erations (+, ·, ∗). If it is obvious, then we omit the sign of the operator concatenation
(·), as usual.

We call a language regular if there is a regular expression which describes it.
We call a regular expression union-free (regular) expression, if only the operators

·, ∗ are used in it. Consequently a language, which can be defined by a union-free
expression is a union-free (regular) language.

Note, that another important and well-examined class of the regular languages
the finite languages. Each of them contains only finite number of words. They can
be described by the (strongly) star-free regular expressions, in which only the con-
catenation and the union are the allowed operations and the Kleene-star is not used.
In this paper we will use the star-freeness in this strong sense (in the literature other
(set-theoretical) operations such as intersection and complement is allowed to use
at the (extended) star-free expressions).

Each regular expression can be written in a tree form, in which exactly the leaves
are the terminal symbols of the language (λ is also allowed), and at the other nodes
are the operations.

Note, that the operation Kleene-plus is used sometimes. It is an abbreviation:
r+ = r · r∗.

Example 1. Let V = {a1, a2, . . . , an} be a finite alphabet. The language V ∗ = (a1 +
a2 + . . . + an)∗ is union-free (V ∗ = (a∗

1a
∗

2 . . . a∗

n)∗). The language V + is union-free if
and only if V is singular (and the language V is union free only in this case also).

4 B. Nagy

The previous example shows, that the Kleene-star and Kleene-plus have different
properties.

Example 2. Let V = {a, b, c}. The language containing the words bab, baba,

babc∗, ... given by the regular expression bab(a + c∗)∗ is union-free. The union-free
expression bab(a∗c∗)∗ describes it as well. In Figure 1 the tree forms are presented
for both regular expressions.

Fig. 1. Examples for regular expressions in tree form

As Figure 1 shows one can express the regular expressions by trees.

3.2 Some properties of union-free languages

Now we detail some properties of the languages defined above.

Lemma 1. There are infinitely many non-comparable union-free languages.

Proof. All the languages containing exactly 1 word are union-free languages. There
are infinitely many of them. ut

Lemma 2. A union-free language is infinite if and only if there is no star-free
regular expression to describe it.

Proof. Without ∗ the languages contains only 1 word. ut

A Normal Form for Regular Expressions 5

Corollary 1. A union-free language is either infinite or contains only one word.

Lemma 3. Let L be an infinite union-free language. There are infinitely many se-
quences of union-free languages starting with L, in which each language is a proper
subset of the previous one.

Proof. First we construct an infinite union-free language L1, which is strictly in-
cluded in L. According to lemma 2 there is a Kleene-star in the union-free regular
expression of L. Let us change this star operation to Kleene-plus, i.e. substitute the
part (r)∗ of the original expression by (r)(r)∗. Clearly, by this modification we get
a description of a new infinite union-free language, which is a proper subset of L.
And now, the procedure can be continued for the language L1, which is also an
infinite union-free one. Let L0 = L. It is evident that for any infinite subsequence
of L = L0, L1, ..., Li, ... starting with L hold the conditions of the lemma. Therefore
their number is infinite. ut

Corollary 2. There is no smallest infinite union-free language. (For each infinite
union-free language L there is a union-free language which is a proper subset of L.)

Now, we describe some other interesting properties of the union-free languages.
We have the following useful lemma, which can be useful to decide if a language

cannot be union-free.

Lemma 4. The shortest word of a union-free language L is unique.

Proof. Trivial, it is the word obtained from the regular expression substituting every
part r∗ (where r is a regular expression such that r∗ is a part of the expression) by
λ. ut

One of the simple similarity facts of the words of a union-free language is the
following.

Proposition 1. In a union-free language each word contains the shortest word of
the language in scattered way.

Proof. It is obvious. ut

Let L be a union-free language. Note, that the λ ∈ L (i.e. the shortest word of
the language is the empty word) if and only if every terminal is under a Kleene-star
in the tree of the regular expression.

Now, we are in the position to claim the theorem about the closure properties of
union-free languages.

Theorem 1. The union-free language-family is closed under the following opera-
tions: concatenation, Kleene-star, substitution by union-free expressions.

It does not closed under the following operations: union (of course), complement,
intersection, substitution by regular language.

6 B. Nagy

Proof. The cases of concatenation and Kleene-star: trivial by using regular expres-
sion of the definition of union-free languages.

The substitution by union-free expression is also trivial.
Union: consider the following two languages: {a}, {b}.
Complement: assume the language {a∗} over the alphabet {a, b, c}. Then the

complement is V ∗bV ∗ + V ∗cV ∗, which has two shortest words, namely b and c. (Or
for binary alphabet, the complementer of the language defined by (aa)∗ has the
following two shortest words: a, b.)

Intersection: V ∗aV ∗, V ∗bV ∗ (we cannot do without union, because the letter a
and b can be in two kind of order in the words) The intersection language has two
shortest words: ab, ba.

Consequence: it is not closed under substitution by regular expression. ut

As a consequence of the previous theorem we have:

Corollary 3. The union-free language-family is closed under Kleene +, and for any
fixed natural number n it closed under the n-th power.

4 Decomposition of regular languages into union-free

languages

In this part we show a normal form of regular expressions using union-free expres-
sions.

For the sake of simplicity assume that, the given regular expression is fully brack-
eted (i.e. its tree is a binary tree, which means that all union and concatenation has
exactly two components, while the Kleene-stars have only one).

The following equivalences of the regular expressions will be useful to make the
decomposition into union-free languages.

(Considering all the possibilities, in which situation a union can be, we get the
following equivalences.)

Proposition 2. The following equivalence holds. (See Figure 2 as well.)

(1) (x + y)∗ can be written in the form (x∗y∗)∗

Where x and y are arbitrary regular expressions.

Using this fact a union-sign (+) can be deleted from the expression using Kleene-
star operators, when the union was under a Kleene-star in the expression-tree.

Proposition 3. The following equivalences can be used in regular expressions to
move union to higher level than the concatenation.

(2) (x + y)z can be written in the form (xz + yz),
(3) x(z + v) can be written in the form (xz + xv),
(4) (x + y)(z + v) can be written in the form (xz + xv) + (yz + yv).
(Where x, y, z and v are arbitrary regular expressions.)

A Normal Form for Regular Expressions 7

Fig. 2. A possible rewriting of a regular expressions to a union-free form

Using the above equivalences the union can be substituted or moved upward in
the tree of the regular expression.

The following algorithm gives us the result.
If there are no other operation in a higher level than the union we are finished the
construction. If there is a union which is immediately under a Kleene-star than using
(1) we can erase it from that part of the regular expression. If there is a union which
is under a concatenation then we can use one of the equivalences (2)-(4) according
to the places and numbers of unions. (2) is useful if in the left component of the
concatenation is a union, (3) is used in the case of the right side is a union. Finally,
(4) is useful if in both sides of the concatenation are the operation union used.
This algorithm can translate arbitrary regular expression to a special form defined
below.

In the following definition we use the regular expressions, whose tree has union
only at its root (allowing non-binary unions).

Definition 2. A regular expression is in normal form if it is finite union of union-
free expressions.

Now, using the definition of normal form of regular expressions, and using the
above construction we get the following theorem.

Theorem 2. For each regular expression there is an equivalent one, which is in
normal form.

Proof. Trivial, by the previous Propositions and algorithm. ut

A decomposition L =
n⋃

i=1

Li is proper, if there are no languages Lj such that

Lj ⊆
j−1⋃

i=1

Li ∪
n⋃

i=j+1

Li. A normal form is called proper normal form if it means a

proper decomposition.
Now, we define the minimal decomposition, and the union-complexity of the

languages.

8 B. Nagy

Definition 3. L =
n⋃

i=1

Li is a minimal decomposition of the language L if each Li

is a union-free language and there is no m < n such that L =
m⋃

i=1

Li, where each Li

is union-free.
n is called the union-complexity of language L.

Note that every minimal decomposition is a proper decomposition.
Also note that the union-complexity of a language is 1 iff it is union-free, and

finite iff it is regular. Each recursively enumerable language, which is non-regular
has infinite union-complexity. For all finite languages the union-complexity is exactly
the cardinality of the language.

Lemma 5. If the number of the union-free languages in a minimal decomposition
n for an infinite language L, then there are some decompositions for each m > n.

Proof. Adding a singular language to the union which is subset of L one can increase
the number of union up to infinity. ut

Now we are dealing with special minimal decompositions. The minimal decom-
position of a regular language using maximal union-free languages (there is no L′

i

such that L′

i ⊃ Li, and replacing Li by L′

i the union language L is the same as
before) is not unique.

An example is as follows. Using the binary alphabet {a, b}, let the analyzed
regular language contain all words that do not contain bb.

Clearly, this language has union complexity 2. Moreover there are two minimal
decompositions using maximal union-free languages (with regular expressions they
are):

((ba)∗a∗)∗ + ((ba)∗a∗)∗b((ab)∗a∗)∗,

and
((ab)∗a∗)∗ + ((ba)∗a∗)∗b((ab)∗a∗)∗.

Lemma 6. For using minimal decompositions we need all the infinite number of
union-free languages.

Proof. Let L be a union-free language. Since the union-complexity of L is 1, to
describe L, we need exactly one language, but this is L. ut

According to corollary 2 there is no finite subset of union-free languages which
enough to describe all infinite union-free languages.

Let Ln be the family of languages which can be written as union of n union-free
languages.

Theorem 3. The families Ln and Lm in the following relation:

Ln ⊃ Lm iff n > m.

Proof. The inclusion is trivial from the previous lemmas, for strict inclusion consider
the finite languages contains exactly n words. ut

A Normal Form for Regular Expressions 9

Using the equivalence of proposition 2 the union can be removed under a Kleene-
star operation. Moreover we have the following theorem about the relation between
regular languages defined by regular expressions and the union-free ones.

Theorem 4. Let r be a regular expression. If all operations union are under some
Kleene-star operations in the tree form of r, then r defines a union-free regular
language, and therefore the union-complexity of this language is 1.

Proof. Using the equivalences (2-4) among regular expressions one can move the
operations union above the concatenations in the tree of the regular expression.
Using these equivalences the operations union move up to the level immediately
below a Kleene-star. With the equivalence (1) the union can be removed from that
level. ut

As a special consequence of the previous facts that for each regular language L

the language L∗ is a union free regular one.

5 Conclusions, further remarks

There are some very useful normal forms in computer science, and specially in
formal language theory as well. A grammar is in normal form when its rules have
only some special forms. In this paper we investigated a normal form for the regular
expressions.

In regular expression the concatenation, Kleene-star and union are used. Without
star the finite languages can be described.

In this paper we analyzed another subclass of the regular languages. The proper-
ties of the union-free regular languages were described, these languages are defined
by union-free regular expressions. (Regular expressions without concatenation are
useless.)

We have the following open questions. Is there any possible restriction for the
used union-free languages to obtain a unique minimal decomposition. (As we have
shown the minimal decomposition of a regular language using maximal union-free
languages is not unique.)

Is there any useful (not too complex) algorithm to calculate the union-complexity
or a proper decomposition of a given regular language? (We have a lower bound as
the number of the shortest words of the language.)

What is the relation between the well-examined star-complexity, (generalized)
star-height and the union-complexity of a language? It is an interesting problem, to
analyze what language class can be described by the union-free expressions allowing
intersection or complement. (In literature the definition of star-free languages usually
allow to use these set-theoretical operations among languages.) It is easy to show
that allowing both of them, via De Morgan law one get the whole regular class.

6 Acknowledgements

The author wishes to thank the referees for their valuable comments.
This research is supported by a grant from the International Visegrad Fund.

10 B. Nagy

References

1. John Lane Bell and Moshé Machover: A course in mathematical logic, North-Holland Publishing Com-
pany, Amsterdam, 1977.

2. Sinǐsa Crvenković, Igor Dolinka and Zoltán Ésik, On equations for union-free regular languages, Inform.
and Comput. 164 (2001), no. 1, 152–172.

3. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley Publishing Company, Reading MA, 1979.

4. Sheng Yu, Regular languages, In: Handbook of formal languages (eds: G. Rozenberg, A. Salomaa, 3
volumes), Springer-Verlag, Berlin, 1997.

Self–Reproduction by Self–Assembly and Fission?

Jǐŕı Wiedermann

Institute of Computer Science, Academy of Sciences of the Czech republic,
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz

Abstract. We introduce so–called biomata which represent a novel approach to the con-
struction of self–reproducing automata within the automata theory. The design of our au-
tomata has been motivated by the ideas of cellular biology on the origin of life. Unlike the
von Neumann’s model our model replicates by fission and need not give much attention to
the exact guiding of its own assemblage; rather, this process relies on self–assembly abilities
of the respective parts produced by the biomaton from input objects not possessing such
quality. The model represents an interesting fusion of computational and self–organizational
processes. We believe that by capturing the basic aspects of the assumed origin of real life
our modelling leads to a conceptually simpler and hence more plausible scenario of natural
self–reproduction than the previous attempts did.

1 Introduction

In late 1940s, when John von Neumann started his quest for a logical, rather than
material, basis of biological self–reproduction, he first proposed a mechanistic model.
It consisted of a “robot” operating in a sea of its own spare parts. The robot had
some elementary functions for moving around, identifying and collecting the re-
quired parts and assembling them together and possessed a tape with instructions
for building a copy of itself by making use of these elementary functions. After con-
structing a replica of itself, the robot finally copied its instruction tape and inserted
it into the replicated robot which could then start the same activities. By this de-
sign, it is generally agreed that von Neumann discovered the basic principles for
the process of self–reproduction. Namely, there had to be a program, instruction
sequence to be used in two different ways: (1) to be interpreted as instructions for
constructing an offspring, and (2) to be copied passively, without being interpreted.
Quite understandingly von Neumann was not able to construct a working model
of his mechanistic self–reproducing automaton which would represent a convincing
proof of soundness of his design idea. However, in 1953, following Stanislaw Ulam’s
vision of cellular automata, he invented a cellular automaton implementation of
his mechanistic model. His cellular “robot” made use of a cellular automaton with
29 states per cell and consisted of approximatively 200 000 cells [7]. By this the
topic of self–reproduction entered the field of the automata theory and it seems
that until now nobody has questioned the uniqueness of von Neumann’s scenario of
self–reproduction in this field. There seems to be no formal computational model of
self–reproduction based on a different scenario than the one mentioned above.

In this paper we suggest a different scenario of self–reproduction. Our model
reflects the ideas of theoretical biology on the origin of life. According to these

? This research was partially supported by grant No. 1ET100300419 within the National Research Pro-
gram “Information Society”.

2 J. Wiedermann

ideas life emerges in the form of protocells from the union of two fundamentally
different kinds of replicating systems: an information genom and a membrane in
which it resides (cf. [6]). Thus, replication lies in the heart of both systems. Roughly
speaking, a genom controls its own replication and production and properties of
parts for building the membrane which itself is a spontaneously replicating entity.
The membrane shields the genom from the environment. This is enough to give
rise to a self-replicating system. Addition of randomness into the genom replicating
process leads to darwinian evolution of the whole system, and to so–called minimal
life systems, but this question is outside the scope of the present paper (cf. [8] for
an attempt to model minimal life).

In our setting, the basic functional aspects of protocells are modelled by so–
called biomata. A biomaton consists of a so–called Turing computational field and
its encapsulating membrane. By the activity of the Turing field certain input ob-
jects that permeate the membrane from outside are transformed into new objects
with self–assembly properties; the input objects alone do not possess such proper-
ties. The membrane “grows” by incorporating new objects into the already existing
membrane. All computations within the Turing field are controlled by a special ob-
ject representing a finite state program playing the role of a genom. The genom
itself can become a subject of the processing in the Turing field and indeed, inside
the membrane its copy can be produced from suitable input objects. Providing that
at that time the encompassing membrane doubles its volume, by definition it will
split by fission into two parts each containing a copy of the original genom: the
biomaton will reproduce itself. Even from the above rough sketch of biomata it is
obvious that they combine computational processes with self–organizational ones.
In our model the fission represents a non–computational process whose action and
result are merely postulated. In real life a membrane fission is a consequence of
the physical laws acting upon the membrane. Neither the self–assembly processes
nor the membrane fission are under the computational control of the genom. In a
sense, the respective non–computational mechanisms evoke the idea of an oracle
that similarly as in the case of Turing machines is used for achieving the effects that
principally cannot be obtained in a pure computational way by a device itself.

We believe that the main contribution of our paper lies in pointing to a new
research direction within the automata theory that aims towards the design and
exploitation of a formal model of self–replicating automata which are not based on
classical computational mechanisms as the von Neumann’s models were. While for
biologists this model represents an abstraction of a protocell, within automata the-
ory it formalizes an alternative scenario of self–replication that is closer to reality
than the previous models. The mathematical theory of self–assembly is an emerging
research field (cf. [1]) and our framework opens new avenues for its further develop-
ment.

The paper consists of 4 sections. The first section contains the introduction. The
biomaton itself is described in Section 2 in two subsections. The first subsection in-
troduces the so–called multitransducer that represents the computational analog of
a genom and in fact defines the Turing computational field. The second subsection
explains how the multitransducer must be designed in order to produce its encap-

Self–Reproduction by Self–Assembly an Fission 3

sulating membrane, how its genom gets replicated, and finally how the fission of
the membrane is achieved. A multitransducer operating in this way gives rise to a
biomaton. Section 3 discusses the previous achievements from the viewpoint of the
automata theory with regard to cellular automata, P–systems, evolution theory and
artificial life. The closing fourth section contains the summary of the achievements.

The paper describes the research in progress and so far neither the model nor
the formalism and the terminology are definitive; similarly, the results and their
interpretation only start to emerge. Some preliminary ideas related to the concept
of a multitransducer in the context of minimal life have been presented in a workshop
on membrane computing [8].

2 The Biomaton

Interactive finite multitransducer First, we will concentrate on the information
processing aspects of our model. For that purpose we will make use of modified finite
automata. We will use them in the mode of transducers (or as Mealy automata) —
i.e., as automata processing multisets of the finite input strings of symbols and
producing similar strings of output symbols. Moreover, we will consider a so–called
multitransducer which is a multiset of transducers of finitely many types that all
work asynchronously. Even though the description of a multitransducer, that is, of
all types of automata together, is finite, the cardinality of their multiset can be
arbitrarily large. This cardinality varies with time and depends on the number of
strings that are available for processing at each time — see the description of the
multitransducer’s activity in the sequel. Thus, from the computational viewpoint a
multitransducer is a highly parallel information processing device.

Now we will give a formal definition of a multitransducer for the simplest case
when each automaton reads its inputs via a single input port. Then we will describe
the way the machine works.

Definition 1. An interactive asynchronous finite multitransducer with single–input
ports is the six–tuple T = (I, O, S, B, F, δ), where

– I and O are finite alphabets of symbols, I is the input and O is the output alphabet;
– S is a finite alphabet of states;
– B ⊆ S is the subset of initially active states;
– F ⊆ S is the subset of final states;
– δ is the transition function of form I × S → S × O × S × {0, 1} × N which

for each v ∈ I read (and “consumed”) at the input port of some automaton and
each state s ∈ S assigns a new state r ∈ S, sends w ∈ O at the input port, and
sets the activation value of state q ∈ S to either 0 or 1; here 0 denotes non–
initial (passive) and 1 initial (active) state; this is formally written as δ(v, s) =
(r, w, q, 0, t) or δ(v, s) = (r, w, q, 1, t), respectively; t is the speed parameter saying
that it takes t ∈ N time units to realize the transition at hand.

In the multitransducer each type of the Mealy automaton is described by its
own transition function of form as given in Definition 1. We assume that the multi-
transducer finds itself in an environment consisting of a multiset of strings. Also this

4 J. Wiedermann

multiset is not given beforehand, it can change over time, that is, the multiplicity
of the same strings in it can vary. A multitransducer operates by systematically
and repeatedly transforming strings into other strings. The input strings are read
sequentially, symbol by symbol by automata via their input ports and the output
strings are produced in a similar way at their output ports. The automata work in
an asynchronous manner. We assume that each automaton has its own clock. For
simplicity we also suppose that in all automata the duration of one unit of time is
the same, however, the clocks are not synchronized. Since there is no notion of global
time it is not possible to define a “configuration of the system” at a given time. By
allowing more than one input port each automaton can be designed so as to be able
to process several strings in parallel, similarly as classical multihead automata. In
order that the operation of a multitransducer can work smoothly we assume that
each automaton reads the strings in a selective way, that is, it has a specific ability
to find this string in the environment for the processing that is programmed for,
as long as such a string exists in the environment. This property can also be seen
as a property of the environment — it is as though the environment attempted
to process each string by each multitransducer’s automaton, and as long as such a
pair (string, automaton–able–to–process–this–string) exists, then processing takes
place. Henceforth, the environment has a potential for realization of highly parallel
computations. Should there be two automata able to process a given string, one
of them is selected randomly. After being processed, a string “disappears”, being
transformed into a corresponding output string. The environment in which a multi-
transducer operates in the way described above is called Turing computational field.
The apparently strange behavior of the Turing computational field is motivated by
the idea of modelling the chemical reactions by such a field. Namely, certain chem-
ical reactions take place if there are corresponding reactants (i.e., inputs) available
and only if there is a corresponding catalyzer (i.e., a corresponding automaton with
an activated initial state) ready. Note that in a similar way also the computations
within the membrane systems are defined (cf. [4],[5]).

A multitransducer differs from the set of standard Mealy automata in two as-
pects. First, the set of initial states of all automata is not fixed, i.e., it is not given
once for all at the beginning of the computation. Rather, depending on the course
of computation this set can change with time: some states can loose their property
of being initial states, others can obtain this property. The instructions for acti-
vation/deactivation of initial states are included in the transition function of the
multitransducer. The states that are at the moment initial states will be also called
active states. The initial activation of states is given by set B as a part of the mul-
titransducer definition. Depending on the inputs read in subsequent steps and on
their order, (recall that automata work asynchronously) the activity of states can
change. The dynamic activation of its states enables the multitransducer to switch
“off” or “on” certain automata and to control the interactive processing in this way.
The automata whose initial state has been deactivated cease to be a part of the
Turing computational field and remain so unless their initial state gets reactivated
by an other automaton. The intended use of the initial state activating mechanism
is to model the gene switching in real cells. The second point of the departure of a

Self–Reproduction by Self–Assembly an Fission 5

multitransducer from the definition of classical automata is the possibility of control-
ling the processing speed of individual transitions. In order to be able to change the
speed of transitions we assume that with each transition, a so–called speed parameter
(a natural number), is associated that defines the speed taken by the realization of
that transition. This possibility can be used in tuning the synchronization among
various automata1.

With respect to the process of self–reproduction it seems natural to claim that
a multitransducer cannot transform non–empty strings into empty strings and vice
versa, that is, a multitransducer can neither generate something from nothing nor
nothing from anything. Note that, syntactically, in the transition function represen-
tation, there is no visible “boundary” between the automata of which the multi-
transducer consists — from the description of its activity it is clear that once the
processing of a string gets started by a transition containing an active state on its
left–hand side the processing will be prolonged by any transition that applies to the
new state and the symbol read at that very moment. In this way, the processing
goes on via a chain of admissible transitions until the string gets “consumed” and
a final state is reached. If the initial state of the automaton at hand is still active,
than a new processing can be launched. In what follows instead the term “string”
we will often use the term “object” to denote either a symbol or a string of symbols.
Depending on the context we will consider an object either as data it represents or
as a physical object possibly having certain self–assembly properties which will be
used to our advantage.

Encapsulating the multitransducer Since the final goal of our efforts is mod-
elling of self–reproduction we will have to “engage” a multitransducer in its own
replication. The resulting device will be called a biomaton. To this end, following
the ideas from cellular biology, we will let the multitransducer replicate its “genom”
and build its own “body” — a membrane endowed by a self-replicating property.
The purpose of the membrane will be

– to protect the multitransducer’s control mechanisms from the unwanted influence
of the environment;

– to restrict the range of multitransducer’s computational influence (i.e., the Turing
computational field) to a certain finite domain;

– to let selectively pass some input objects into the membrane;
– to enable the biomaton’s development (especially its growth and multiplication).

The membrane is constructed of so–called tiles which are special objects produced
by specific automata in the Turing computational field encapsulated by the mem-
brane. The membrane allows translocation of certain input objects from the outside
environment; tiles are produced from such input objects. Tiles have a special shape
and special properties. Their shape is such that they are able to form a three–
dimensional spherical structure — a membrane which prevents the encapsulated
objects to escape and allows certain input objects to enter. The tiles possess self–
assembly property meaning that any random cluster of tiles that are sufficiently close

1 The speed parameter can be avoided at the expense of allowing epsilon transitions in the formal definition
of a multitransducer.

6 J. Wiedermann

to each other will spontaneously self–assemble into a membrane and, moreover, if
there should be further tiles in the vicinity of such a membrane they will get spon-
taneously incorporated into it. In this way a membrane can grow. When roughly
doubling its volume, a membrane tears in two approximatively equal parts that
both spontaneously again organize into membranes. The pace of membrane growth
depends on the supply of tiles which are generated by automata from elements that
are not endowed by self–assembly property.

The activities of a multiset of automata within the Turing computational field are
controlled by a “program” that takes the form of a rewritten tape which finds itself
inside the membrane. This tape contains the description of the multitransducer’s
transition function in a linear form. This description consists of a series of segments
each of which corresponds to one transition of form I×S → S×O×S×{0, 1}×N. Of
course, such a program resembles a genom residing inside a biological cell. Similarly
as a genom, it consists of a series of instructions for production of various objects that
can be further used for membrane construction or for constructing the genom’s copy.
All this happens via activation or deactivation of the respective automata. From the
viewpoint of a multitransducer, a program is an object as any other objects and
therefore the program tape can also become a subject of an automaton’s processing
within that multitransducer. An important automaton in that respect is a copying
automaton whose task is to produce a copy of the program tape. Such an automaton
has two inputs — one by which it reads the current program tape and the other
by which it accepts “stuff” (objects) from which a tape’s copy is to be constructed.
Of course, the copying process does not destroy the original tape. Note that it is
(also) here where our scenario of self–reproduction deviates from the classical von
Neumann’s ideas. Namely, in our case in the multitransducer’s description there
is no need to give a “recipe” how to build the “body” — a membrane, when and
how to split it, how to see that there is a single copy of the program tape in each
newly emerging membrane, etc. While this is technically possible (as shown by
von Neumann), in our case the self–assembly processes, their proper triggering and
timing by a multitransducer, and a postulation of a non–computational (albeit in
reality natural) operation of membrane splitting take care about this kind of self–
reproduction activities that von Neumann had to program laboriously.

The idea of an embodied transducer emerging above is captured in the following
“descriptive” definition of a biomaton:

Definition 2. A biomaton is a self–reproducing multitransducer which works in the
following way:

– the activity of the multitransducer’s Turing computational field is controlled by
the multitransducer’s transition function which is represented as a special object
— called tape;

– this tape resides inside a membrane with a certain initial volume which has been
constructed by self–organization from tiles that are produced by the Turing com-
putational field from specific input objects permeating freely the membrane from
outside; the respective input objects do not possess self–assembly properties; the
membrane steadily increases its volume by incorporating new tiles;

Self–Reproduction by Self–Assembly an Fission 7

– along with the growth of the membrane the process of tape copying is in progress;
the copy of the tape is also built by the Turing computational field from input
objects permeating the membrane;

– the growth and copying processes are synchronized so that at the time when the
copying process ends the initial volume of the membrane doubles; at that time the
membrane splits into two membranes, each retaining one copy of the tape.

Note that after the fission each of the pair of newly emerging biomata has the
original size of their parent biomaton. Thus, under a sufficient supply of input objects
the same process can be repeated ad infinitum.

Even from the above informal description one can see that for its self–replication
a biomaton needs a hierarchy of objects with various properties. We start with simple
input objects possessing no self–assembly abilities. However, these objects must be
such that a multitransducer can generate out of them other objects already possess-
ing self–assembly properties (tiles). These self–assembly objects further self–organize
into complex structures (membranes) that by definition are endowed with still other
emergent properties not possessed by their parts (e.g., membrane splitting).

In order to show that the definition of a biomaton is sound one has to prove
that an entity satisfying it does exist. In a sense this is a problem similar to that
von Neumann faced after describing the idea of his mechanistic self–replicating robot
without actually constructing it. In our case, a proof of the last claim concerning the
existence of a biomaton would require a formal design of a concrete multitransducer
with properties according to Definition 2. While we believe that in principle this
is possible, for the time being we feel that we do not have a sufficiently developed
formalism for capturing all the necessary spacial, temporal and functional aspects
of self–organizational processes needed for our purposes. Initial attempts in this
direction can be seen in the emerging mathematical theory of self–assembly (cf.
[1]). In [9] a so–called globular universe (a kind of cellular automaton) has been
described in which the existence of self–replicating structures resembling the tape
from Definition 2 is constructively shown. Moreover, these structures are shown to
posses an evolutionary potential, i.e., they can evolve so as to realize any given
finite control mechanism. Nevertheless, for the time being we have to refer to an
“indirect” evidence pointing to the existence of biomata. Namely, self–assembly and
splitting of a sufficiently large membrane which are basic assumptions postulated
in our model are justified by the existence of similar phenomena in reality, at the
level of real bacteria. There, the physical laws work “as needed” for a bacterium to
operate correctly. Both the self–assembly property and the physical laws acting, e.g.
in the case of a membrane splitting or input objects permeating the membrane, are
“present” all the time without a need to be invoked; what is done in a bacterium is
harnessing these essentially non-computational phenomena for the purpose of life.
All these non-computational phenomena are captured by our model at the level of
assumptions. This evidence from real life is supported by efforts in cellular biology
for synthesizing life from scratch (cf. [3]).

8 J. Wiedermann

3 Discussion

Let us compare “our” scenario of self–reproduction with that of von Neumann (as
briefly sketched at the beginning of this paper). Obviously, the basic principles are
the same: in both cases there is a program that is both actively interpreted and pas-
sively copied. But there is a difference in both approaches concerning the replication:
while von Neumann builds a copy separately, outside the original body, right from
the scratch, taking care over all details of the body building, in our approach a copy
emerges by splitting the original body without taking care over the details of such a
process. In our setting there is never a phase of a “half finished” automaton that is
not yet functional. To our mind, our approach reflects the self–reproduction on the
level of the simplest cells while von Neumann’s approach (via cellular automata)
corresponds more to multicellular organisms. In order that a cellular automaton
should reproduce itself it needs a supply of finished fully functional cells that need
to be only activated. In our case, the transformation from a “non–living” to an “an-
imated” entity is more gradual: we start with input objects having no self–assembly
properties, produce out of them objects with such properties, and finally let them
self–organize. It seems that such a process needs less sophisticated central compu-
tational control and leads to a better parallelism exploitation. That is perhaps why
it has been favored by evolution.

The idea of biomata brings new impetuses into the automata theory since it intro-
duces a new computational model mixing data processing with object construction
while utilizing non–standard computational resources. This leads to new classes of
computational problems which wait to be formulated, formalized and solved. A char-
acterization of the processing power of multitransducers (or biomata) is open. Un-
doubtedly, any progress along these lines must be matched by an analogous progress
in the theory of self–assembly.

In the context of computational models it is of interest to discuss the relation
of biomata to the membrane systems (cf. [5]). Although originating from the same
source of ideas (viz. cell biology), we see the main differences between the two
systems both in their different purposes for which they were designed and in their
different architecture. These points are summarized bellow:

– in standard membrane systems the membrane is a part of the model that is not
produced by a model; in the case of biomata, the membrane is a product of input
processing;

– for their activity the membrane systems make use of a hierarchy of distributed
computations; the biomata make use essentially of three different cooperating
resources:
– distributed computational power controlled centrally via biomaton’s tape and
state switching;
– distributed self–assembly processes governed by local assembly rules;
– non–computational phenomena modelling the effect of physical laws;

– the computations of membrane systems are governed by rules, whereas the biomata
are controlled by finite state machines (of course, the computational power of
both mechanisms is the same);

Self–Reproduction by Self–Assembly an Fission 9

– the “program” of biomata is both actively interpreted for controlling the bioma-
ton’s activities and passively copied for the self–reproduction purposes; without
modifying their functionality, this cannot be mirrored by the membrane systems;

– the primary aim in the design of membrane automata has been their computa-
tional universality, as indicated e.g. in [4]; in the case of biomata, the aim has
been to achieve their self–reproduction ability;

– an evolutionary aspect can easily be introduced into a framework of biomata;
in fact for such a purpose it is enough to admit errors in the copying process
of genetic information. By the very construction of biomata, the “genotype” of
the system is closely related to its “phenotype” and thus the system as a whole
can become a subject of darwinian evolution. The membrane systems cannot be
straightforwardly adapted for such a modelling.

We believe that our model is of interest also in the context of cellular and evo-
lutionary biology, exactly for reasons mentioned in the last item of the previous
paragraph: it enables a further insight into the mechanisms of adaptive evolution
and perhaps will also enable computational experiments along these lines.

To some extent, perhaps the biomata can also contribute to the eternal question
on the relationship between living and non–living matter (cf. [2]). Namely, in biomata
we start with the input objects not endowed by self–assembly property, in the next
step we construct (“compute”?) objects already possessing such a property, and
we end up with a “living matter”, to some extent. All this happens in an abstract
medium, within a mathematical model; a possible candidate for such a model has
been proposed in [9]. In this context, biomata are a typical instance of artificial life.
To what extent our models correspond to reality remains to be seen.

The last remark concerns the relation between computing and constructing. For
our approach it has been of a prime importance that the objects can be seen both as
data for information processing (e.g. the multitransducer’s tape, the “genom”, has
been seen as a set of instructions to be interpreted by the Turing’s computational
field), and real physical objects obeying physical (or chemical) laws (e.g. the tape
can be copied, from the input objects self–assembly objects can be produced, the
tiles organize themselves spontaneously into a membrane, an oversized membrane
ruptures and splits). Perhaps we are witnessing the dawn of a new field of computing,
a “constructive computing”, with self–assembly being its harbinger.

4 Conclusion

We devised a biomaton — a novel model of a self–reproducing machine which is
driven by a finite state program. From the surrounding input objects a biomaton
constructs its “spare” parts endowed by self–assembly properties. Consequently,
these parts organize themselves spontaneously into the biomaton’s “body” that
takes the form of a membrane. Eventually, the biomaton produces a copy of its
program and splits its membrane into two equal parts, each containing one copy of
the original control program. When compared with the standard von Neumann’s
model of self–reproduction our scenario leads to a new model of self–reproduction

10 J. Wiedermann

that captures this process at the level of a single cell rather than at the level of mul-
ticellular organisms as von Neumann’s cellular automaton model in fact does. In the
automata theory, in the related context of cellular and evolutionary biology, and in
artificial life our model seems to have a great potential for its further development
and investigations. The new model presents a case of constructive computing, in
which the physical properties of data representations are equally important as the
computational properties of the data themselves.

References

1. Adleman, L.: Toward a mathematical theory of self-assembly. Tech. Rep. 00-722, Dept. of Computer
Science, University of Southern California, 2000.

2. Brooks, R.: The relationship between matter and life. Nature, Vol. 409, 18 January 2001, pp. 409–411
3. Hanczyc, M. M., Fukijawa, S. M., Szostak, J. W.: Experimental Models of Primitive Cellular Com-

partments: Encapsulation, Growth, and Division. Science. 302 (2003), pp. 618-622.
4. Paun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer Science 287

(2002), pp. 73-100.
5. Paun, G.: Membrane Computing. An Introduction, Springer, 2002
6. Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing Life. Nature 409 (2001) 389-390.
7. von Neumann, J.: Theory of Selfreproducing Automata. A. Burks (Ed.), University of Illinois Press,

Urbana and London, 1966
8. Wiedermann, J.: Coupling computational and non–computational processes: minimal artificial life.

Pre–proceedings of the Fifth Workshop on Membrane Computing (WMC5), G. Mauri, Gh. Paun, C.
Zandroni (Eds.), Dept. of Comp. Sci., University of Milan — Bicocca, Italy, June 16–16, 2004, 444 p.

9. Wiedermann, J.: Self–reproducing self–assembling evolutionary automata. Manuscript, September
2004

