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Deutsch’s algorithm was the first algorithm proposed for which quantum computers 

could outperform classical computers.  It requires only a single qubit; since photons make 

very stable qubits, and expensive materials are only needed for multi-qubit gates, one can 

implement Deutsch’s algorithm using inexpensive, readily available parts.  Here we 

describe two implementations.  Such a computer can be useful in demonstrating simple 

quantum effects. 

Brief history 

Quantum computation is a relatively new field; Richard Feynman [F82] proposed 

the idea that one well-controlled quantum system could simulate another, more 

inaccessible system.  Since then, several algorithms have been publis hed specifically for 

quantum computers.  In [D85], David Deutsch published a design for a universal 

quantum computer, and later published the first algorithm for which a quantum computer 

could outperform a classical computer [DJ92], of which we present an implementation 

below.  Two years later, Peter Shor invented one of the two algorithms that justify all the 

money being spent in researching quantum computation: an algorithm to factor large 

integers in polynomial time [S94]; if quantum computers ever reach the point where they 

can control thousands of quantum bits for millions of steps, then the asymmetric 
                                                 
1 This paper was written in partial fulfilment of the requirements of COMPSCI 775, Unconventional 
Models of Computation. 



cryptography that protects nearly all of the world’s financial transactions will be broken.  

One year later, Shor gave the first example of a quantum error-correcting code, a 

necessary tool for achieving that goal.  Lov Grover published the next important 

algorithm in [G97], an unordered database search.  This algorithm has the potential to 

affect the design of symmetric cryptosystems, since it effectively halves the length of a 

symmetric key. 

Implementations 

In the latter part of the 1990s and early part of this decade, considerable progress 

has been made towards the implementation of a quantum computer.  In most 

implementations, like nuclear magnetic resonance (NMR) and ion traps, the quantum 

sytems are extremely sensitive to the environment and need to be cooled and shielded.  

Optical quantum computers are one strong possibility for scalable quantum computation, 

because photons are extremely stable quantum systems—so stable, in fact, that the major 

hurdle is getting the photons to interact with each other at all!  One proposal [T03] for 

making an optical quantum computer involves the use of the optical Kerr effect.  Kerr 

media can be used to form the so-called “controlled-phase rotation” gate. 

Since Kerr media is bulky, difficult to work with, and expensive, other ways of 

doing optical quantum computation are being researched.  In [KLM01], Knill, Laflamme, 

and Milburn describe quantum gates made entirely out of linear optics: cheap, reliable, 

and easy-to-use.  The downside is that the gates are only probabalistic; the output channel 

decreases in brightness for each gate used.  Deutsch’s algorithm, however, requires only a 



single qubit, so in implementing it, we can avoid all the problems with interaction 

between qubits. 

Linear-optical quantum gates 

The simplest quantum system is the quantum-bit, or qubit.  We can describe a qubit 

mathematically by a normalized two-dimensional vector with complex elements: 
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where * indicates complex conjugation.  Also, there is a global phase factor that is 

unobservable: we can only measure the phase difference between a and b. 

One-bit gates are represented mathematically as 2x2 matrices.  The first gate we 

consider is the polarizer.  It implements a projection operator that transmits an impinging 

photon in the state 
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 with probability aa*, or absorbs the photon with probability 

bb*.  Written as a matrix, the polarizer is 

00
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Polarized film was invented in the mid 1930’s by a scientist named Edwin Land.  

Before Land’s invention, polarizers were made from two clear crystals of calcite, 

carefully cut and arranged such that, due to the birefringence, oppositely polarized beams 

of light exited at right angles to each other.  They were large and expensive, and people 



were trying to figure out another way to achieve the same effect.  Land had a tradition of 

reading old science journals with his wife.  They came across the account of a physician, 

Dr. Willam Herapath, who was researching the effect of the anti-malaria drug quinine on 

dogs.  Herapath noted that microscopic crystals had formed in the dog’s urine, and that 

when parallel to one another, the crystals were transparent.  When they crossed at right 

angles, however, the crystals were dark.  Herapath recognized the phenomenon as 

polarization and was able to grow some slightly larger crystals, but the process was 

inefficient and unwieldy.  Land came up with the idea of embedding the crystals in a 

plastic sheet and aligning them—originally with a large electromagnet, and later by 

stretching the film.  Land went on to form the very successful Polaroid company, 

providing these new, inexpensive polarizers. 

The long molecules in the crystals act like antennae for optical wavelengths; an 

electron moving in response to the electric field of a photon will absorb the photon, but 

will only feel a restoring force perpendicular to the molecule; thus any photon reemitted 

by the electron will be polarized perpendicularly to the molecule. 

Next, mirrors implement phase inversion.  A beam of light reflecting off a mirror as 

aligned in Fig. 1 will have left-right polarization switched, while up-down polarization 

remains unaffected: 
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Phase inversion is a special case of phase shift.  More general phase shift is 

implemented with cellophane: light polarized along the same axis as the stretch of the 



cellophane is unaffected, whereas light polarized perpendicularly to the stretch is shifted 

slightly.  The amount of shifting depends on the color of the light, similar to the creation 

of a rainbow by a prism.  The difference in phase is visible as a strong blue color when 

viewed through a polarizer.  The matrix representation of a phase shift of ? radians is as 

follows: 
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Rotation of the cellophane, mirror, or polarizer is represented with the usual 

rotation matrix: 
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Deutsch’s Problem 

Deutsch's problem was the following.  Given one of the functions f(x) from the sets 

{0, 1} ("constant" functions) or {x, ¬x} ("balanced" functions) as a black box, determine 

from which set it came by computing f on one input.  One bit of information is enough to 

distinguish the two sets, but classically there's no way of calculating the bit we need, 

since it's the XOR of two function outputs.  With a quantum computer, we get qubits for 

input and output, and we can do better. 

Implementation 

In the mirror-based quantum version, we have four boxes that do the following: 



10
01

0 → :  No reflections. 

10
01−

→x : Horizontal reflection. 

10
01

−
→¬x : Vertical reflection. 

10
01

1
−

−
→ : Both horizontal and vertical reflections . 

or, most concisely 

 
)1(

)0(

)1(0
0)1(

)(
f

f

xf
−

−
→ . 

If we choose a horizontally or vertically polarized photon, we won't be able to tell if 

it was reflected: they're both symmetric horizontally and vertically.  These qubits 

correspond to the classical inputs zero and one, and as before, we gain no information 

about which function it is.  However, if we choose a diagonally polarized photon, then 

each reflection makes the resulting state perpendicular to the state immediately before: 
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Deutsch's algorithm, then, proceeds like this: 

    1. Turn the input polarizer to 45 degrees. 

    2. Turn the output polarizer to 45 degrees. 

    3. Shine light into the box.  If we don't see any light coming out, it's a constant 

function; otherwise it's a balanced function.  

Mathematically, the algorithm can be represented as 

D=(Rp/4P)(R p/2F)f(0)Ff(1)(R p/4P) 

See figures 1, 2, and 3. 

The cellophane-based implementation is similar: 
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As before, horizontally and vertically polarized photons pass through visibly 

unaffected; while the phase does get shifted, the shift is global, and therefore 

unmeasurable.  Diagonally polarized photons acquire a phase difference between the 

components when there’s a single layer of cellophane and only blue photons pass through 

unabsorbed. 

The only difference between the outcomes in this case is that instead of blocking 

the light completely in the balanced case, it blocks all colors but blue.  See figures 4, 5. 

Mathematically, the algorithm can be represented as 

D=(Rp/4P)(R p/2S)f(0)Sf(1)(R p/4P) 

Conclusion 

Since photons are such stable qubits, and since Deutsch’s algorithm only requires 

one, a linear-optical implementation of his algorithm is well within even the most 

restricted budgets and can help to illustrate some of the basic concepts of quantum 

computation.  
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Fig. 1: Layout of mirror-based implementation 



 

Fig. 2: Balanced function 

 

Fig. 3: Constant function 



 

Fig. 4: Cellophane-based implementation.  There are two layers of cellophane 

aligned perpendicularly.  Where they overlap, both components of the phase are shifted 

the same amount, giving rise to an unobservable global phase shift. 



 

Fig. 5: Cellophane aligned with the polarizer, simulating classical inputs; we gain 

no information. 




