
CDMTCS
Research
Report
Series

Program Size Complexity for
Possibly Infinite
Computations

V. Becher1, S. Figueira1, A. Nies2,
S. Picchi1

1University of Buenos Aires, Argentina
2 Auckland University

CDMTCS-222
August 2003

Centre for Discrete Mathematics and
Theoretical Computer Science

Program Size Complexity for Possibly Infinite

Computations

Verónica Becher Santiago Figueira André Nies Silvana Picchi
Univ. of Buenos Aires Univ. of Buenos Aires Univ. of Auckland Univ. of Buenos Aires

vbecher@dc.uba.ar sfigueir@dc.uba.ar andre@cs.auckland.ac.nz sp8i@dc.uba.ar

July 23, 2003

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a one-way
write-only output tape) performing possibly infinite computations, and we define a program
size complexity function H∞ : {0, 1}∗ → N as a variant of the classical Kolmogorov com-
plexity: given a universal monotone machine U , for any string x ∈ {0, 1}∗, H∞(x) is the
length of a shortest string p ∈ {0, 1}∗ read by U , which produces x via a possibly infinite
computation (either a halting or a non halting computation), having read exactly p from
the input.

The classical prefix-free complexity H [2, 9] is an upper bound of the function H∞ (up
to an additive constant), since the definition of H∞ does not require that the machine U
halts.

The complexity H∞ is closely related with the monotone complexity Hm, independently
introduced by Levin [7] and Schnorr [12] (see [14] and [10] for historical details and differences
between various monotone complexities). Levin defines Hm(x) as the length of the shortest
halting program that provided with n (0 ≤ n ≤ |x|), it outputs x �n. Equivalently Hm(x)
can be defined as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H∞ (up to an additive constant) since the definition of H∞

imposes that the machine U reads exactly the input p and produces exactly the output
x. Every recursive A ∈ {0, 1}ω is the output of some monotone machine with no input,
then there is some c such that ∀n Hm(A � n) ≤ c. Moreover, there exists n0 such that
∀n, m ≥ n0 Hm(A � n) = Hm(A � m). We show this is not the case with H∞, since for
every infinite B = {b1, b2, . . .} ⊆ {0, 1}∗, limn→∞H∞(bn) = ∞. This is also a property
of the classical prefix-free complexity H, and we consider it as a decisive property that
distinguishes H∞ from Hm.

The prefix-free complexity relative to a universal machine with oracle ∅′, the function
H∅′ , is also a lower bound of H∞ (up to an additive constant). We prove that for infinitely
many strings x, the complexities H(x), H∞(x) and H∅′(x) separate as much as we want.
This already proves that these three complexities are different. In addition we show that
for every oracle A, H∞ differs from HA, the prefix-free complexity of a universal machine
with oracle A. We also prove that H∞ differs from H in that it has no decreasing recursive
monotonous approximation and it is not subadditive. Finally, for sequences in {0, 1}ω we
consider definitions of randomness and triviality based on the H∞ complexity. Since Hm-
randomness coincides with Martin-Löf randomness and Hm gives a lower bound of H∞, the
classes of H-random, H∞-random and Hm-random coincide.

We argue for a definition H∞-trivial sequences that is satisfied by the recursive sequences
in {0, 1}ω. A ∈ {0, 1}ω is H∞-trivial iff for all n, H∞(A � n) ≤ H∞(0n) + O(1), i.e., the
initial segments of A have minimal H∞ complexity. While every recursive A ∈ {0, 1}ω is

1

both H-trivial and H∞-trivial, the two classes do not coincide. We give a characterization
result of recursive sequences as those which are ∆0

2 and H∞-trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As usual,
a string is a finite sequence of elements of {0, 1}, λ is the empty string and {0, 1}∗ is the
set of all strings. {0, 1}ω is the set of all infinite sequences of {0, 1}, i.e. the Cantor space.
{0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω is the set of all finite or infinite sequences of {0, 1}.

For a ∈ {0, 1}∗, |a| denotes the length of a. If a ∈ {0, 1}∗ and A ∈ {0, 1}ω we denote a�n
the prefix of a with length min(n, |a|) and A �n the length n prefix of the infinite sequence
A. We assume the recursive bijection string : N → {0, 1}∗ such that string(i) is the i-th
string in the length-lexicographic order over {0, 1}∗.

If f is any partial map then, as usual, we write f(p)↓ when it is defined, and f(p)↑
otherwise.

2.1 Possibly infinite computations on monotone machines

A monotone machine is a Turing machine with a one-way read-only input tape, some work
tapes, and a one-way write-only output tape. The input tape contains a first dummy
cell (representing the empty input) and then a one-way infinite sequence of 0’s and 1’s
and initially the input head scans the leftmost dummy cell. The output tape is written
one symbol of {0, 1} at a time (the output grows monotonically with respect to the prefix
ordering in {0, 1}∗ as the computational time increases).

A possibly infinite computation is either a halting or a non halting computation. If the
machine halts, the output of the computation is the finite string written on the output tape.
Else, the output is either a finite string or an infinite sequence written on the output tape
as a result of a never ending process. This leads to consider {0, 1}≤ω as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone machines
which read just finitely many symbols from the input tape.

Definition 2.1. Let M be a monotone machine. M(p)[t] is the current output of M on
input p at stage t if it has not read beyond the end of p. Otherwise, M(p)[t] ↑. Notice that
M(p)[t] does not require that the computation on input p halts.

Remark 2.2. Notice that

1. If M(p)[t] ↑ then M(q)[u] ↑ for all q � p and u ≥ t.

2. If M(p)[t] ↓ then M(q)[u] ↓ for any q � p and u ≤ t. Also, if at stage t, M reaches a
halting state, then M(p)[u]↓ = M(p)[t] for all u ≥ t.

3. Since M is monotone, M(p)[t] � M(p)[t + 1], in case M(p)[t + 1] ↓.

4. M(p)[t] has recursive domain.

Definition 2.3. Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial recursive map
M : {0, 1}∗ → {0, 1}∗ given by the usual computation of M, i.e., M(p) ↓ iff M enters
into a halting state on input p without reading beyond p. If M(p) ↓ then M(p) =
M(p)[t] for some stage t at which M entered a halting state.

2. The input/output behavior of M for possibly infinite computations is the map M∞ :
{0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞M(p)[t].

Proposition 2.4.

2

1. domain(M) is closed under extension and its syntactical complexity is Σ0
1.

2. domain(M∞) is closed under extensions and its syntactical complexity is Π0
1.

3. M∞ extends M .

Proof. 1. is trivial.

2. M∞(p) ↓⇔ ∀tM on input p does not read p0 and does not read p1. Clearly, domain(M∞)
is closed under extensions since if M∞(p)↓ then M∞(q) ↓= M∞(p) for every q � p.

3. Since the machine M is not required to halt, M∞ extends M .

Remark 2.5. An alternative definition of M and M∞ would be to consider them with prefix
free domains (instead of closed under extensions):

- M(p)↓ iff at some stage t M enters a halting state having read exactly p. If M(p) ↓
then its value is M(p)[t] for such stage t.

- M∞(p)↓ iff ∃t at which M has read exactly p and for every t′ M does not read p0 nor
p1. If M∞(p)↓ then its value is sup{M(p)[t] : t ≥ 0}.

We fix an effective enumeration of all tables of instructions. This gives an effective
(Mi)i∈N. We fix the usual monotone universal machine U , which defines the functions
U(0i1p) = Mi(p) and U∞(0i1p) = M∞

i (p) for halting and possibly infinite computations
respectively. Recall that U∞ is an extension of U . We also fix U∅

′
a monotone universal

machine with an oracle for ∅′.
By Shoenfield’s Limit Lemma every M∞ : {0, 1}∗ → {0, 1}∗ is recursive in ∅′. However,

possibly infinite computations on monotone machines can not compute all ∅′-recursive func-
tions. For instance, the characteristic function of the halting problem can not be computed
in the limit by a monotone machine. In contrast, the Busy Beaver function in unary notation
bb : N → 1∗:

bb(n) =
the maximum number of 1’s produced by any Turing machine
with n states which halts with no input

is just ∅′-recursive and bb(n) is the output of a non halting computation which on input
n, simulates every Turing machine with n states and for each one that halts it updates, if
necessary, the output with more 1’s.

2.2 Program size complexities on monotone machines

Let M be a monotone machine, and M , M∞ the respective maps for input/output behavior
of M for halting computations and possibly infinite computations (Definition 2.3). We
denote the usual prefix free complexity [2, 9, 11] for M with HM : {0, 1}∗ → N

HM(x) =
{

min{|p| : M(p) = x} if x is in the range of M
∞ otherwise

Definition 2.6. H∞
M : {0, 1}≤ω → N is the program size complexity for functions M∞.

H∞
M(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise

For U we drop subindexes and we simply write H and H∞. The Invariance Theorem holds
for H∞:

∀ monotone machine M ∃c ∀s ∈ {0, 1}≤ω
H∞(s) ≤ H∞

M(s) + c.

The complexity function H∞ was first introduced in [1] without a detailed study of its
properties. Notice that if we take monotone machines M according to Remark 2.5 instead
of Definition 2.3, we obtain the same complexity functions HM and H∞

M.
In this work we only consider the H∞ complexity of finite strings, that is, we restrict our

attention to H∞ : {0, 1}∗ → N. We will compare H∞ with these other complexity functions:

3

HA : {0, 1}∗ → N is the program size complexity function for UA, a monotone universal
machine with oracle A. We pay special attention to A = ∅′.

Hm : {0, 1}≤ω → N (see [7]), where HmM(x) = min{|p| : M∞(p) � x} is the monotone
complexity function for a monotone machine M and, as usual, for U we simply write
Hm.

We mention some known results that will be used later.

Proposition 2.7.

1. ∃c ∀s ∈ {0, 1}∗ H(s) ≤ |s|+ H(|s|) + c.

2. ∃c ∀s ∈ {0, 1}∗ H∅′(s)− c < H∞(s) < H(s) + c, (see [1]).

3. ∀n ∃s ∈ {0, 1}∗ of length n such that:

(a) H(s) ≥ n.

(b) H∅′(s) ≥ n.

3 H∞ is different from H

The following properties of H∞ are in the spirit of those of H.

Proposition 3.1. For all strings s and t

1. H(s) ≤ H∞(s) + H(|s|) +O(1).

2. #{s ∈ {0, 1}∗ : H∞(s) ≤ n} < 2n+1.

3. H∞(ts) ≤ H∞(s) + H(t) +O(1).

4. H∞(s) ≤ H∞(st) + H(|t|) +O(1).

5. H∞(s) ≤ H∞(st) + H∞(|s|) +O(1).

Proof. 1. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = |s|. Then there is a machine
that first simulates U(q) to obtain |s|, then it starts a simulation of U∞(p) writing its
output on the output tape, until it has written |s| symbols, and then halts.

2. There are at most 2n+1 − 1 strings of length ≤ n.

3. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = t. Then there is a machine that
first simulates U(q) until it halts and prints U(q) on the output tape. Then , it starts
a simulation of U∞(p) writing its output on the on the output tape.

4. Let p, q ∈ {0, 1}∗ such that U∞(p) = st and U(q) = |t|. Then there is a machine
that first simulates U(q) until it halts to obtain |t|. Then it starts a simulation of
U∞(p) such that at each stage n of the simulation it writes the symbols needed to
leave U(p)[n]� |U(p)[n]| − |t| on the output tape.

5. Consider the following monotone machine:

t := 1 ; v := λ ; w := λ

Repeat

if U(v)[t] asks for reading then v := vb

if U(w)[t] asks for reading then w := wb

4

where b is the next bit in the input

extend the actual output to U(w)[t]�(U(v)[t])

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st respectively,
then we can interleave p and q in a way such that at each stage t, v � p and w � q
(notice that eventually v = p and w = q). Thus, this machine will compute s and will
never read more than H∞(st)+H∞(|s|) bits.

H is recursively approximable from above, but H∞ is not.

Proposition 3.2. There is no effective decreasing approximation of H∞.

Proof. Suppose there is a recursive function h : {0, 1}∗ × N → N such that for every string
s, limt→∞ h(s, t) = H∞(s) and for all t ∈ N, h(s, t) ≥ h(s, t + 1). We write ht(s) for h(s, t).
Consider the monotone machine M with index d, which on input p does the following.

t := 1 ; print 0
repeat forever

n := number of bits read by U(p)[t]
for each string s not yet printed, |s| ≤ t and ht(s) ≤ n + d

print s
t := t + 1

Let p be a shortest program such that U∞(p) = k. Notice that, as t →∞, the number of bits
read by U(p)[t] goes to |p| = H∞(k). Let t0 such that for all t ≥ t0, U(p)[t] reads no more
from the input. Since there are only finitely many strings s such that H∞(s) ≤ H∞(k) + d,
there is a t1 ≥ t0 such that for all t ≥ t1 and for all those strings s, ht(s) = H∞(s). Hence,
every string s with H∞(s) ≤ H∞(k) + d will be printed.

Let z = M∞(p). On the one hand, we have H∞(z) ≤ |p|+d = H∞(k)+d. On the other
hand, by the construction of M, z cannot be the output of a program of length ≤ H∞(k)+d
(because z is different from each string s such that H∞(s) ≤ H∞(k) + d). So it must be
H∞(z) > H∞(k) + d, a contradiction.

A critical property distinguishes H∞ from H, and it implies that H∞ is not subadditive
and not invariant for recursive permutations {0, 1}∗ → {0, 1}∗.

Lemma 3.3. For every total recursive function f there is a natural k such that

H∞(0k1) > f(H∞(0k)).

Proof. Let f be any recursive function and M the following monotone machine with index
d given by the Recursion Theorem:

t := 1
do forever

for each p such that |p| ≤ max{f(i) : 0 ≤ i ≤ d}
if U(p)[t] = 0j1 then

print enough 0’s to leave at least 0j+1 on the output tape
t := t + 1

Let N = max{f(i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k. Since there
are only finitely many programs of length less than or equal to N which output a string
of the form 0j1, for some j, then there is some stage at which M has written 0k, with k
greater than all such j’s, and then it prints nothing else. Therefore, there is no program p
with |p| ≤ N such that U∞(p) = 0k1.

5

If M∞(λ) = 0k then H∞(0k) ≤ d. So, f(H∞(0k)) ≤ N . Also, for this k, there is no
program of length ≤ N that outputs 0k1 and thus H∞(0k1) > N . Hence, H∞(0k1) >
f(H∞(0k)).

Note that H(0k) = H(0k1) = H∞ up to additive constants, so the above lemma gives an
example where H∞ is much smaller that H.

Proposition 3.4.

1. H∞ is not subadditive.

2. It is not the case that for every recursive one-one g : {0, 1}∗ → {0, 1}∗
∃c ∀s |H∞(g(s))−H∞(s)| ≤ c.

Proof. 1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3 there is k such
that H∞(0k1) > H∞(0k) + c. Since the last inequality holds for every c, it is not true
H∞(0k1) ≤ H∞(0k) +O(1).

2. It is immediate from Lemma 3.3.

It is known that the complexity H is smooth in the length and lexicographic order over
{0, 1}∗ in the sense that |H(string(n))−H(string(n + 1))| = O(1). However, this is not the
case for H∞.

Proposition 3.5.

1. H∞ is not smooth in the length and lexicographical order over {0, 1}∗.

2. For all n |H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1).

Proof. 1. Notice that ∀n > 1 H∞(0n1) ≤ H∞(0n−11)+O(1), because if U∞(p) = 0n−11
then there is a machine that first writes a 0 on the output tape and then it simulates
U∞(p). By Lemma 3.3, for each c there is a n such that H∞(0n1) > H∞(0n) +
c. Joining the two inequalities, we obtain ∀c ∃n H∞(0n−11) > H∞(0n) + c. Since
string−1(0n−11) = string−1(0n) + 1, H∞ is not smooth.

2. Consider the following monotone machine M with input pq:

Obtain y = U(p)

Simulate z = U∞(q) till it outputs y bits

Write string(string−1(z) + 1)

Let p, q ∈ {0, 1}∗ such that U(p) = |string(n)| and U∞(q) = string(n). Then,
M∞(pq) = string(n + 1) and H∞(string(n + 1)) ≤ H∞(string(n)) + H(|string(n)|) +
O(1).

Similarly, ifM above instead of writing string(string−1(z)+1), it writes string(string−1(z)−
1), we conclude H∞(string(n)) ≤ H∞(string(n+1))+H(|string(n + 1)|)+O(1). Thus,
|H(string(n))−H(string(n + 1))| = O(1).

6

4 H∞ is different from HA for every oracle A

Point 2 of Proposition 2.7 states that H∞ is between H and H∅′ . The following result shows
that H∞ is really strictly in between them.

Proposition 4.1. For every c there is a string s ∈ {0, 1}∗ such that

H∅′(s) + c < H∞(s) < H(s)− c.

Proof. Let un = min{s ∈ {0, 1}n : H(s) ≥ n} and let A = {a0, a1, . . . } any infinite r.e. set
and consider a machine M which on input i does the following:

j := 0
Repeat

Write aj

Find a program p, |p| ≤ 3i, such that U(p) = aj

j := j + 1

M∞(i) outputs the string vi = a0a1 . . . aki
, where H(aki

) > 3i and for all z, 0 ≤ z < ki

we have H(az) ≤ 3i. We define wi = uivi. Let’s see that both H∞(wi) − H∅′(wi) and
H(wi)−H∞(wi) grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes U∞(p) till
it outputs i bits and then halts. Since the first i bits of wi are ui, we have i ≤ H(ui) ≤
H∞(wi) + 2 |i| + O(1). But with the help of the ∅′-oracle we can compute wi from i, so
H∅′(wi) ≤ 2 |i|+O(1). Thus we have H∞(wi)−H∅′(wi) ≥ i− 4 |i| − O(1).

On the other hand, given i and wi, we can effectively compute aki
. Hence, for all i we

have 3i < H(aki
) ≤ H(wi) + 2 |i| + O(1). Also, given ui, we can compute wi in the limit

using the idea of machine M, and hence H∞(wi) ≤ 2 |ui|+O(1) = 2i +O(1). Then, for all
i, H(wi)−H∞(wi) > i− 2 |i| − O(1).

Not only H∞ is different from H∅′ but it differs from HA (the prefix free complexity of
a universal monotone machine with any oracle A), for every A.

Theorem 4.2. There is no oracle A such that
∣∣H∞ −HA

∣∣ ≤ O(1).

Proof. Immediate from Lemma 3.3 and from the standard result that for all A, HA is
subadditive, so in particular, for every k, HA(0k1) ≤ HA(0k)+HA(1) = HA(0k)+O(1).

5 H∞ and the Cantor space

The advantage of H∞ over H can be seen along the initial segments of every recursive
sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many n’s such that H(A �
n)−H∞(A�n) > c, for an arbitrary c.

Proposition 5.1. Let A ∈ {0, 1}ω be a recursive sequence. Then

1. lim supn→∞H(A�n)−H∞(A�n) = ∞.

2. lim supn→∞H∞(A�n)−Hm(A�n) = ∞.

Proof. 1. Let f : N → {0, 1} a total recursive function such that f(n) is the n-th bit of
A. Let’s consider the following monotone machine M with input p:

Obtain n := U(p)

Write A�(string−1(0n)− 1)

For s := 0n to 1n in lexicographic order

7

Write f(string−1(s))

Search for a program p such that |p| < n and U(p) = s

If U(p) = n, then M∞(p) outputs A � kn for some kn such that 2n ≤ kn < 2n+1,
since for all n there is a string of length n with H-complexity greater than or equal
to n. Let us fix n. On one hand, H∞(A � kn) ≤ H(n) + O(1). On the other,
H(A � kn) ≥ n + O(1), because we can compute the first string in the lexicographic
order with H-complexity ≥ n from a program for A � kn. Hence, for each n, H(A �
kn)−H∞(A�kn) ≥ n−H(n) +O(1).

2. Trivial because for each computable sequence A there is a constant c such that Hm(A�
n) ≤ c and limn→∞H∞(B �n) = ∞ for every B ∈ {0, 1}ω.

5.1 H-triviality and H∞-triviality

There is a standard convention to use H with arguments in N. I.e., for any n ∈ N H(n)
is written instead of H(f(n)) where f is some particular representation of natural numbers
on {0, 1}∗. This convention makes sense because H is invariant (up to a constant) for any
recursive representation of natural numbers.

H-triviality has been defined as follows (see [5]): A ∈ {0, 1}ω is H-trivial iff there is a
constant c such that for all n, H(A � n) ≤ H(n) + c. The idea is that H-trivial sequences
are exactly those whose initial segments have minimal H-complexity. Considering the above
convention, A is H-trivial iff ∃c ∀n H(A�n) ≤ H(0n) + c.

In general H∞ is not invariant for recursive representations of N. We propose the fol-
lowing definition that insures that recursive sequences are H∞-trivial.

Definition 5.2. A ∈ {0, 1}ω is H∞-trivial iff ∃c ∀n H∞(A�n) ≤ H∞(0n) + c.

Our choice of the right hand side of the above definition is supported by the following
proposition.

Proposition 5.3. Let f : N → {0, 1}∗ recursive and monotonous strictly increasing with
respect to the length and lexicographical order over {0, 1}∗. Then

∀n H∞(0n) ≤ H∞(f(n)) +O(1).

Proof. Notice that, since f is monotonous, f has recursive range. We construct a monotone
machine M with input p:

t := 0
Repeat

if U(p)[t] ↓ is in the range of f then n := f−1(U(p)[t])
print the needed 0’s to leave 0n on the output tape
t := t + 1

Since f is monotonous increasing in the length and lexicographic order over {0, 1}∗, if p is
a program for U such that U∞(p) = f(n), then M∞(p) = 0n.

Chaitin proved that every recursive A ∈ {0, 1}ω is H-trivial [4] and Solovay [13] showed a
∆0

2 sequence which is H-trivial but not recursive. Then H-triviality does not characterize
the class of recursive sequences. We characterize ∆0

1 as H∞-trivial ∩∆0
2.

Theorem 5.4. Let A ∈ {0, 1}ω. A is ∆0
2 and H∞-trivial iff A is recursive.

8

Proof. From right to left, it is easy to see that if A is a computable sequence then A is
H∞-trivial.

For the converse, let A be H∞-trivial via some constant b. Since A is ∆0
2, there is a

computable approximation (As)s∈N such that lims→∞As = A.
For all x ∈ {0, 1}∗ and t ∈ N, let H∞(x)[t] = min{|p| : U(p)[t] = x} be the t-

approximation of H∞(x). Notice ∀x limt→∞H∞(x)[t] = H∞(x). Consider the following
program with coding constant c given by the Recursion Theorem:

k := 1 ; s0 := 0
While ∃sk > sk−1 such that H∞(Ask

�k)[sk] ≤ c + b do
Print 0
k := k + 1

Let us see that the above program prints out infinitely many 0’s. Suppose it writes 0k for
some k. Then, on one hand, H∞(0k) ≤ c, and on the other, ∀s > sk, we have H∞(As �
k)[s] > c + b. Also, H∞(As � k)[s] = H∞(A � k) for s large enough. Hence, H∞(A � k) >
H∞(0k) + b, which contradicts that A is H∞-trivial.

So, for each k, there is some q ∈ {0, 1}∗ with |q| ≤ c + b such that U(q)[sk] = Ask
� k.

Since there are only 2c+b+1 − 1 strings of length at most c + b, there must be at least one q
such that, for infinitely many k, U(q)[sk] = Ask

�k. Let’s call I the set of all these k’s. We
will show that such a q necessarily computes A. Suppose not. Then, there is a t such that
for all s ≥ t, U(q)[s] 6= A. Thus, noticing that (sk)k∈N is increasing and I is infinite, there
are infinitely many sk ≥ t such that k ∈ I and U(q)[sk] = Ask

�k 6= A �k. This contradicts
that Ask

�k → A when k →∞.

Corollary 5.5. The classes of H∞-trivial sequences and H-trivial sequences do not coincide.

Proof. Solovay [13] showed an H-trivial sequence in ∆0
2 which is not computable. By The-

orem 5.4 this sequence cannot be H∞-trivial.

5.2 H∞-randomness

We define A ∈ {0, 1}ω to be H∞-random iff there is a constant c such that for each natural n,
H∞(A�n) > n− c. Let us see that H∞-randomness coincides with Martin-Löf randomness.
Following Levin’s work [8], we consider Hm-randomness.

Definition 5.6. A ∈ {0, 1}ω is Hm-random iff ∃c ∀n Hm(A�n) > n− c.

Levin [8] proved that the classes of Martin-Löf random sequences and Hm-random sequences
coincide. For the sake of completeness, we give an alternative proof.

Proposition 5.7 (with D. Hirschfeldt). There is a b0 such that for all b ≥ b0 and z, if
Hm(z) ≤ |z| − b, then there is y � z such that H(y) ≤ |y| − b/2

Proof. Consider the following machine M with coding constant c. On input qp, first it
simulates U(q) until it halts. Let’s call b the output of this simulation. Then it simulates
U∞(p) till it outputs a string y of length b + l where l is the length of the prefix of p read
by U∞. Write this string y on the output and stop.

Let b0 be the first number such that 2 |b0|+ c ≤ b0/2 and take b ≥ b0. Suppose Hm(z) ≤
|z| − b. Let p be a shortest program such that U∞(p) � z and let q be a shortest program
such that U(q) = b. This means that |p| = Hm(z) and |q| = H(b). On input qp, the machine
M will compute b and then it will start simulating U∞(p). Since |z| ≥ Hm(z) + b = |p|+ b,
the machine will eventually read l bits from p in a way that the simulation of U∞(p� l) = y
and |y| = l + b. When this happens, the machine M writes y and stops. Then for p′ = p� l,
we have M(qp′) ↓= y and |y| = |p′|+ b. Hence

H(y) ≤ |q|+ |p′|+ c ≤ H(b) + |y| − b + c ≤ 2 |b| − b + |y|+ c ≤ |y| − b/2.

9

Corollary 5.8. A ∈ {0, 1}ω is Martin-Löf random iff A is Hm-random iff A is H∞-random.

Proof. Since Hm ≤ H +O(1) it is clear that if a sequence is Hm-random then it is Martin-
Löf random. For the opposite, suppose A is Martin-Löf random but not Hm-random. Let
b0 as in Proposition 5.7 and let 2c ≥ b0 be such that ∀n H(A �n) > n − c. Since A is not
Hm-random, ∀d ∃n Hm(A � n) ≤ n − d. In particular for d = 2c there is an n such that
Hm(A �n) ≤ n − 2c. On the one hand, by Proposition 5.7, there is an y � A �n such that
H(y) ≤ |y| − c. On the other, since y is a prefix of A and A is Martin-Löf random, we have
H(y) > |y| − c.

Since Hm is a lower bound of H∞, the above equivalence implies A is Martin-Löf random
iff A is H∞-random.

References

[1] V. Becher, S. Daicz, & G. Chaitin. A highly random number. In C. S. Calude, M. J.
Dineen, and S. Sburlan, editors, Combinatorics, Computability and Logic: Proceed-
ings of the Third Discrete Mathematics and Theoretical Computer Science Conference
(DMTCS’01), 55–68. Springer-Verlag London, 2001.

[2] G. J. Chaitin. A theory of program size formally identical to information theory, J.
ACM, vol.22, 329–340, 1975.

[3] G. J. Chaitin. Algorithmic entropy of sets, Computers & Mathematics with Applica-
tions, vol.2, 233–245, 1976.

[4] G.J. Chaitin. Information-theoretical characterizations of recursive infinite strings. The-
oretical Computer Science, 2:45–48,1976.

[5] R. Downey and D. Hirschfeldt and A. Nies and F. Stephan, Trivial reals Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 66:1, 2002. Also to appear in
Proceedings of the 7th and 8th Asian Logic Conferences World Scientific, Singapore,
Eds. R.Downey, D.Decheng , T.Shih Ping, Q.Yu Hui, M.Yasugi.

[6] M. Ferbus-Zanda and S. Grigorieff. Church, cardinal and ordinal representations of
integers and Kolmogorov complexity. Manuscript, 2003.

[7] A.K. Zvonkin and L.A. Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms.
Russ. Math. Surveys, Vol. 25, pp. 83–124, 1970.

[8] L.A. Levin. On the Concept of a Random Sequence. Doklady Akad. Nauk SSSR, 14(5),
1413–1416, 1973.

[9] L.A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Founda-
tions of Probability Theory. Problems of Information Transmission, 10:3, pp. 206–210,
1974.

[10] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its applications,
Springer, Amsterdam, 1997 (2d edition).

[11] P. Gács. On the symmetry of algorithmic information. Soviet Math. Dodkl., 15, pp.
1477–1480, 1974.

[12] C.P. Schnorr. Process complexity and effective random tests. Journal of Computer
Systems Science, Vol. 7, pp. 376–388, 1973.

[13] R.M. Solovay. Draft of a paper (or series of papers) on Chaitin’s work done for the
most part during the period Sept. to Dec. 1974, unpublished manuscript, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York. 215 pp., May 1975.

10

[14] V.A. Uspensky and A.Kh. Shen’. Relations between varieties of Kolmogorov complex-
ities. Math. Systems Theory, Vol. 29, pp. 271–292, 1996.

11

