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1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a one-way
write-only output tape) performing possibly infinite computations, and we define a program
size complexity function H∞ : {0, 1}∗ → N as a variant of the classical Kolmogorov com-
plexity: given a universal monotone machine U , for any string x ∈ {0, 1}∗, H∞(x) is the
length of a shortest string p ∈ {0, 1}∗ read by U , which produces x via a possibly infinite
computation (either a halting or a non halting computation), having read exactly p from
the input.

The classical prefix-free complexity H [2, 9] is an upper bound of the function H∞ (up
to an additive constant), since the definition of H∞ does not require that the machine U
halts.

The complexity H∞ is closely related with the monotone complexity Hm, independently
introduced by Levin [7] and Schnorr [12] (see [14] and [10] for historical details and differences
between various monotone complexities). Levin defines Hm(x) as the length of the shortest
halting program that provided with n (0 ≤ n ≤ |x|), it outputs x �n. Equivalently Hm(x)
can be defined as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H∞ (up to an additive constant) since the definition of H∞

imposes that the machine U reads exactly the input p and produces exactly the output
x. Every recursive A ∈ {0, 1}ω is the output of some monotone machine with no input,
then there is some c such that ∀n Hm(A � n) ≤ c. Moreover, there exists n0 such that
∀n, m ≥ n0 Hm(A � n) = Hm(A � m). We show this is not the case with H∞, since for
every infinite B = {b1, b2, . . .} ⊆ {0, 1}∗, limn→∞H∞(bn) = ∞. This is also a property
of the classical prefix-free complexity H, and we consider it as a decisive property that
distinguishes H∞ from Hm.

The prefix-free complexity relative to a universal machine with oracle ∅′, the function
H∅′ , is also a lower bound of H∞ (up to an additive constant). We prove that for infinitely
many strings x, the complexities H(x), H∞(x) and H∅′(x) separate as much as we want.
This already proves that these three complexities are different. In addition we show that
for every oracle A, H∞ differs from HA, the prefix-free complexity of a universal machine
with oracle A. We also prove that H∞ differs from H in that it has no decreasing recursive
monotonous approximation and it is not subadditive. Finally, for sequences in {0, 1}ω we
consider definitions of randomness and triviality based on the H∞ complexity. Since Hm-
randomness coincides with Martin-Löf randomness and Hm gives a lower bound of H∞, the
classes of H-random, H∞-random and Hm-random coincide.

We argue for a definition H∞-trivial sequences that is satisfied by the recursive sequences
in {0, 1}ω. A ∈ {0, 1}ω is H∞-trivial iff for all n, H∞(A � n) ≤ H∞(0n) + O(1), i.e., the
initial segments of A have minimal H∞ complexity. While every recursive A ∈ {0, 1}ω is
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both H-trivial and H∞-trivial, the two classes do not coincide. We give a characterization
result of recursive sequences as those which are ∆0

2 and H∞-trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As usual,
a string is a finite sequence of elements of {0, 1}, λ is the empty string and {0, 1}∗ is the
set of all strings. {0, 1}ω is the set of all infinite sequences of {0, 1}, i.e. the Cantor space.
{0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω is the set of all finite or infinite sequences of {0, 1}.

For a ∈ {0, 1}∗, |a| denotes the length of a. If a ∈ {0, 1}∗ and A ∈ {0, 1}ω we denote a�n
the prefix of a with length min(n, |a|) and A �n the length n prefix of the infinite sequence
A. We assume the recursive bijection string : N → {0, 1}∗ such that string(i) is the i-th
string in the length-lexicographic order over {0, 1}∗.

If f is any partial map then, as usual, we write f(p)↓ when it is defined, and f(p)↑
otherwise.

2.1 Possibly infinite computations on monotone machines

A monotone machine is a Turing machine with a one-way read-only input tape, some work
tapes, and a one-way write-only output tape. The input tape contains a first dummy
cell (representing the empty input) and then a one-way infinite sequence of 0’s and 1’s
and initially the input head scans the leftmost dummy cell. The output tape is written
one symbol of {0, 1} at a time (the output grows monotonically with respect to the prefix
ordering in {0, 1}∗ as the computational time increases).

A possibly infinite computation is either a halting or a non halting computation. If the
machine halts, the output of the computation is the finite string written on the output tape.
Else, the output is either a finite string or an infinite sequence written on the output tape
as a result of a never ending process. This leads to consider {0, 1}≤ω as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone machines
which read just finitely many symbols from the input tape.

Definition 2.1. Let M be a monotone machine. M(p)[t] is the current output of M on
input p at stage t if it has not read beyond the end of p. Otherwise, M(p)[t] ↑. Notice that
M(p)[t] does not require that the computation on input p halts.

Remark 2.2. Notice that

1. If M(p)[t] ↑ then M(q)[u] ↑ for all q � p and u ≥ t.

2. If M(p)[t] ↓ then M(q)[u] ↓ for any q � p and u ≤ t. Also, if at stage t, M reaches a
halting state, then M(p)[u]↓ = M(p)[t] for all u ≥ t.

3. Since M is monotone, M(p)[t] � M(p)[t + 1], in case M(p)[t + 1] ↓.

4. M(p)[t] has recursive domain.

Definition 2.3. Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial recursive map
M : {0, 1}∗ → {0, 1}∗ given by the usual computation of M, i.e., M(p) ↓ iff M enters
into a halting state on input p without reading beyond p. If M(p) ↓ then M(p) =
M(p)[t] for some stage t at which M entered a halting state.

2. The input/output behavior of M for possibly infinite computations is the map M∞ :
{0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞M(p)[t].

Proposition 2.4.
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1. domain(M) is closed under extension and its syntactical complexity is Σ0
1.

2. domain(M∞) is closed under extensions and its syntactical complexity is Π0
1.

3. M∞ extends M .

Proof. 1. is trivial.

2. M∞(p) ↓⇔ ∀tM on input p does not read p0 and does not read p1. Clearly, domain(M∞)
is closed under extensions since if M∞(p)↓ then M∞(q) ↓= M∞(p) for every q � p.

3. Since the machine M is not required to halt, M∞ extends M .

Remark 2.5. An alternative definition of M and M∞ would be to consider them with prefix
free domains (instead of closed under extensions):

- M(p)↓ iff at some stage t M enters a halting state having read exactly p. If M(p) ↓
then its value is M(p)[t] for such stage t.

- M∞(p)↓ iff ∃t at which M has read exactly p and for every t′ M does not read p0 nor
p1. If M∞(p)↓ then its value is sup{M(p)[t] : t ≥ 0}.

We fix an effective enumeration of all tables of instructions. This gives an effective
(Mi)i∈N. We fix the usual monotone universal machine U , which defines the functions
U(0i1p) = Mi(p) and U∞(0i1p) = M∞

i (p) for halting and possibly infinite computations
respectively. Recall that U∞ is an extension of U . We also fix U∅

′
a monotone universal

machine with an oracle for ∅′.
By Shoenfield’s Limit Lemma every M∞ : {0, 1}∗ → {0, 1}∗ is recursive in ∅′. However,

possibly infinite computations on monotone machines can not compute all ∅′-recursive func-
tions. For instance, the characteristic function of the halting problem can not be computed
in the limit by a monotone machine. In contrast, the Busy Beaver function in unary notation
bb : N → 1∗:

bb(n) =
the maximum number of 1’s produced by any Turing machine
with n states which halts with no input

is just ∅′-recursive and bb(n) is the output of a non halting computation which on input
n, simulates every Turing machine with n states and for each one that halts it updates, if
necessary, the output with more 1’s.

2.2 Program size complexities on monotone machines

Let M be a monotone machine, and M , M∞ the respective maps for input/output behavior
of M for halting computations and possibly infinite computations (Definition 2.3). We
denote the usual prefix free complexity [2, 9, 11] for M with HM : {0, 1}∗ → N

HM(x) =
{

min{|p| : M(p) = x} if x is in the range of M
∞ otherwise

Definition 2.6. H∞
M : {0, 1}≤ω → N is the program size complexity for functions M∞.

H∞
M(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise

For U we drop subindexes and we simply write H and H∞. The Invariance Theorem holds
for H∞:

∀ monotone machine M ∃c ∀s ∈ {0, 1}≤ω
H∞(s) ≤ H∞

M(s) + c.

The complexity function H∞ was first introduced in [1] without a detailed study of its
properties. Notice that if we take monotone machines M according to Remark 2.5 instead
of Definition 2.3, we obtain the same complexity functions HM and H∞

M.
In this work we only consider the H∞ complexity of finite strings, that is, we restrict our

attention to H∞ : {0, 1}∗ → N. We will compare H∞ with these other complexity functions:
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HA : {0, 1}∗ → N is the program size complexity function for UA, a monotone universal
machine with oracle A. We pay special attention to A = ∅′.

Hm : {0, 1}≤ω → N (see [7]), where HmM(x) = min{|p| : M∞(p) � x} is the monotone
complexity function for a monotone machine M and, as usual, for U we simply write
Hm.

We mention some known results that will be used later.

Proposition 2.7.

1. ∃c ∀s ∈ {0, 1}∗ H(s) ≤ |s|+ H(|s|) + c.

2. ∃c ∀s ∈ {0, 1}∗ H∅′(s)− c < H∞(s) < H(s) + c, (see [1]).

3. ∀n ∃s ∈ {0, 1}∗ of length n such that:

(a) H(s) ≥ n.

(b) H∅′(s) ≥ n.

3 H∞ is different from H

The following properties of H∞ are in the spirit of those of H.

Proposition 3.1. For all strings s and t

1. H(s) ≤ H∞(s) + H(|s|) +O(1).

2. #{s ∈ {0, 1}∗ : H∞(s) ≤ n} < 2n+1.

3. H∞(ts) ≤ H∞(s) + H(t) +O(1).

4. H∞(s) ≤ H∞(st) + H(|t|) +O(1).

5. H∞(s) ≤ H∞(st) + H∞(|s|) +O(1).

Proof. 1. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = |s|. Then there is a machine
that first simulates U(q) to obtain |s|, then it starts a simulation of U∞(p) writing its
output on the output tape, until it has written |s| symbols, and then halts.

2. There are at most 2n+1 − 1 strings of length ≤ n.

3. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = t. Then there is a machine that
first simulates U(q) until it halts and prints U(q) on the output tape. Then , it starts
a simulation of U∞(p) writing its output on the on the output tape.

4. Let p, q ∈ {0, 1}∗ such that U∞(p) = st and U(q) = |t|. Then there is a machine
that first simulates U(q) until it halts to obtain |t|. Then it starts a simulation of
U∞(p) such that at each stage n of the simulation it writes the symbols needed to
leave U(p)[n]� |U(p)[n]| − |t| on the output tape.

5. Consider the following monotone machine:

t := 1 ; v := λ ; w := λ

Repeat

if U(v)[t] asks for reading then v := vb

if U(w)[t] asks for reading then w := wb
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where b is the next bit in the input

extend the actual output to U(w)[t]�(U(v)[t])

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st respectively,
then we can interleave p and q in a way such that at each stage t, v � p and w � q
(notice that eventually v = p and w = q). Thus, this machine will compute s and will
never read more than H∞(st)+H∞(|s|) bits.

H is recursively approximable from above, but H∞ is not.

Proposition 3.2. There is no effective decreasing approximation of H∞.

Proof. Suppose there is a recursive function h : {0, 1}∗ × N → N such that for every string
s, limt→∞ h(s, t) = H∞(s) and for all t ∈ N, h(s, t) ≥ h(s, t + 1). We write ht(s) for h(s, t).
Consider the monotone machine M with index d, which on input p does the following.

t := 1 ; print 0
repeat forever

n := number of bits read by U(p)[t]
for each string s not yet printed, |s| ≤ t and ht(s) ≤ n + d

print s
t := t + 1

Let p be a shortest program such that U∞(p) = k. Notice that, as t →∞, the number of bits
read by U(p)[t] goes to |p| = H∞(k). Let t0 such that for all t ≥ t0, U(p)[t] reads no more
from the input. Since there are only finitely many strings s such that H∞(s) ≤ H∞(k) + d,
there is a t1 ≥ t0 such that for all t ≥ t1 and for all those strings s, ht(s) = H∞(s). Hence,
every string s with H∞(s) ≤ H∞(k) + d will be printed.

Let z = M∞(p). On the one hand, we have H∞(z) ≤ |p|+d = H∞(k)+d. On the other
hand, by the construction of M, z cannot be the output of a program of length ≤ H∞(k)+d
(because z is different from each string s such that H∞(s) ≤ H∞(k) + d). So it must be
H∞(z) > H∞(k) + d, a contradiction.

A critical property distinguishes H∞ from H, and it implies that H∞ is not subadditive
and not invariant for recursive permutations {0, 1}∗ → {0, 1}∗.

Lemma 3.3. For every total recursive function f there is a natural k such that

H∞(0k1) > f(H∞(0k)).

Proof. Let f be any recursive function and M the following monotone machine with index
d given by the Recursion Theorem:

t := 1
do forever

for each p such that |p| ≤ max{f(i) : 0 ≤ i ≤ d}
if U(p)[t] = 0j1 then

print enough 0’s to leave at least 0j+1 on the output tape
t := t + 1

Let N = max{f(i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k. Since there
are only finitely many programs of length less than or equal to N which output a string
of the form 0j1, for some j, then there is some stage at which M has written 0k, with k
greater than all such j’s, and then it prints nothing else. Therefore, there is no program p
with |p| ≤ N such that U∞(p) = 0k1.
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If M∞(λ) = 0k then H∞(0k) ≤ d. So, f(H∞(0k)) ≤ N . Also, for this k, there is no
program of length ≤ N that outputs 0k1 and thus H∞(0k1) > N . Hence, H∞(0k1) >
f(H∞(0k)).

Note that H(0k) = H(0k1) = H∞ up to additive constants, so the above lemma gives an
example where H∞ is much smaller that H.

Proposition 3.4.

1. H∞ is not subadditive.

2. It is not the case that for every recursive one-one g : {0, 1}∗ → {0, 1}∗
∃c ∀s |H∞(g(s))−H∞(s)| ≤ c.

Proof. 1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3 there is k such
that H∞(0k1) > H∞(0k) + c. Since the last inequality holds for every c, it is not true
H∞(0k1) ≤ H∞(0k) +O(1).

2. It is immediate from Lemma 3.3.

It is known that the complexity H is smooth in the length and lexicographic order over
{0, 1}∗ in the sense that |H(string(n))−H(string(n + 1))| = O(1). However, this is not the
case for H∞.

Proposition 3.5.

1. H∞ is not smooth in the length and lexicographical order over {0, 1}∗.

2. For all n |H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1).

Proof. 1. Notice that ∀n > 1 H∞(0n1) ≤ H∞(0n−11)+O(1), because if U∞(p) = 0n−11
then there is a machine that first writes a 0 on the output tape and then it simulates
U∞(p). By Lemma 3.3, for each c there is a n such that H∞(0n1) > H∞(0n) +
c. Joining the two inequalities, we obtain ∀c ∃n H∞(0n−11) > H∞(0n) + c. Since
string−1(0n−11) = string−1(0n) + 1, H∞ is not smooth.

2. Consider the following monotone machine M with input pq:

Obtain y = U(p)

Simulate z = U∞(q) till it outputs y bits

Write string(string−1(z) + 1)

Let p, q ∈ {0, 1}∗ such that U(p) = |string(n)| and U∞(q) = string(n). Then,
M∞(pq) = string(n + 1) and H∞(string(n + 1)) ≤ H∞(string(n)) + H(|string(n)|) +
O(1).

Similarly, ifM above instead of writing string(string−1(z)+1), it writes string(string−1(z)−
1), we conclude H∞(string(n)) ≤ H∞(string(n+1))+H(|string(n + 1)|)+O(1). Thus,
|H(string(n))−H(string(n + 1))| = O(1).

6



4 H∞ is different from HA for every oracle A

Point 2 of Proposition 2.7 states that H∞ is between H and H∅′ . The following result shows
that H∞ is really strictly in between them.

Proposition 4.1. For every c there is a string s ∈ {0, 1}∗ such that

H∅′(s) + c < H∞(s) < H(s)− c.

Proof. Let un = min{s ∈ {0, 1}n : H(s) ≥ n} and let A = {a0, a1, . . . } any infinite r.e. set
and consider a machine M which on input i does the following:

j := 0
Repeat

Write aj

Find a program p, |p| ≤ 3i, such that U(p) = aj

j := j + 1

M∞(i) outputs the string vi = a0a1 . . . aki
, where H(aki

) > 3i and for all z, 0 ≤ z < ki

we have H(az) ≤ 3i. We define wi = uivi. Let’s see that both H∞(wi) − H∅′(wi) and
H(wi)−H∞(wi) grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes U∞(p) till
it outputs i bits and then halts. Since the first i bits of wi are ui, we have i ≤ H(ui) ≤
H∞(wi) + 2 |i| + O(1). But with the help of the ∅′-oracle we can compute wi from i, so
H∅′(wi) ≤ 2 |i|+O(1). Thus we have H∞(wi)−H∅′(wi) ≥ i− 4 |i| − O(1).

On the other hand, given i and wi, we can effectively compute aki
. Hence, for all i we

have 3i < H(aki
) ≤ H(wi) + 2 |i| + O(1). Also, given ui, we can compute wi in the limit

using the idea of machine M, and hence H∞(wi) ≤ 2 |ui|+O(1) = 2i +O(1). Then, for all
i, H(wi)−H∞(wi) > i− 2 |i| − O(1).

Not only H∞ is different from H∅′ but it differs from HA (the prefix free complexity of
a universal monotone machine with any oracle A), for every A.

Theorem 4.2. There is no oracle A such that
∣∣H∞ −HA

∣∣ ≤ O(1).

Proof. Immediate from Lemma 3.3 and from the standard result that for all A, HA is
subadditive, so in particular, for every k, HA(0k1) ≤ HA(0k)+HA(1) = HA(0k)+O(1).

5 H∞ and the Cantor space

The advantage of H∞ over H can be seen along the initial segments of every recursive
sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many n’s such that H(A �
n)−H∞(A�n) > c, for an arbitrary c.

Proposition 5.1. Let A ∈ {0, 1}ω be a recursive sequence. Then

1. lim supn→∞H(A�n)−H∞(A�n) = ∞.

2. lim supn→∞H∞(A�n)−Hm(A�n) = ∞.

Proof. 1. Let f : N → {0, 1} a total recursive function such that f(n) is the n-th bit of
A. Let’s consider the following monotone machine M with input p:

Obtain n := U(p)

Write A�(string−1(0n)− 1)

For s := 0n to 1n in lexicographic order
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Write f(string−1(s))

Search for a program p such that |p| < n and U(p) = s

If U(p) = n, then M∞(p) outputs A � kn for some kn such that 2n ≤ kn < 2n+1,
since for all n there is a string of length n with H-complexity greater than or equal
to n. Let us fix n. On one hand, H∞(A � kn) ≤ H(n) + O(1). On the other,
H(A � kn) ≥ n + O(1), because we can compute the first string in the lexicographic
order with H-complexity ≥ n from a program for A � kn. Hence, for each n, H(A �
kn)−H∞(A�kn) ≥ n−H(n) +O(1).

2. Trivial because for each computable sequence A there is a constant c such that Hm(A�
n) ≤ c and limn→∞H∞(B �n) = ∞ for every B ∈ {0, 1}ω.

5.1 H-triviality and H∞-triviality

There is a standard convention to use H with arguments in N. I.e., for any n ∈ N H(n)
is written instead of H(f(n)) where f is some particular representation of natural numbers
on {0, 1}∗. This convention makes sense because H is invariant (up to a constant) for any
recursive representation of natural numbers.

H-triviality has been defined as follows (see [5]): A ∈ {0, 1}ω is H-trivial iff there is a
constant c such that for all n, H(A � n) ≤ H(n) + c. The idea is that H-trivial sequences
are exactly those whose initial segments have minimal H-complexity. Considering the above
convention, A is H-trivial iff ∃c ∀n H(A�n) ≤ H(0n) + c.

In general H∞ is not invariant for recursive representations of N. We propose the fol-
lowing definition that insures that recursive sequences are H∞-trivial.

Definition 5.2. A ∈ {0, 1}ω is H∞-trivial iff ∃c ∀n H∞(A�n) ≤ H∞(0n) + c.

Our choice of the right hand side of the above definition is supported by the following
proposition.

Proposition 5.3. Let f : N → {0, 1}∗ recursive and monotonous strictly increasing with
respect to the length and lexicographical order over {0, 1}∗. Then

∀n H∞(0n) ≤ H∞(f(n)) +O(1).

Proof. Notice that, since f is monotonous, f has recursive range. We construct a monotone
machine M with input p:

t := 0
Repeat

if U(p)[t] ↓ is in the range of f then n := f−1(U(p)[t])
print the needed 0’s to leave 0n on the output tape
t := t + 1

Since f is monotonous increasing in the length and lexicographic order over {0, 1}∗, if p is
a program for U such that U∞(p) = f(n), then M∞(p) = 0n.

Chaitin proved that every recursive A ∈ {0, 1}ω is H-trivial [4] and Solovay [13] showed a
∆0

2 sequence which is H-trivial but not recursive. Then H-triviality does not characterize
the class of recursive sequences. We characterize ∆0

1 as H∞-trivial ∩∆0
2.

Theorem 5.4. Let A ∈ {0, 1}ω. A is ∆0
2 and H∞-trivial iff A is recursive.
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Proof. From right to left, it is easy to see that if A is a computable sequence then A is
H∞-trivial.

For the converse, let A be H∞-trivial via some constant b. Since A is ∆0
2, there is a

computable approximation (As)s∈N such that lims→∞As = A.
For all x ∈ {0, 1}∗ and t ∈ N, let H∞(x)[t] = min{|p| : U(p)[t] = x} be the t-

approximation of H∞(x). Notice ∀x limt→∞H∞(x)[t] = H∞(x). Consider the following
program with coding constant c given by the Recursion Theorem:

k := 1 ; s0 := 0
While ∃sk > sk−1 such that H∞(Ask

�k)[sk] ≤ c + b do
Print 0
k := k + 1

Let us see that the above program prints out infinitely many 0’s. Suppose it writes 0k for
some k. Then, on one hand, H∞(0k) ≤ c, and on the other, ∀s > sk, we have H∞(As �
k)[s] > c + b. Also, H∞(As � k)[s] = H∞(A � k) for s large enough. Hence, H∞(A � k) >
H∞(0k) + b, which contradicts that A is H∞-trivial.

So, for each k, there is some q ∈ {0, 1}∗ with |q| ≤ c + b such that U(q)[sk] = Ask
� k.

Since there are only 2c+b+1 − 1 strings of length at most c + b, there must be at least one q
such that, for infinitely many k, U(q)[sk] = Ask

�k. Let’s call I the set of all these k’s. We
will show that such a q necessarily computes A. Suppose not. Then, there is a t such that
for all s ≥ t, U(q)[s] 6= A. Thus, noticing that (sk)k∈N is increasing and I is infinite, there
are infinitely many sk ≥ t such that k ∈ I and U(q)[sk] = Ask

�k 6= A �k. This contradicts
that Ask

�k → A when k →∞.

Corollary 5.5. The classes of H∞-trivial sequences and H-trivial sequences do not coincide.

Proof. Solovay [13] showed an H-trivial sequence in ∆0
2 which is not computable. By The-

orem 5.4 this sequence cannot be H∞-trivial.

5.2 H∞-randomness

We define A ∈ {0, 1}ω to be H∞-random iff there is a constant c such that for each natural n,
H∞(A�n) > n− c. Let us see that H∞-randomness coincides with Martin-Löf randomness.
Following Levin’s work [8], we consider Hm-randomness.

Definition 5.6. A ∈ {0, 1}ω is Hm-random iff ∃c ∀n Hm(A�n) > n− c.

Levin [8] proved that the classes of Martin-Löf random sequences and Hm-random sequences
coincide. For the sake of completeness, we give an alternative proof.

Proposition 5.7 (with D. Hirschfeldt). There is a b0 such that for all b ≥ b0 and z, if
Hm(z) ≤ |z| − b, then there is y � z such that H(y) ≤ |y| − b/2

Proof. Consider the following machine M with coding constant c. On input qp, first it
simulates U(q) until it halts. Let’s call b the output of this simulation. Then it simulates
U∞(p) till it outputs a string y of length b + l where l is the length of the prefix of p read
by U∞. Write this string y on the output and stop.

Let b0 be the first number such that 2 |b0|+ c ≤ b0/2 and take b ≥ b0. Suppose Hm(z) ≤
|z| − b. Let p be a shortest program such that U∞(p) � z and let q be a shortest program
such that U(q) = b. This means that |p| = Hm(z) and |q| = H(b). On input qp, the machine
M will compute b and then it will start simulating U∞(p). Since |z| ≥ Hm(z) + b = |p|+ b,
the machine will eventually read l bits from p in a way that the simulation of U∞(p� l) = y
and |y| = l + b. When this happens, the machine M writes y and stops. Then for p′ = p� l,
we have M(qp′) ↓= y and |y| = |p′|+ b. Hence

H(y) ≤ |q|+ |p′|+ c ≤ H(b) + |y| − b + c ≤ 2 |b| − b + |y|+ c ≤ |y| − b/2.
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Corollary 5.8. A ∈ {0, 1}ω is Martin-Löf random iff A is Hm-random iff A is H∞-random.

Proof. Since Hm ≤ H +O(1) it is clear that if a sequence is Hm-random then it is Martin-
Löf random. For the opposite, suppose A is Martin-Löf random but not Hm-random. Let
b0 as in Proposition 5.7 and let 2c ≥ b0 be such that ∀n H(A �n) > n − c. Since A is not
Hm-random, ∀d ∃n Hm(A � n) ≤ n − d. In particular for d = 2c there is an n such that
Hm(A �n) ≤ n − 2c. On the one hand, by Proposition 5.7, there is an y � A �n such that
H(y) ≤ |y| − c. On the other, since y is a prefix of A and A is Martin-Löf random, we have
H(y) > |y| − c.

Since Hm is a lower bound of H∞, the above equivalence implies A is Martin-Löf random
iff A is H∞-random.
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